Advertisement

Molecular Shape

  • Brian T. Sutcliffe

Abstract

That a molecule has a shape has been a central idea in theoretical chemistry since about 1874. It has become so deeply embedded in chemical thinking that students take it for granted from their earliest years and regard it as a completely uncontroversial idea. Before examining the idea further, we explain how the word “shape” is going to be interpreted in the context of this paper.

Keywords

Eulerian Angle Internuclear Distance Rigid Rotation Electronic Wave Function Identical Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.A. Coulson, J. Chem. Soc. 2069 (1955).Google Scholar
  2. 2.
    E. von Meyer, “A History of Chemistry from Earliest Times to the Present Day,” (transi. G. McGowan) Macmillan, London (1898).Google Scholar
  3. 3.
    Mary Jo Nye, ed., “The Question of the Atom,” Tomash Publishers, Los Angeles (1984).Google Scholar
  4. 4.
    C.A. Russell, “The History of Valency,” Leicester University Press, Leicester (1971).Google Scholar
  5. 5.
    A. Cayley, Philos. Mag. 67:444 (1874).Google Scholar
  6. 6.
    J J. Sylvester, American Journal of Mathematics 1:64 (1878).CrossRefGoogle Scholar
  7. 7.
    I.M. Klotz, “Diamond Dealers and Feather Merchants. Tales from the Sciences,” Birkhauser, Boston (1986).Google Scholar
  8. 8.
    E.W. Frankland, American Journal of Mathematics 1:345 (1878).CrossRefGoogle Scholar
  9. 9.
    R. Hoffmann and P. Laszlo, Angew. Chem. Int. Ed. Eng. 30:1 (1991).CrossRefGoogle Scholar
  10. 10.
    B.T. Sutcliffe, Physics Bull. 360 (1977).Google Scholar
  11. 11.
    B.T. Sutcliffe, J. Molec. Struct. (Theochem) 259:29 (1992).CrossRefGoogle Scholar
  12. 12.
    B.T. Sutcliffe, Int. J. Quant. Chem., to appear (1995).Google Scholar
  13. 13.
    N. Bjerrum in:, “Nernst-Festschrift,” 90, Verlag von Knapp, Berlin (1912).Google Scholar
  14. 14.
    N. Bjerrum, Verhandl. deut. physik. Ges. 16:737 (1914).Google Scholar
  15. 15.
    G.N. Lewis, “Valence and the Structure of Atoms and Molecules,” Chemical Catalog Co., New York (1923).Google Scholar
  16. 16.
    N.V. Sidgwick, “The Electronic Theory of Valency,” Oxford University Press, Oxford (1927).Google Scholar
  17. 17.
    R.G. Woolley, Adv. Phys. 25:27 (1976).CrossRefGoogle Scholar
  18. 18.
    S.C. Wang, Phys. Rev. 31:579 (1928).CrossRefGoogle Scholar
  19. 19.
    M. Born and J.R. Oppenheimer, Ann. der Phys. 84:457 (1927).CrossRefGoogle Scholar
  20. 20.
    E.B. Davies, J. Phys. A. Math. and Gen. 28:4025 (1995).CrossRefGoogle Scholar
  21. 21.
    M. Born and K. Huang, “Dynamical Theory of Crystal Lattices,” Oxford University Press, Oxford (1955).Google Scholar
  22. 22.
    M. Reed and B. Simon, “Methods of Modern Mathematical Physics, IV, Analysis of Operators,” Academic Press, New York (1978).Google Scholar
  23. 23.
    W. Thirring, “A Course in Mathematical Physics, 3, Quantum Mechanics of Atoms and Molecules,” transi. by E.M. Harrell, Springer-Verlag, New York (1981).Google Scholar
  24. 24.
    G.M. Zhislin, Trudy Most Mat. Obšč. 9:82 (1960).Google Scholar
  25. 25.
    J. Uchiyama, Pub. Res. Inst. Math. Sci. Kyoto A 2:117 (1966).CrossRefGoogle Scholar
  26. 26.
    B. Simon, “Quantum Mechanics for Hamiltonians Defined as Quadratic Forms,” Princeton University Press, Princeton (1971).Google Scholar
  27. 27.
    G.M. Zhislin, Theor. Math. Phys. 7:571 (1971).CrossRefGoogle Scholar
  28. 28.
    M.B. Ruskai and J.P. Solovej in:, “Schrödinger Operators,” Lecture Notes in Physics 403, 153, E. Balslev, ed., Springer-Verlag, Berlin (1992).Google Scholar
  29. 29.
    M.B. Ruskai, Ann. Inst. Henri Poincaré 52:397 (1990).Google Scholar
  30. 30.
    M.B. Ruskai, Commun. Math. Phys. 137:553 (1991).CrossRefGoogle Scholar
  31. 31.
    B. Simon, Helv. Phys. Acta 43:607 (1970).Google Scholar
  32. 32.
    S.A. Vugal’ter and G.M. Zhislin, Theor. Math. Phys. 32:602 (1977).CrossRefGoogle Scholar
  33. 33.
    W.D. Evans, R.T. Lewis and Y. Saito, Phil. Trans. Roy. Soc. Lond. A 338:113 (1992).Google Scholar
  34. 34.
    J.-M. Richard, J. Fröhlich, G.-M. Graf and M. Seifert, Phys. Rev. Lett. 71:1332 (1993).CrossRefGoogle Scholar
  35. 35.
    B.T. Sutcliffe, J. Chem. Soc., Faraday Transactions 89:2321 (1993).CrossRefGoogle Scholar
  36. 36.
    B.T. Sutcliffe in:, “Conceptual Trends in Quantum Chemistry,” E.S. Kryachko and J.L. Calais, eds., 53, Kluwer Academic, Dordrecht (1994).Google Scholar
  37. 37.
    F.T. Smith Phys. Rev. Letts. 45:1157 (1980).CrossRefGoogle Scholar
  38. 38.
    B.T. Sutcliffe in:, “Methods of Computational Chemistry 4,” S. Wilson, ed., 33, Plenum Press, New York and London (1991).Google Scholar
  39. 39.
    D.M. Brink and G.R. Satchler, “Angular Momentum,” 2nd ed., Clarendon Press, Oxford (1968).Google Scholar
  40. 40.
    L.C. Biedenharn and J.C. Louck, “Angular Momentum in Quantum Physics,” Addison-Wesley, Reading, Mass. (1982).Google Scholar
  41. 41.
    J.M. Brown and B J. Howard, Mol. Phys. 31:1517 (1976).CrossRefGoogle Scholar
  42. 42.
    R.N. Zare, “Angular Momentum,” Chap. 3.4, Wiley, New York (1988).Google Scholar
  43. 43.
    G. Ezra, “Symmetry Properties of Molecules,” Lecture Notes in Chemistry 28, Springer-Verlag, Berlin (1982).CrossRefGoogle Scholar
  44. 44.
    J.C. Louck, J. Mol. Spec. 61:107 (1976).CrossRefGoogle Scholar
  45. 45.
    C. Eckart, Phys. Rev. 47:552 (1935).CrossRefGoogle Scholar
  46. 46.
    B. Schutz, “Geometrical Methods of Mathematical Physics,” Cambridge University Press, Cambridge (1980).Google Scholar
  47. 47.
    B.T. Sutcliffe in:, “Theoretical Models of Chemical Bonding,” Part 1, Z. Maksić, ed., 1, Springer-Verlag Berlin (1990).Google Scholar
  48. 48.
    J.K.G. Watson, Mol. Phys. 15:479 (1968).CrossRefGoogle Scholar
  49. 49.
    G. Hunter, Int. J. Quant. Chem. 9:237 (1975).CrossRefGoogle Scholar
  50. 50.
    J. Czub and L. Wolniewicz, Mol. Phys. 36:1301 (1978).CrossRefGoogle Scholar
  51. 51.
    A. Schmelzer and J.N. Murrell, Int. J. Quant. Chem. 28:288 (1985).CrossRefGoogle Scholar
  52. 52.
    M.A. Collins and D.F. Parsons, J. Chem. Phys. 99:6756 (1993).CrossRefGoogle Scholar
  53. 53.
    C. Eckart, Phys. Rev. 46:487 (1934).CrossRefGoogle Scholar
  54. 54.
    J.O. Hirschfelder and E. Wigner, Proc. Nat. Acad. Sci. 21:113 (1935).CrossRefGoogle Scholar
  55. 55.
    B. Buck, L.C. Biedenharn and R.Y. Cusson, Nucl. Phys. A 317:215 (1979).Google Scholar
  56. 56.
    J.D. Louck and H.W. Galbraith, Rev. Mod. Phys. 48:69 (1976).CrossRefGoogle Scholar
  57. 57.
    R.S. Berry, Rev. Mod. Phys. 32:447 (1960).CrossRefGoogle Scholar
  58. 58.
    M.S. Reeves and E.R. Davidson, J. Chem. Phys. 95:6651 (1991).CrossRefGoogle Scholar
  59. 59.
    H.C. Longuet-Higgins, Molec. Phys. 6:445 (1963).CrossRefGoogle Scholar
  60. 60.
    P.R. Bunker, “Molecular Symmetry and Spectroscopy,” Academic Press, London (1979).Google Scholar
  61. 61.
    I.G. Kaplan, “Symmetry of Many-Electron Systems,” Academic Press, London (1975).Google Scholar
  62. 62.
    J. Maruani and J. Serre, eds., “Symmetries and Properties of Non-Rigid Molecules,” Elsevier, Amsterdam (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Brian T. Sutcliffe
    • 1
  1. 1.Department of ChemistryUniversity of YorkYorkEngland

Personalised recommendations