Skip to main content

Nitric Oxide Actions in the Nervous System

  • Chapter
Neurodegenerative Diseases

Abstract

Nitric oxide (NO) for many decades has been known to be a toxic gas, a constituent of air pollution, a component of cigarette smoke, and a by product of microbial metabolism. Only very recently has it been identified as a product of mammalian cells. The unique, although surprising, role for NO as a biological messenger molecule was developed by investigations in the fields of immunology, cardiovascular pharmacology, toxicology, and neurobiology (Dawson and Snyder 1994; Moncada and Higgs, 1993; Nathan, 1992; Feldman et al., 1993). In the nervous system the discovery of NO as a messenger molecule is changing the conventional concepts of how cells in the nervous system communicate. Classical neurotransmitters are enzymatically synthesized, stored in synaptic vesicles, and released by exocytosis from synaptic vesicles during membrane depolarization. These neurotransmitters mediate their biological actions by binding to membrane-associated receptors, which initiates intracellular changes in the postsynaptic cell. The activity of conventional neurotransmitters is terminated by either reuptake mechanisms or enzymatic degradation. There are multiple points at which biological control can be exherted over the production and activity of conventional neurotransmitters. None of these classical biological mechanisms are exploited by the nervous system to regulate the activity of NO. Instead, NO is synthesized on demand by the enzyme NO synthase (NOS) from the essential amino acid, L-arginine. NO is small, diffusible, membrane permeable and reactive. These chemical properties of NO make it a unique neuronal messenger molecule (Feldman et al., 1993). Since the cell can not sequester and regulate the local concentration of NO, the key to regulating NO activity is to control NO synthesis. Putative cellular targets of NO are rapidly being discovered as well as potential physiologic and pathophysiologic roles in the nervous system. NO may regulate neurotransmitter release, it may play a key role in morphogenesis and synaptic plasticity, it may regulate gene expression, and it may mediate inhibitory processes associated with sexual and aggressive behavior. Under conditions of excessive formation, NO is emerging as an important mediator of neurotoxicity in a variety of disorders of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Soud HM and Stuehr DJ. Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc. Natl. Acad. Sci. USA 1993; 90: 10769–10772.

    Article  PubMed  CAS  Google Scholar 

  • Baek KJ, Thiel BA, Lucas S, and Stuehr DJ. Macrophage nitric oxide subunits. Purification, characterization, and the role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J. Biol. Chem. 1993; 268: 21120–21129.

    PubMed  CAS  Google Scholar 

  • Beckman JS, Ischiropoulos H, Zhu L, van der Woerd M, Smith C, Chen J, Harrison J, Martin JC, and Tsai M. Kinetics of Superoxide dismutase-and iron catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 1992; 298: 438–445.

    Article  PubMed  CAS  Google Scholar 

  • Bo L, Dawson TM, Wesselingh S, et al. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann. Neurol. 1994; in press.

    Google Scholar 

  • Bohme GA, Bon C, Stutzmann J-M, Doble A, Blanchard J-C. Possible involvment of nitric oxide in long-term potentiation. Eur.J. Pharm. 1991; 199: 379–381.

    Article  CAS  Google Scholar 

  • Bredt DS, Ferris CD, Snyder SH. Nitric oxide synthase regulatory sites. J. Biol. Chem. 1992; 267:10976–10981.

    PubMed  CAS  Google Scholar 

  • Bredt DS, Glatt CE, Hwang PM, Fotuhi M, Dawson TM, Snyder SH. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron. 1991; 7:615–624.

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990; 347:768–770.

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH. Nitric oxide, a physiological messenger molecule. Annu. Rev. Biochem. 1994;63:in press.

    Google Scholar 

  • Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 1990; 87:682–685.

    Article  PubMed  CAS  Google Scholar 

  • Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature. 1990; 345:346–347.

    Article  PubMed  CAS  Google Scholar 

  • Burnett AL, Lowenstein CJ, Bredt DS, Chang TSK, Snyder SH. Nitric Oxide: a physiologic mediator of penile erection. Science 1992; 257:401–403.

    Article  PubMed  CAS  Google Scholar 

  • Carreau A, Duval D, Poignet H, Scatton B, Vige X, Nowicki J-P. Neuroprotective efficacy of Nw-nitro-L-arginine after focal cerebral ischemia in the mouse and inhibition of cortical nitric oxide synthase. Eur. J. Pharmacol. 1994; 256:241–249.

    Article  PubMed  CAS  Google Scholar 

  • Castro L, Rodriguez M, and Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J. Biol. Chem. 1994; 269: 29409–29415.

    PubMed  CAS  Google Scholar 

  • Chao CC, Hu S, Molitor TW, Shaskan EG and Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992; 149: 2736–2741.

    PubMed  CAS  Google Scholar 

  • Cho HJ, Xie QW, Calaycay J, Mumford RA, Swiderek KM, Lee TD, and Nathan C. Calmodulin is a subunit of nitric oxide synthase from macrophages. J. Exp. Med. 1992; 176: 599–604.

    Article  PubMed  CAS  Google Scholar 

  • Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988; 1:623–634.

    Article  PubMed  CAS  Google Scholar 

  • Clancy RM, Levartovsky D, Leszczynska-Piziak J, Yegudin J, Abramson SB. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. Proc. Natl. Acad. Sci. U.S.A. 1994; 91:3680–3684.

    Article  PubMed  CAS  Google Scholar 

  • Crow JP, Beekman JS and McCord JM. Sensitivity of the essential zinc-thiolate moiety of yeast alcohol dehydrogenase to hypochlorite and peroxynitrite. Biochem. 1995; 34: 3544–3552.

    Article  CAS  Google Scholar 

  • Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 1991; 88:7797–7801.

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Dawson VL, Snyder SH. A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann. Neurol. 1992;32:297–311.

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Hung K, Dawson VL, Steiner JP, Snyder SH. Neuroprotective effects of gangliosides may involve inhibition of nitric oxide synthase. Ann. Neurol. 1995; 37: 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Snyder SH. Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J.Neurosci. 1994; 14: 5147–5159.

    PubMed  CAS  Google Scholar 

  • Dawson TM, Steiner JP, Dawson VL, Dinerman JL, Uhl GR, Snyder SH. Immunosuppressant, FK506, enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc. Natl. Acad. Sci. U.S.A. 1993; 90:9808–9812.

    Article  PubMed  CAS  Google Scholar 

  • Dawson V, Brahmbhatt HP, Mong JA, Dawson TM Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures. Neuropharmacol. 1995; 33:1425–1430.

    Article  Google Scholar 

  • Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. Mechanisms of nitric oxide mediated neurotoxicity in primary brain cultures. J. Neurosci. 1993; 13:2651–2661.

    PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM, Uhl GR, Snyder SH. Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc. Natl. Acad. Sci. U.S.A. 1993; 90:3256–3259.

    Article  PubMed  CAS  Google Scholar 

  • Desai KM, Sessa WC and Vane JR. Involvement of nitric oxide in the reflex relaxation of the stomach to accomodate food or fluid. Nature 1991; 351: 477–479.

    Article  PubMed  CAS  Google Scholar 

  • Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc. Natl. Acad. Sci. U.S.A. 1994; 91:4214–4218.

    Article  PubMed  CAS  Google Scholar 

  • Dinerman JL, Steiner JP, Dawson TM, Dawson VL, and Snyder SH. Protein phosphorylation inhibits neuronal nitric oxide synthase. Neuropharmacology. 1994; 33: 1245-1252.

    Google Scholar 

  • Ding AH, Nathan CF and Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J. Immunol. 1988; 141: 2407.

    Google Scholar 

  • Drapier J-C, Hirling H, Wietzerbin J, Kaldy P, Kuhn LC. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBOJ. 1993; 12:3643–3649.

    CAS  Google Scholar 

  • Faraci FM. Regulation of the cerebral circulation by endothelium. Pharmac. Ther. 1992; 56:1–22.

    Article  CAS  Google Scholar 

  • Feldman PL, Griffith OW, Stuehr DJ. The surprising life of nitric oxide. Chemical & Engineering News. 1993;12:26–38.

    Google Scholar 

  • Galea E, Feinstein and Reis DJ. Induction of calcium-dependent nitric oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. USA 1992; 89:10945–10949.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988; 336:385–388.

    Article  PubMed  CAS  Google Scholar 

  • Green LC, Ruiz-de-Luzuriaga K, Wagner DA, Rand W, Istfan N, Young VR, Tannenbaum SR. Nitrate biosynthesis in man. Proc Natl. Acad. Sci. USA 1981a; 78:7764–7768.

    Article  PubMed  CAS  Google Scholar 

  • Green LC, Tannenbaum SR, Goldman P. Nitrate synthesis in the germfree and conventional rat. Science 1981b; 212:56–68.

    Article  PubMed  CAS  Google Scholar 

  • Haley JE, Wilcox GL, Chapman PF. The role of nitric oxide in hippocampal long-term potentiation. Neuron 1992; 8: 211–216.

    Article  PubMed  CAS  Google Scholar 

  • Hausladen A and Fridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem. 1994; 269: 29405–29408.

    PubMed  CAS  Google Scholar 

  • Henry Y, Lepoivre M, Drapier JC, Ducrocq C, Boucher JL, and Guissani A. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 1993; 7: 1124–1134.

    PubMed  CAS  Google Scholar 

  • Hess DT, Patterson SI, Smith DS, Pate Skene JH. Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. Nature. 1993;366:562–565.

    Article  PubMed  CAS  Google Scholar 

  • Hibbs JB Jr., Vavrin Z, Taintor RR. L-arginine is required for expression fo the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. 1987b: 138: 550–565.

    PubMed  CAS  Google Scholar 

  • Hibbs JB Jr., Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deaminase and imino nitrogen oxidation to nitrite. Science 1987a; 235: 473–476.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch DB, Steiner JP, Dawson TM, Mammen A, Hayek E, Snyder SH. Neurotransmitter release regulated by nitric oxide in PC-12 cells and brain synaptosomes. Cur. Biol. 1993; 3:749–754.

    Article  CAS  Google Scholar 

  • Hope BT, Michael GJ, Knigge KM, Vincent SR. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 1991; 88:2811–2814.

    Article  PubMed  CAS  Google Scholar 

  • Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993;75:1273–1286.

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC and Moskowtiz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994; 265:1883–1885.

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Marzloff K, Wenniger JJ, Dawson TM, Bredt DS, Snyder SH. Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer’s disease. Ann Neurol 1992; 32: 818–820.

    Article  PubMed  CAS  Google Scholar 

  • ladecola C, Pelligrino DA, Moskowitz MA and Lassen NA. Nitric oxide synthase inhibition and cerebrovascular regulation. J. Cereb. Blood Flow and Metab. 1994; 14: 175–192.

    Article  Google Scholar 

  • Iadecola C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci 1993; 16:206–214.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ and Gruetter CA. Requirement of thiols for activation of coronary arterial guanylate cyclase by glycerol trinitrate and sodium nitrite: possible involvment of s-nitrosothiols. Biochim. Biophys. Acta. 1980; 631:221–231.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J. Pharmacol. Exp. Ther. 1981; 218:739–749.

    PubMed  CAS  Google Scholar 

  • Ignarro LJ. Biosynthesis and metabolism of endothelium-derived relaxing factor. Annu. Rev. Pharmacol. Toxicol. 1990; 30: 535–560.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki S, Suzuki K, Taniguchi N, Takagi H. Localization of Mn-superoxide dismutase (Mn-SOD) in cholinergic and somatostatin-containing neurons in the rat neostriatum. Brain. Res. 1991; 549:174–177.

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey SR, Cohen NA, Rouault TA, Klausner RD, Snyder SH. The iron-responsive element binding protein: a novel target for synaptic actions of nitric oxide. Proc. Natl. Acad. Sci, USA. 1994; 91: 12994–12998.

    Article  PubMed  CAS  Google Scholar 

  • King PA, Adnerson VE, Edwards JO, Gustafson G, Plumb RC, and Suggs JW. A stable solid that generates hydroxyl radical upon dissolution in aqueous solution: Reaction with proteins and nucleic acids. J. Am. Chem. Soc. 1992; 114: 5430–5432.

    Article  CAS  Google Scholar 

  • Kinouchi H, Epstein CJ, Mizue T, et al. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn Superoxide dismutase. Proc. Natl. Acad. Sci. U.S.A. 1991;88:11158–11162.

    Article  PubMed  CAS  Google Scholar 

  • Koh J-Y and Choi DW. Vulnerability of cultured cortical neurons to damage by excitotoxins: differential susceptibility of neurons containing NADPH-diaphorase. J. Neurosci. 1988:8:2153–2163.

    PubMed  CAS  Google Scholar 

  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beekman JS. Peroxynitrite, a cloaked osidant formed by nitric oxide and Superoxide. Chem. Res. Toxicol. 1992; 5: 834–842.

    Article  PubMed  CAS  Google Scholar 

  • Lautier D, Lagueux J, Thibodeau J, Menard L, and Poirier GG. Molecular and biochemical features of poly(ADP-ribose) metabolism. Mol. Cell. Biochem. 1993; 122: 171–193.

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Choi YB, Pan Z-H, et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993;364:626–632.

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA. Models of neuronal injury in AIDS: another role for the NMDA receptor? Trends Neurosci. 1992; 15:75–79.

    Article  PubMed  CAS  Google Scholar 

  • Lustig HS, von Brauchitsch KL, Chan J, Greenberg DA. Ethanol and excitotoxicity in cultured cortical neurons: differential sensitivity of N-methyl-D-aspartate and sodium nitroprusside toxicity. J. Neurochem. 1992; 577: 343–346.

    CAS  Google Scholar 

  • Malinski T, Bailey F, Zhang ZG, Chopp M. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J. Cereb. Blood. Flow. Metab. 1993; 13:355–358.

    Article  PubMed  CAS  Google Scholar 

  • Marietta MA. Nitric oxide synthase structure and mechanism. J. Biol. Chem. 1993;268:12231–12234.

    Google Scholar 

  • Matsumoto T, Nakane M, Pollock JS, Kuk JE, Forstermann U. A correlation between soluble nitric oxide synthase and NADPH-diaphorase activity is only seen after exposure of the tissue to fixative. Neurosci. Letts. 1993;155:61–64.

    Article  CAS  Google Scholar 

  • McDonald LJ and Moss J. Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 1993; 90: 6238–6241.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends. Pharmacol. Sci. 1990; 11:379–387.

    Article  PubMed  CAS  Google Scholar 

  • Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol. 1993;151:2132–2141.

    PubMed  CAS  Google Scholar 

  • Mollace V, Colasanti M, Persichini T, Bagetta G, Lauro GM, Nistico G. HIV gp120 glycoprotein stimulates the inducible isoform of NO synthase in human cultured astrocytoma cells. Biochem. Biophys. Res. Comm. 1993; 194:439–445.

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993;329:2002–2012.

    Article  PubMed  CAS  Google Scholar 

  • Montague PR, Gancayco CD, Winn MJ, Marchase RB, Friedlander MJ. Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex. Science. 1994;263:973–977.

    Article  PubMed  CAS  Google Scholar 

  • Moreno JJ and Pryor QA. Inactivation of α-1-proteinase inhibitior by peroxynitrite. Chem. Res. Toxiocol. 1992; 5: 425–431.

    Article  CAS  Google Scholar 

  • Murphy S, Simmons ML, Agullo L, Garcia A, Feinstein DL, Galea E, Reis DJ, Minc-Golomb D, Schwartz JP. Synthesis of nitric oxide in CNS glial cells. Trends in Neurosci. 1993; 16:323–328.

    Article  CAS  Google Scholar 

  • Nathan C, Xie Q-W. Regulation of biosynthesis of nitric oxide. J. Biol. Chem. 1994;19:13725–13728.

    Google Scholar 

  • Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992;6:3051–3064.

    PubMed  CAS  Google Scholar 

  • Nozaki K, Moskowitz MA, Maynard KI, et al. Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in rat and human cerebral arteries. J. Cerebral. Blood. Flow, and Metabolism. 1993; 13:70–79.

    Article  CAS  Google Scholar 

  • O’Dell TJ, Hawkins RD, Kandel ER, Arancio O. Tests of the roles of two diffusable substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc. Natl. Acad. Sci. U.S.A. 1991; 88:11285–11289.

    Article  PubMed  Google Scholar 

  • O’Dell TJ, Huang PL, Dawson TM, Dinerman JL, Snyder SH, Kandel ER and Fishman MC. Blockade of long-term potentiation by inhibitors of nitric oxide synthase in mice lacking the neuronal isoform suggests a role for the endothelial isoform. Science. 1994; 265: 542-546.

    Google Scholar 

  • Oury TD, Ho Y-S, Piantadosi CA, Crapo JD. Extracellular Superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc. Natl. Acad. Sci. U.S.A. 1992;89:9715–9719.

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Beekman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of Superoxide and nitric oxide. J. Biol. Chem. 1991; 266:4244–4250.

    PubMed  CAS  Google Scholar 

  • Rajfer J, Aronson WJ, Bush PA, Dorey FJ, Ignarro LJ. Nitric oxide as a mediator of the corpus cavernosum in response to nonadrenergic noncholinergic transmission. New. Eng. J. Med. 1992; 326:90–94.

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc. Natl. Acad. Sci. U.S.A. 1993; 90:7240–7244.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg K, Berry CJ, Eugster E, Rogers TB. A role for cGMP during tetanus toxin blockade of acetylcholine release in the rat pheochromocytoma (PC12) cell lines. J Neurosci 1989; 9:3946–3954.

    PubMed  CAS  Google Scholar 

  • Schuman EM, Madison DV. Locally distributed synaptic potentiation in the hippocampus. Science. 1994;263:532–536.

    Article  PubMed  CAS  Google Scholar 

  • Schuman EM, Madison DV. Nitric oxide and synaptic function. Annu. Rev. Neurosci. 1994;17:153–183.

    Article  PubMed  CAS  Google Scholar 

  • Schuman EM, Madison DV. The intercellular messenger nitric oxide is required for longterm potentiation. Science 1991; 254:1503–1506.

    Article  PubMed  CAS  Google Scholar 

  • Schumann EM and Madison DV. Nitric oxide and synpatic function. Ann. Rev. Neurosci. 1994; 17: 153–183.

    Article  Google Scholar 

  • Sharkey J, Butcher SP. Immunophillins mediate the neuroprotective effects of FK506 in focal cerebral ischemia. Nature 1994; 371:336–339.

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Simon DI, Osborne JA, et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. U.S.A. 1992; 89:444–448.

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ and Loscalzo J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization ofbiolgocially active compounds. Proc. Natl. Acad. Sci. USA 1992:89:444–448.

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS. Redox signalling: Nitrosylation and related target interactions of nitric oxide. Cell 1994; 78: 931–936.

    Article  PubMed  CAS  Google Scholar 

  • Stuehr DJ and Marietta MA. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc. Natl. Acad. Sci. USA 1985; 82: 7738–7742.

    Article  PubMed  CAS  Google Scholar 

  • Stuehr DJ, and Nathan CF. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumore target cells. J. Exp. Med. 1989; 169: 1543–1555.

    Article  PubMed  CAS  Google Scholar 

  • Thomas E, Pearse AGE. The solitary active cells. Histochemical demonstration of damage-resistant nerve cells with a TPN-diaphorase reaction. Acta. Neuropathol. 1964; 3:238–249.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen LL, Iversen HK, Brinck TA, Olesen J. Arterial supersensitivity to nitric oxide (nitroglycerin) in migraine sufferers. Cephalalgia. 1993; 13:395–399.

    Article  PubMed  CAS  Google Scholar 

  • Visser JJ, Scholten RJPM, Hoekman K. Nitric oxide synthesis in meningococcal meningitis. Ann. Int. Med. 1994; 120:345–346.

    PubMed  CAS  Google Scholar 

  • Weiss G, Goossen B, Doppier W, Fuchs D, Pantopoulos K, Werner-Felmayer G, Wachter H, Hentze MW. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J. 1993;12:3651–3657.

    PubMed  CAS  Google Scholar 

  • Wu W and Li L. Inhibition of nitric oxide synthase reduces motoneurons death due to spinal root avulsion. Neurosci. Lett. 1993; 153:121–124.

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Liuzzi FJ, Schinco FP, Depto AS, Li Y, Mong JA, Dawson TM, Snyder SH. Neuronal nitric oxide synthase is induced in spinal neurons by traumatic injury. Neurosci. 1994; 61: 719–726.

    Article  CAS  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. Science 1994; 263:687–689.

    Article  PubMed  CAS  Google Scholar 

  • Zorumski CF, Izumi Y. Nitric oxide and hippocampal synaptic plasticity. Biochem. Pharmacol. 1993; 46: 777–785.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dawson, V.L., Dawson, T.M. (1996). Nitric Oxide Actions in the Nervous System. In: Fiskum, G. (eds) Neurodegenerative Diseases. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0209-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0209-2_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0211-5

  • Online ISBN: 978-1-4899-0209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics