Advertisement

Long-Term Expression of Proenkephalin and Prodynorphin in the Rat Brain after Systemic Administration of Kainic Acid — an in Situ Hybridization Study

  • Guoying Bing
  • Belinda Wilson
  • Michael McMillian
  • Zhehui Feng
  • Qiping Qi
  • Hyoung-Chum Kim
  • Wen Wang
  • Karl Jensen
  • Jau-Shyong Hong
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)

Abstract

Kainic acid (KA) is a glutamate analog that binds to and activates ionotropic glutamate receptors. Administration of KA causes robust and recurrent seizures in the rat, and produces permanent damage in the CNS, specifically in the limbic system. Systemic injection of kainate results in both short-term and long-term effects on the rat central nervous system (CNS). The excitatory neuronal stimulation by kainate increases the expression of a variety of genes including immediate-early genes, growth factors, and opioid peptides. The short-term effects of kainate in the rat brain have been well characterized1–6. However, the long-term effects of kainate, especially on the opioid peptides, have not been reported.

Keywords

Granule Cell Dentate Gyrus Mossy Fiber Opioid Peptide Kainic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Gall, Seizures induce dramatic and distinctly different changes in enkephalin, dynorphin, and CCK immunoreactivities in mouse hippocampal mossy fibers. J. Neurosci. 8:1852–62 (1988).PubMedGoogle Scholar
  2. 2.
    J. S. Hong, J. F. McGinty, L. Grimes, T. Kanamatsu, J. Obie, and C. L. Mitchell, Seizure-induced alterations in the metabolism of hippocampal opioid peptides suggest opioid modulation of seizure-related behaviors, NIDA Res. Monogr. 82:48–66 (1988).PubMedGoogle Scholar
  3. 3.
    J. F. McGinty, T. Kanamatsu, J. Obie, and J. S. Hong, Modulation of opioid peptide metabolism by seizures: differentiation of opioid subclasses. NIDA Res. Monogr. 71:89–101 (1986).PubMedGoogle Scholar
  4. 4.
    T. Kanamatsu, J. Obie, L. Grimes, J. F. McGinty, K. Yoshikawa, S. Sabol, and J. S. Hong, Kainic acid alters the metabolism of Met5-enkephalin and the level of dynorphin A in the rat hippocampus. J. Neurosci. 6:3094–102 (1986).PubMedGoogle Scholar
  5. 5.
    K. R. Pennypacker, D. Walczak, L. Thai, R. Fannin, E. Mason, J. Douglass, and J. S. Hong, Kainate-induced changes in opioid peptide genes and AP-1 protein expression in the rat hippocampus. J. Neurochem. 60:204–11 (1993).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Gall, J. Lauterborn, P. Isackson, and J. White, Seizures, neuropeptide regulation, and mRNA expression in the hippocampus. Prog. Brain Res. 83:371–90 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    J. S. Hong, L. Grimes, T. Kanamatsu, and J. F. McGinty, Kainic acid as a tool to study the regulation and function of opioid peptides in the hippocampus. Toxicology 46:141–57 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    J. A. Angulo and B. S. McEwen, Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Res. 9:1–28 (1994).Google Scholar
  9. 9.
    I. S. Zagon and P. J. McLaughlin, Endogenous opioid systems regulate cell proliferation in the developing rat brain. Brain Res. 412:68–72 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    I. S. Zagon and P. J. McLaughlin, Identification of opioid peptides regulating proliferation of neurons and glia in the developing nervous system, Brain Res. 542:318–23 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Racine, V. Okujava, and S. Chipashvili, Modification of seizure activity by electrical stimulation. 3. Mechanisms. Electroencephalogr. Clin. Neurophysiol. 32:295–9 (1972).PubMedCrossRefGoogle Scholar
  12. 12.
    S. T. Young, L. J. Porrino, and M. J. Iadarola, Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic Dl receptors. Proc. Natl. Acad. Sci. U.S.A. 88:1291–5 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Popovici, A. Represa, V. Crepel, G. Barbin, M. Beaudoin, and Y. Ben Ari, Effects of kainic acid-induced seizures and ischemia on c-fos-like proteins in rat brain. Brain Res. 536:183–94 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    K. R. Pennypacker, L. Thai, J. S. Hong, and M. K. McMillian, Prolonged expression of AP-1 transcription factors in the rat hippocampus after systemic kainate treatment. J. Neurosci. 14:3998–4006 (1994).PubMedGoogle Scholar
  15. 15.
    J. I. Morgan, D. R. Cohen, J. L. Hempstead, and T. Curran, Mapping patterns of c-fos expression in the central nervous system after seizure. J. Neurosci. 237:192–7 (1987).Google Scholar
  16. 16.
    J. I. Morgan and T. Curran, Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Anna. Rev. Neurosci. 14: 421–51 (1991).CrossRefGoogle Scholar
  17. 17.
    M. Frotscher and J. Zimmer, Lesion-induced mossy fibers to the molecular layer of the rat fascia dentata: identification of postsynaptic granule cells by the Golgi-EM technique. J. Comp. Neurol. 215:299–311 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    D. L. Tauck and J. V. Nadler, Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J. Neurosci. 5:1016–22 (1985).PubMedGoogle Scholar
  19. 19.
    M. M. Okazaki, P. G. Aitken, and J. V. Nadler, Mossy fiber lesion reduces the probability that kainic acid will provoke CA3 hippocampal pyramidal cell bursting. Brain Res. 440:352–6 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    J. S. Hong, Hippocampal opioid peptides and seizures, in: “The Dentate Gyrus and Its Role in Seizures” C.E. Ribak, C.M. Gall and I. Mody, eds., Elsevier Science Publishers, New York (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Guoying Bing
    • 1
  • Belinda Wilson
    • 1
  • Michael McMillian
    • 1
  • Zhehui Feng
    • 1
  • Qiping Qi
    • 1
  • Hyoung-Chum Kim
    • 1
  • Wen Wang
    • 1
  • Karl Jensen
    • 2
  • Jau-Shyong Hong
    • 1
  1. 1.Laboratory of Environmental NeuroscienceNIEHS/NIHUSA
  2. 2.Neurotoxicology Division Environmental Protection AgencyUSA

Personalised recommendations