Functional Activation of Energy Metabolism in Nervous Tissue: Where and Why

  • Louis Sokoloff
  • Shinichi Takahashi
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)


In tissues that do physical work, such as heart, skeletal muscle, and kidney, rates of energy metabolism under physiological conditions vary more or less in proportion to the amount of work being done by the tissue. To demonstrate such a relationship in brain has been difficult because, first of all, the exact nature of the physical work done by brain tissue is not obvious, and, secondly, the brain mediates a variety of functions, each of which is localized in discrete regions specific for the function and not in the tissue as a whole. It is only recently that it has become possible to measure the rates of energy metabolism in such discrete structural and functional components of the nervous system in conscious, behaving animals and man and to relate these rates to the levels of functional activity within them.


Energy Metabolism Dorsal Root Ganglion ATPase Activity Dorsal Horn Glucose Utilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.D. Clarke and L. Sokoloff, Circulation and energy metabolism of the brain; in: Basic Neurochemistry, Fifth Edition, G. Siegel, B.W. Agranoff, R.W. Albers, and P. Molinoff, eds, Raven Press, New York (1994), pp. 645–680.Google Scholar
  2. 2.
    O.E. Owen, A.P. Morgan, H.G. Kemp, J.M. Sullivan, M.G. Herrera, G.F. Cahill, Jr: Brain metabolism during fasting. J. Clin. Invest 46:1589–1595 (1967).PubMedCrossRefGoogle Scholar
  3. 3.
    L. Sokoloff, M. Reivich, C. Kennedy, M.H. Des Rosiers, C.S. Patlak, K.D. Pettigrew, O. Sakurada, M. Shinohara, The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: heory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    C. B. Smith, Localization of actvity-associated changes in metabolism of the central nervous system with the deoxyglucose method: Prospects for cellular resolution, in: Current Methods in Cellular Neurobiology, Vol. I, Anatomical Techniques, J.L. Barker and J.F. McKelvy, eds, John Wiley, New York (1983), pp. 269–317.Google Scholar
  5. 5.
    M. Reivich, D. Kuhl, A. Wolf, J. Greenberg, M. Phelps, T. Ido, V. Cassella, J. Fowler, E. Hoffman, A. Alavi, P. Som, and L. Sokoloff, The [18F]fluoro-deoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ.Res. 44:127–137 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    M. E. Phelps, S.C. Huang, E.J. Hoffman, C. Selin, L. Sokoloff, and D.E. Kuhl, Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method, Ann. Neurol.; 6:371–388 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    C. Kennedy, O. Sakurada, M. Shinohara, J.W. Jehle, and L. Sokoloff, Local cerebral glucose utilization in the normal conscious Macaque monkey. Ann. Neurol. 4: 293–301 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Sokoloff, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J. Cereb. Blood Flow Metab. 1:7–36 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    ME. Phelps, J.C. Mazziotta, and S.C. Huang, Study of cerebral function with positron computed tomography. J. Cereb. Blood Flow Metab. 2: 113–162 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Sokoloff, Local cerebral circulation at rest and during altered cerebral activity induced by anesthesia or visual stimulation, in: The Regional Chemistry, Physiology and Pharmacology of the Nervous System, S.S. Kety and J. Elkes, eds., Pergamon Press, Oxford (1961), pp. 107–117.Google Scholar
  11. 11.
    N.A. Lassen, D. Ingvar, and E. Skinhøj, Brain function and blood flow. Sci. Am. 239: 62–71 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    D.H. Hubel and T.N. Wiesel, Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (London), 195: 215–243, (1968).Google Scholar
  13. 13.
    C. Kennedy, M.H. Des Rosiers, O. Sakurada, M. Shinohara, M. Reivich, J.W. Jehle, and L. Sokoloff, Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique. Proc. Natl. Acad. Sci., U.S.A. 73:4230–4234 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    P.J. Hand, The 2-deoxyglucose method, in: Neuroanatomical Tracing Methods, L. Heimer and M.J. Robards, eds., Plenum Press, New York (1981), pp. 511–538.CrossRefGoogle Scholar
  15. 15.
    H.E. Savaki, C. Kennedy., L. Sokoloff, and M. Mishkin, Visually guided reaching with the forelimb contralateral to a’ blind’ hemisphere: a metabolic study in monkeys. J. Neurosci. 13:2772–2789 (1993).PubMedGoogle Scholar
  16. 16.
    W. Schwartz, C.B. Smith, L. Davidsen, H. Savaki, L. Sokoloff, M. Mata, D. J. Fink, and H. Gainer, Metabolic mapping of functional activity in the hypothalamoneurohypophysial system of the rat. Science 205:723–725 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Miyaoka, M. Shinohara, M. Batipps, K.D. Pettigrew, C. Kennedy, and L. Sokoloff, The relationship between the intensity of the stimulus and the metabolic response in the visual system of the rat. Acta Neurol. Scand. 60 [Suppl 70]): 16–17 (1979).Google Scholar
  18. 18.
    J.J. Nordmann, Ultrastructural morphometry of the rat neurohypophysis. J. Anat. 123:213–218 (1977).PubMedGoogle Scholar
  19. 19.
    M. Kadekaro, A.M. Crane, and L. Sokoloff, Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc. Natl. Acad. Sci., U.S.A. 82:6010–6013 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    T.G. Smith, Jr., Sites of action potential generation in cultured neurons. Brain Res. 288:381–383 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    W.H. Freygang, Jr., An analysis of extracellular potentials from single neurons in the lateral geniculate nucleus of the cat. J. Gen. Physiol. 41:543–564 (1958).PubMedCrossRefGoogle Scholar
  22. 22.
    W.H. Freygang, Jr. and K. Frank, Extracellular potentials from single spinal motoneurones. J. Gen. Physiol 42:749–760 (1959).PubMedCrossRefGoogle Scholar
  23. 23.
    P. Yarowsky, M. Kadekaro, and L. Sokoloff, Frequency-dependent activation of glucose utilization in the superior cervical ganglion by electrical stimulation of cervical sympathetic trunk. Proc. Natl. Acad. Sci., U.S.A. 80:4179–4183 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Shinohara, B. Dollinger, G. Brown, S. Rapoport, L. Sokoloff, Cerebral glucose utilization: Local changes during and after recovery from spreading cortical depression. Science 203:188–190 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Mata, D.J. Fink, H. Gainer, C.B. Smith, L. Davidsen, H. Savaki, W.J. Schwartz, and L. Sokoloff, Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J. Neurochem. 34: 213–215 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    R.K. Orkand, J.G. Nicholls, and S.W. Kuffler, Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29:788–806 (1966).PubMedGoogle Scholar
  27. 27.
    F. Medzihradsky, P.S. Nandhasri, V. Idoyaga-Vargas, and O.Z. Sellinger, A comparison of ATPase activity of the glial cell fraction and the neuronal perikaryal fraction isolated in bulk from rat cerebral cortex. J. Neurochem. 18:1599–1603 (1971).PubMedCrossRefGoogle Scholar
  28. 28.
    F.A. Henn, H. Haljamäe, and A. Hamberger, Glial cell function: active control of extracellular K+ concentration. Brain Res. 43: 437–443 (1972).PubMedCrossRefGoogle Scholar
  29. 29.
    L. Hertz, Drug-induced alterations of ion distribution at the cellular level of the central nervous system. Pharmacol. Rev. 29, 35–65 (1977).PubMedGoogle Scholar
  30. 30.
    M. Erecinska and I.A. Silver, Metabolism and role of glutamate in mammalian brain. Progress in Neurobiol. 43, 37–71 (1994).CrossRefGoogle Scholar
  31. 31.
    M. A. Kai-Kai and V.W. Pentreath, High resolution analysis of [3H]2-deoxyglucose incorporation into neurons and glial cells in invertebrate ganglia: histological processing of nervous tissue for selective marking of glycogen. J. Neurocytol. 10:693–708 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    V.W. Pentreath and M.A. Kai-Kai, Significance of the potassium signal from neurons to glial cells. Nature 295, 59–61 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    P. Yarowsky, A.F. Boyne, R. Wierwille, and N. Brookes, Effect of monensin on deoxyglucose uptake in cultured astrocytes: energy metabolism is coupled to sodium entry. J. Neurosci. 6:859–866 (1986).PubMedGoogle Scholar
  34. 34.
    R.S. Badar-Goffer, O. Ben-Yoseph, H.S. Bachelard, and P.G. Morris, Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study. Biochem. J. 282,225–230 (1992).Google Scholar
  35. 35.
    C. J. Cummins, R.A Glover, and O.Z. Sellinger, Neuronal cues regulate uptake in cultured astrocytes. Brain Res. 170: 190–193 (1979).PubMedCrossRefGoogle Scholar
  36. 36.
    C.J. Cummins, R.A. Glover, and O.Z. Sellinger, Astroglial uptake is modulated by extracellular K+. J. Neurochem. 33:779–785 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    N. Brookes and P. J. Yarowsky, Determinants of deoxyglucose uptake in cultured astrocytes: the role of the sodium pump. J. Neurochem. 44:473–479 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    L. Hertz and L. Peng, Energy metabolism at the cellur level of the CNS. Can. J. Physiol Pharmacol. 70 (Suppl.):S145–S157 (1992).PubMedCrossRefGoogle Scholar
  39. 39.
    L. Peng, X. Zhang, and L. Hertz, High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory efect in a GABAergic neuronal culture. BrainRes. 663:168–172 (1994).Google Scholar
  40. 40.
    S. Takahashi, B.F. Driscoll, M.J. Law, and L. Sokoloff, Role of sodium and potassium in regulation of glucose metabolism in cultured astroglia. Proc. Natl. Acad. Sci., U.S.A. 92: 4616–4620 (1995).PubMedCrossRefGoogle Scholar
  41. 41.
    P.R. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E. K. Fujimoto, N.M. Goeke, B.J. Olson, and D.C. Klenk, Measurement of protein using bicinchoninic acid. Anal. Biochem. 15:76–85 (1985).CrossRefGoogle Scholar
  42. 42.
    B. Flott and W. Seifert, Characterization of glutamate uptake in astrocyte primary cultures from rat brain. Glia 4: 293–304 (1991).PubMedCrossRefGoogle Scholar
  43. 43.
    L. Pellerin and P.J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad Sci. U.S.A. 91:10625–10629 (1994).PubMedCrossRefGoogle Scholar
  44. 44.
    N. Brookes and R. J. Turner, K+-induced alkalinization in mouse cerebral astrocytes mediated by reversal of electrogenic Na+-HCO3 cotransport. Am. J. Physiol. 267 (Cell Physiol. 36):C1633–C1640 (1994).PubMedGoogle Scholar
  45. 45.
    P.P. Li and T.D. White, Rapid effects of veratridine, tetrodotoxin, gramicidin D, valinomycin and NaCN on the Na+, K+ and ATP contents of synaptosomes. J. Neurochem. 28: 967–975 (1977).PubMedCrossRefGoogle Scholar
  46. 46.
    W.A. Catterall, Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev. 72 (suppl.):S15–S48 (1992).PubMedGoogle Scholar
  47. 47.
    H.K. Kimelberg, S. Biddlecome, S. Narumi, and R.S. Bourke, ATPase and carbonic anhydrase activities of bulk-isolated neuron, astroglia and synaptosome fractions from rat brain, Brain Res. 141:305–323 (1978).PubMedCrossRefGoogle Scholar
  48. 48.
    B.C. Pressman and M. Fahim, Pharmacology and toxicology of the monovalent carboxylic ionophores. Annual Rev. Pharmacol Toxicol 22:465–490 (1982).CrossRefGoogle Scholar
  49. 49.
    B. Trivedi and W.H. Danforth, Effect of pH on the kinetics of frog muscle phosphofructokinase J. Biol Chem. 241:4110–4112 (1966).PubMedGoogle Scholar
  50. 50.
    M. Erecinska, F. Dagani, D. Nelson, J. Deas, and I.A. Silver, Relations between intracellular ions and energy metabolism: A study with monensin in synaptosomes, neurons, and C6 glioma cells. J. Neurosci. 11:2410–2421 (1991).PubMedGoogle Scholar
  51. 51.
    G. Moonen, G. Frank, and E. Schoffeniels, Glial control of neuronal excitability in mammals: I. Electrophysiological and isotopic evidence in culture. Neurochem. Int. 2, 299–310 (1980).CrossRefGoogle Scholar
  52. 52.
    B.A. Barres, New roles for glia. J. Neurosci. 11:3685–3694 (1991).PubMedGoogle Scholar
  53. 53.
    B.A. Barres, L.L.Y. Chun, and D.P. Corey, Glial and neuronal forms of the voltage-dependent sodium channel: characteristics and cell-type distribution. Neuron 2:1375–1388 (1989).PubMedCrossRefGoogle Scholar
  54. 54.
    K. Hisanaga, S.M. Sagar, K.J. Hicks, R.A. Swanson, and F.R. Sharp, c-fos proto-oncogene expression in astrocytes assocxiated wuth differentiatyion or proliferation but not depolarization. Mol. Brain Res. 8:69–75 (1990).PubMedCrossRefGoogle Scholar
  55. 55.
    L. Hertz, An intense potassium uptake into astrocytes, its enhancement by high concentrations of potassium, and its possible involvement in potassium homeostasis at the cellular level. Brain Res. 145:202–208 (1978).PubMedCrossRefGoogle Scholar
  56. 56.
    L. Hertz, Features of astrocytic function apparently involved in the response of central nervous tissue to ischemia-hypoxia. J. Cereb. Blood Flow Metab. 1:143–153 (1981).PubMedCrossRefGoogle Scholar
  57. 57.
    Y. Kanai and M.A. Hediger, Primary structure and functional characterization of a high-affinity glutamate transporter. Nature (London) 360: 467–471 (1992).CrossRefGoogle Scholar
  58. 58.
    G. Pines, N.C. Danbolt, M. Bjørås, Y. Zhang, A. Bendahan, L. Eide, H. Koepsell, J. Storm-Mathisen, E. Seeberg, and B.I. Kanner, Cloning and expression of a rat brain L-glutamate transporter. Nature (London) 360:464–467 (1992).CrossRefGoogle Scholar
  59. 59.
    T. Storck, S. Schulte, K. Hofmann, and W. Stoffel, Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc. Natl Acad. Sci. USA 89: 10955–10959. (1992).PubMedCrossRefGoogle Scholar
  60. 60.
    J.D. Rothstein, L. Martin, A.I. Levey, M. Dykes-Hoberg, L. Jin, D. Wu, N. Nash, and R.W. Kuncl, Neuron 13:713–725 (1994).PubMedCrossRefGoogle Scholar
  61. 61.
    C.A. Bowman and H.K. Kimelberg, Excitatory amino acids depolarize rat brain astrocytes in primary culture. Nature (London) 311: 656-659. (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Louis Sokoloff
    • 1
  • Shinichi Takahashi
    • 1
  1. 1.Laboratory of Cerebral MetabolismNational Institute of Mental HealthBethesdaUSA

Personalised recommendations