Advertisement

Thiamine Deficiency as a Model of Selective Neurodegeneration with Chronic Oxidative Deficits

  • Noel Y. Calingasan
  • Kwan-Fu Rex Sheu
  • Harriet Baker
  • Samuel E. Gandy
  • Gary E. Gibson
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)

Abstract

Experimental thiamine deficiency is a classical model of the molecular changes that underlie the clinical syndrome referred to variously as delirium, acute confusional state1,2,3,4 or metabolic encephalopathy5. This syndrome is characterized by decreased attention and cognition, alertness, orientation and grasp, memory, affect and perception. A wide variety of systemic disorders lead to the development of the syndrome including hypoxia, ischemia, hypoglycemia, some diseases of peripheral organs, ionic imbalance, poisoning, dysfunction of temperature regulation, infection or inflammation of the brain and spinal cord, primary neuronal and glial disorders, acute delirious states (sedative drug withdrawal, drug intoxication, postoperative delirium, intensive care unit delirium), and vitamin and nutritional deficiencies (e.g. thiamine deficiency). Despite the varied etiology, the diverse insults that lead to delirium may act by common metabolic and cellular pathways, as suggested by results from studies of aging and hypoxia.6,7,8

Keywords

Amyloid Precursor Protein Inferior Colliculus Thiamine Deficiency Medial Geniculate Nucleus Intensive Care Unit Delirium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z.J. Lipowski. “Delirium,” Charles C. Thomas Publisher (1980).Google Scholar
  2. 2.
    Z.J. Lipowski, Delirium (Acute confusional states), J. Am. Med. Assoc. 258:1789–1792 (1987).CrossRefGoogle Scholar
  3. 3.
    Z.J. Lipowski, Delirium in the elderly patient, N. Engl J. Med. 320:578–582 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    Z.J. Lipowski, Organic brain syndrome: a reformulation, Comp. Psych. 19:309–322 (1978).CrossRefGoogle Scholar
  5. 5.
    F. Plum and J.B. Posner. “The Diagnosis of Stupor and Coma,” 3rd ed., F. A. Davis and Company, Philadelphia, PA (1980).Google Scholar
  6. 6.
    R.A. McFarland and H.N. Evans, Alterations in dark adaptation under reduced oxygen tensions, Am. J. Physiol 7:37 (1939).Google Scholar
  7. 7.
    R.A. McFarland and W.H. Forbes, The effects of variation in the concentration of oxygen and of glucose on dark adaptation, J. Gen. Physiol. 24: 69 (1940).PubMedCrossRefGoogle Scholar
  8. 8.
    R.A. McFarland, F.J.W. Roughton, and M.H. Halperin, The effects of CO2 and altitude on visual thresholds, J. Aviation Med 15:381–348 (1944).Google Scholar
  9. 9.
    A.L. Lehninger. “Principles of Biochemistry,” Worth Publishers, New York, NY (1982).Google Scholar
  10. 10.
    G. Siegel, B. Agranoff, R.W. Albers, and P. Molinoff. “Basic Neurochemistry,” Raven Press, New York, NY (1989).Google Scholar
  11. 11.
    G.E. Gibson, H. Ksiezak-Reding, K.-F.R. Sheu, V. Mykytyn, and J.P. Blass, Correlation of enzymatic, metabolic and behavioral deficits in thiamine deficiency and its reversal, Neurochem. Res. 9:803–814 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    R.F. Butterworth, Cerebral thiamine-dependent enzyme changes in experimental Wernicke’s encephalopathy, Metab. Brain Dis. 1:165–175 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    G. Collins, Glial changes in the brainstem of thiamine-deficient rats, Am. J. Pathol. 50:791–802 (1967).PubMedGoogle Scholar
  14. 14.
    P.M. Dreyfus and M. Victor, Effects of thiamine deficiency on the central nervous system, Am. J. Clin. Nutr. 9:414–425 (1961).PubMedGoogle Scholar
  15. 15.
    P.J. Langlais and R.G. Mair, Protective effects of glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain, J. Neurosci. 10:1664–1674 (1990).PubMedGoogle Scholar
  16. 16.
    ED. Witt, Neuroanatomical consequences of thiamine deficiency: a comparative analysis, Alcohol Alcohol 2:201–221 (1985).Google Scholar
  17. 17.
    L. Barclay, G.E. Gibson, and J.P. Blass, Impairment of behavior and acetylcholine metabolism in thiamin deficiency, J. Pharmacol Exp. Ther. 217:537–543 (1981).PubMedGoogle Scholar
  18. 18.
    L.L. Barclay, G.E. Gibson, and J.P. Blass, Cholinergic therapy of abnormal open-field behavior in thiamine-deficient rats, J. Nutr. 112:1906–1913 (1982).PubMedGoogle Scholar
  19. 19.
    C.V. Vorhees, D.E. Schmidt and R.J. Barrett, Effects of pyrithiamine and oxythiamine on acetylcholine levels and utilization in rat brain, Brain Res. Bull 3:493–496 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Victor, R.D. Adams, and G.H. Collins, The Wernicke-Korsakoff syndrome and related neurological disorders due to alcoholism and malnutrition, 2nd ed., in: “Contemporary Neurology,” F. Plum and F.A. McDowell, eds. F. A. Davis, Philadelphia, PA (1989).Google Scholar
  21. 21.
    G.E. Gibson, C. Peterson, and J. Sansone, Neurotransmitter and carbohydrate metabolism during aging and mild hypoxia, Neurobiol Aging 2:165–172 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    GB. Freeman, P.N. Nielsen, and G.E. Gibson, Effect of age on behavioral and enzymatic changes during thiamin deficiency, Neurobiol Aging 8:429–434 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    J.P. Blass and G.E. Gibson, Abnormality of a thiamine-requiring enzyme in patients with Wernicke-Korsakoff Syndrome, N Engl J. Med. 297:1367–1370 (1977).PubMedCrossRefGoogle Scholar
  24. 24.
    D.J. McFarland, Mouse phenotype modulates the behavioral effects of acute thiamine deficiency, Physiol Behav. 35:597–601 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    L.L. Barclay, G.E. Gibson, and J.P. Blass, The string test: an early behavioral change in thiamine deficiency, Pharm. Biochem. Behav. 14:154–157 (1981).CrossRefGoogle Scholar
  26. 26.
    L.L. Barclay and G.E. Gibson, Spontaneous open-field behavior in thiamin deficiency, J. Nutr. 112:1899–1905 (1982).PubMedGoogle Scholar
  27. 27.
    J.C. Troncoso, N.V. Johnston, K.M. Hess, J.W. Griffin, and D.L. Price, Model of Wernicke’s encephalopathy, Arch. Neurol 38:350–354 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    I. Watanabe, T. Tomito, K.-G. Hung, and Y. Iwasaki, Edematous necrosis in thiamine-deficient encephalopathy of the mouse, J. Neuropathol Exp. Neurol 40:454–471 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    H.W. Kinnersley and R. A. Peters, Carbohydrate metabolism in birds: brain localization of lactic acidosis in avitaminosis B and its relation to the origin of the symptoms, Biochem. J. 24:711–721 (1930).PubMedGoogle Scholar
  30. 30.
    N.Y. Calingasan, H. Baker, K.-F.R. Sheu, and G.E. Gibson, Distribution of the α-ketoglutarate dehydrogenase complex in rat brain, J. Comp. Neurol. 346:461–479 (1994).PubMedCrossRefGoogle Scholar
  31. 31.
    T.A. Milner, C. Aoki, K.-F.R. Sheu, J.P. Blass, and V.M. Pickel, Light microscopic immunocytochemical localization of pyruvate dehydrogenase complex in rat brain: topographical distribution and relation to cholinergic and catecholaminergic nuclei, J. Neurosci. 7:3171–3190 (1987).PubMedGoogle Scholar
  32. 32.
    NY. Calingasan, K.-F.R. Sheu, H. Baker, E-H. Jung, F. Paoletti, and G.E. Gibson, Heterogeneous expression of transketolase in rat brain, J. Neuropathol. 64:1034–1044 (1995).Google Scholar
  33. 33.
    N.Y. Calingasan, H. Baker, K.-F.R. Sheu, and G.E. Gibson, Selective enrichment of cholinergic neurons with the α-ketoglutarate dehydrogenase complex in rat brain, Neurosci. Lett. 168:209–212 (1994).PubMedCrossRefGoogle Scholar
  34. 34.
    R.F. Butterworth, J.F. Giguere, and A.M. Besnard, Activities of thiamine-dependent enzymes in two experimental models of thiamine deficiency encephalopathy. 2. α-ketoglutarate dehydrogenase, Neurochem. Res. 11: 567–577 (1986).PubMedCrossRefGoogle Scholar
  35. 35.
    G.E. Gibson, P. Nielsen, V. Mykytyn, K. Carlson, and J.P. Blass, Regionally selective alterations in enzymatic activities and metabolic fluxes during thiamin deficiency, Neurochem. Res. 14:17–24 (1989).PubMedCrossRefGoogle Scholar
  36. 36.
    J.F. Giguere and R.F. Butterworth, Activities of thiamine-dependent enzymes in two experimental models of thiamine deficiency encephalopathy: 3. Transketolase, Neurochem. Res. 1:305–310 (1987).CrossRefGoogle Scholar
  37. 37.
    G.E. Gibson, NY. Calingasan, K.-F.R. Sheu and H. Baker, Thiamine deficiency differentially modifies transketolase and α-ketoglutarate dehydrogenase expression in rat brain, Soc. Neurosci. Abstr. 20:415 (1994).Google Scholar
  38. 38.
    R.N. Kalaria, The blood-brain barrier and cerebral microcirculation in Alzheimer’s disease, Cereb. Brain Met. Rev. 4:226–260 (1992).Google Scholar
  39. 39.
    R. Boldorini, L. Vago, A. Lechi, and F. Tedeschi, Wernicke’s encephalopathy: occurrence and pathological aspects in a series of 400 AIDS patients, Acta Bio-Med. Aten. Parm. 63:43–49 (1992).Google Scholar
  40. 40.
    G. Schroth, W. Wichmann, and A. Valavanis, Blood-brain barrier disruption in acute Wernicke encephalopathy: MR findings, J. Compu. Asst. Tomog. 15:1059–1061 (1991).CrossRefGoogle Scholar
  41. 41.
    P. Mecocci, L. Parnetti, G.P. Reboldi, C. Santucci, A. Gaiti, C. Ferri, I. Gemini, M. Romagnoli, D. Cadini, and U. Senin, Blood-brain barrier in a geriatric population: barrier function in degenerative and vascular dementias, Acta Neurol Scan. 84:210–213 (1991).CrossRefGoogle Scholar
  42. 42.
    N.N. Poleshchuk, V.I. Votyakov, Y.G. Ilkevich, G.P. Duboiskaya, D.G. Grigoriev, and N.D. Kolomiets, Structural and functional changes of blood-brain barrier and indication of prion amyloid filaments in experimental amyotrophic leucospongiosis, Acta Virol. 36:293–303 (1992).PubMedGoogle Scholar
  43. 43.
    E.H. Lo, Y. Pan, K. Matsumoto, and N.W. Kowall, Blood-brain barrier disruption in experimental focal ischemia: comparison between in vivo MRI and immunocytochemistry, Mag. Reson. Imag. 12:403–411 (1994).CrossRefGoogle Scholar
  44. 44.
    M.W.B. Bradbury. “The Concept of a Blood-Brain Barrier,” John Wiley, Chichester (1979).Google Scholar
  45. 45.
    I. Klatzo, Presidential address. Neuropathological aspects of brain edema, J. Neuropathol. Exp. Neurol 26:1–14 (1967).PubMedCrossRefGoogle Scholar
  46. 46.
    R. Schmidt-Kastner, D. Meller, B.-M. Bellander, I. Stromberg, L. Olson, and M. Ingvar, A one-step immunohistochemical method for detection of blood-brain barrier disturbances for immunoglobulins in lesioned rat brain with special reference to false-positive labeling in immunohistochemistry, J. Neurosci. Methods 46:121–132 (1993).PubMedCrossRefGoogle Scholar
  47. 47.
    A.S. Hazell, The pathophysiology of pyrithiamine-induced thiamine deficiency encephalopathy, Thesis, McGill University, pp. 1-176 (1994).Google Scholar
  48. 48.
    D.K. Leong, O. Le, L. Oliva, and R.F. Butterworth, Increased densities of binding sites for the peripheral-type benzodiazepine receptor ligand [h-3]pk11195 in vulnerable regions of the rat brain in thiamine deficiency encephalopathy, J. Cereb. Blood Flow Metab. 14:100–105 (1994).PubMedCrossRefGoogle Scholar
  49. 49.
    N. Otsuka, M. Tomonaga, and K. Ikeda, Rapid appearance of β-amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury, Brain Res. 568:335–338 (1991).PubMedCrossRefGoogle Scholar
  50. 50.
    D.T. Stephenson, K. Rash and J.A. Clemens, Amyloid precursor protein accumulates in regions of neurodegeneration following focal cerebral ischemia in the rat, Brain Res. 593:128–135 (1992).PubMedCrossRefGoogle Scholar
  51. 51.
    K. Iverfeldt, S.I. Walaas, and P. Greengard, Altered processing of Alzheimer amyloid precursor protein in response to neuronal degeneration, Proc. Natl. Acad. Sci. 90:4146–4150 (1993).PubMedCrossRefGoogle Scholar
  52. 52.
    T. Kawarabayashi, M. Shoji, Y. Harigaya, H. Yamaguchi, and S. Hirai, Expression of APP in the early stage of brain damage, Brain Res. 563:334–338 (1991).PubMedCrossRefGoogle Scholar
  53. 53.
    Y. Nakamura, M. Takeda, H. Niigawa, S. Hariguchi, and T. Nishimura, Amyloid β-protein precursor deposition in rat hippocampus lesioned by ibotenic acid injection, Neurosci. Lett. 136:95–98 (1992).PubMedCrossRefGoogle Scholar
  54. 54.
    R. Siman, J.P. Card, R.B. Nelson, and L.G. Davis, Expression of beta-amyloid precursor protein in reactive astrocytes following neuronal damage, Neuron 3:275–285 (1989).PubMedCrossRefGoogle Scholar
  55. 55.
    K. Shigematsu, P.L. McGeer, D.G. Walker, T. Ishii, and E.G. McGeer, Reactive microglia/macrophages phagocytose amyloid precursor protein produced by neurons following neural damage, J. Neurosci. Res. 31:443–453 (1992).PubMedCrossRefGoogle Scholar
  56. 56.
    W.C. Wallace, V. Bragin, N.K. Robakis, K. Sambamurti, D. Van der Putten, C.R. Merril, K.L. Davis, A.C. Santucci, and V. Haroutunian, Increased biosynthesis of Alzheimer amyloid precursor protein in the cerebral cortex of rats with lesions of nucleus basalis of Meynert, Brain Res. 10:173–178 (1991).CrossRefGoogle Scholar
  57. 57.
    N.Y. Calingasan, S.E. Gandy, H. Baker, K.-F.R. Sheu, K.-S. Kim, H.M. Wisniewski, and G.E. Gibson, Accumulation of amyloid precursor protein-like immunoreactivity in rat brain in response to thiamine deficiency, Brain Res. 677:50–60 (1995).PubMedCrossRefGoogle Scholar
  58. 58.
    J.D. Buxbaum, S.E. Gandy, P. Cicchetti, ME. Ehrlich, A.J. Czernik, P.J. Fracasso, T. Ramabhadran, A.J. Unterbeck, and P. Greengard, Processing of Alzheimer β/A4-amyloid precursor protein: Modulation by agents that regulate protein phosphorylation, Proc. Natl. Acad. Sci. USA 87:6003–6006 (1990).PubMedCrossRefGoogle Scholar
  59. 59.
    G.L. Caporaso, S.E. Gandy, J.D. Buxbaum, and P. Greengard, Chloroquine inhibits intracellular degradation but not secretion of Alzheimer β/A4 amyloid precursor protein, Proc. Natl. Acad. Sci. USA 89:2252–2256 (1992).PubMedCrossRefGoogle Scholar
  60. 60.
    G.L. Caporaso, S.E. Gandy, J.D. Buxbaum, T.V. Ramabhadran, and P. Greengard, Protein phosporylation regulates secretion of Alzheimer β/A4 amyloid precursor protein, Proc. Natl. Acad. Sci. USA 89:3055–3059 (1992).PubMedCrossRefGoogle Scholar
  61. 61.
    S.E. Gandy, R. Bhasin, T.V. Ramabhadran, E.H. Koo, D.L. Price, D. Goldgaber, and P. Greengard, Alzheimer β/A4-amyloid precursor protein: Evidence for putative amyloidogenic fragment, J. Neuropathol. 58:383–386 (1989).Google Scholar
  62. 62.
    C. Norstedt, S.E. Gandy, I. Alafuzoff, G.L. Caporaso, K. Iverfeldt, J.A. Grebb, B. Winblad, and P. Greengard, Alzheimer β/A4 amyloid precursor protein in human brain: Aging-associated increases in holoprotein and in a proteolytic fragment, Proc. Natl. Acad. Sci. USA 88:8910–8914 (1991).CrossRefGoogle Scholar
  63. 63.
    T. Suzuki, A.C. Nairn, S.E. Gandy, and P. Greengard, Phosphorylation of Alzheimer amyloid precursor protein by protein kinase, Neuroscience 48:755–761 (1992).PubMedCrossRefGoogle Scholar
  64. 64.
    R. Bhasin, W. Van Nostrand, T. Saitoh, M. Donets, E. Barnes, W. Quitschke, and D. Goldgaber, Expression of active secreted forms of human amyloid β-protein precursor by recombinant baculovirus-infected cells, Proc. Natl. Acad. Sci. 88:10307–10311 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Noel Y. Calingasan
    • 1
  • Kwan-Fu Rex Sheu
    • 1
  • Harriet Baker
    • 1
  • Samuel E. Gandy
    • 2
  • Gary E. Gibson
    • 1
  1. 1.Burke Medical Research InstituteCornell University Medical CollegeWhite PlainsUSA
  2. 2.Cornell University Medical CollegeNew YorkUSA

Personalised recommendations