Effect of the Kennedy Mutation of the Androgen Receptor on Gene Expression in Neuroblastoma Cells

  • P. A. Yerramilli-Rao
  • O. Garofalo
  • P. N. Leigh
  • J.-M. Gallo
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)


Kennedy’s syndrome (X-linked bulbar and spinal muscular atrophy) is an X-linked disorder characterised by sensory and lower motor neurone degeneration.1,2,3 The discovery of a mutation in the androgen receptor (AR) gene in Kennedy’s syndrome reinforced the hypothesis that an X-linked factor might be involved in the disease process of Amyotrophic Lateral Sclerosis (ALS), because of the prevalence of the disease in males, (ratio 1.6:1). This mutation, which is tightly linked with the disease phenotype, consists of an increased number of CAG repeats present in the first exon of the AR gene, encoding a polyglutamine chain.


Amyotrophic Lateral Sclerosis Androgen Receptor Spinal Muscular Atrophy Differential Display Motor Neurone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    La Spada A.R., Wilson E.M., Lubahn D.M., Harding A.E., and Fischbeck K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 352:77 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    Harding A.E., Thomas P.K., Baraitser M., Bradbury P.G., Morgan-Hughes J.A., Ponsford J.R. X-linked recessive bulbospinal neuropathy: a report of ten cases. J. Neurol. Neurosurg. Psychiatry 45:1012 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    Sobue G., Hashizume Y., Mukai E., Hirayama M., Mitsuma T., Takahashi A. X-linked recessive bulbospinal neuropathy. Brain. 112:209 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    Sar, M., and Stumpf, W.E. Androgen concentration in motor neurones of cranial nerves and spinal cord. Science. 197:77 (1977).PubMedCrossRefGoogle Scholar
  5. 5.
    Simerly, R.B., Chang, C., Muramatsu, M., and Swanson, L.W. Distribution of androgen and oestrogen receptor mRNA-containing cells in the rat brain: an in situ hybridisation study. J. Comp. Nenrol. 294:76 (1990).CrossRefGoogle Scholar
  6. 6.
    Biedler J.L., Helson L., and Spengler B.A. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 38:3751 (1973).Google Scholar
  7. 7.
    Biedler J.L., Helson L., and Spengler B.A. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in culture. Cancer Res. 33:2643 (1973).PubMedGoogle Scholar
  8. 8.
    Squinto S.P., Aldrich T.H., Lindsay R.M., Morrissey D.M., Panayotatos N., Bainco S., Furth M.E., and Yancopoulos G. Identification of functional receptoors for ciliary neurotrophic factor on neuronal cell lines and primary culture. Neuron. 5:757 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    Kaplan D.R., Matsumoto K., Lucarelli E., and Thiele C J. Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Neuron. 11:321 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    Yerramilli-Rao P., Garofalo O., Whatley S., Leigh P.N., and Gallo J.-M. Androgen-controlled specific gene expression in neuroblastoma cells. J. Neurol. Sci. (In Press).Google Scholar
  11. 11.
    Tilley W.D., Marcelli ML, Wilson J.D., and McPhaul M.J. Characterisation and expression of a cDNA encoding the hAR. Proc. nail. Acad. Sci. U.S.A. 86:327 (1989).CrossRefGoogle Scholar
  12. 12.
    Weiner L.P. Possible role of androgen receptors in Amyotrophic Lateral Sclerosis: a hypothesis. Arch. Neurol. 37:129 (1989).CrossRefGoogle Scholar
  13. 13.
    Kurtzke J.F. Risk factors in Amyotrophic Lateral Sclerosis. In: Rowland L.P., ed. Advances in Neurology. New York: Raven Press, 56:245 (1991).Google Scholar
  14. 14.
    Brown C.J., Goss S.J., and Lubahn D.B., et al. Induction of the TRPM-2 gene in cells undergoing programmed death. Mol, Cell. Biol. 9:3473 (1989).Google Scholar
  15. 15.
    Garofalo O., Figlewicz D.A., Leigh P.N., Powell J.F., Meninger V., Dib M., and Rouleau G.A. Androgen receptor gene polymorphisms in amyotrophic lateral sclerosis. Neuromusc. Disord. 3(3): 195 (1993).PubMedCrossRefGoogle Scholar
  16. 16.
    Kennedy W.R., Alter M., and Sung J.H. Progressive spinal and bulbar muscular atrophy of late onset: a sex-linked recessive trait. Neurology. 18:671 (1968).PubMedCrossRefGoogle Scholar
  17. 17.
    McPhaul M.J., Marcelli M., Tilley W., Griffin J.E., Isidro-Guitierrez R.F., and Wilson J.D. Molecular basis of androgen resistance in a family with a qualitative abnormality of the androgen receptor and responsive to high-dose androgen therapy. J. Clin.Invest. 87:1413 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    Richards R.I., Holman K., Friend K., Kremer E., Hillen D., Staples A., Brown W.T., Goonwardena P., Tarleton J., Schwartz C., et al, Nature Genet. 1:257 (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    Mhatre A.N., Trifiro M.A., Kaufman M., Kazemi-Esfarjani P., Figlewicz D., Rouleau G., and Pinsky L. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nature Genetics. 5:184 (1993).PubMedCrossRefGoogle Scholar
  20. 20.
    Chamberlain N.L., Driver E.D., and Miedfeld R. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucl. Acids. Res. 22(15):3181 (1994).PubMedCrossRefGoogle Scholar
  21. 21.
    Wang Y.-H., Amirhaeri S., Kang S., Wells R.D., and Griffith J.D. Preferential nucleosome assembly at DNA triplet repeats from the Myotonic Dystophy gene. Science. 265:669 (1994).PubMedCrossRefGoogle Scholar
  22. 22.
    Toran-Allerand CD. Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: implications for sexual differentiation. Brain Res. 106:407 (1976).PubMedCrossRefGoogle Scholar
  23. 23.
    Jones K.J., and Oblinger M.M. Androgenic regulation of tubulin gene expression in axotomised hamster facial motor neurones. J.Neurosci. 14(6): 3620 (1994).PubMedGoogle Scholar
  24. 24.
    Katoh-Semba R., Semba R., Kato H., Ueno M., Arakawa Y., and Kato K. Regulation by androgen of levels of the b subunit of NGF and its mRNA in selected regions of the mouse brain. J. Neurochem. 62: 2141 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • P. A. Yerramilli-Rao
    • 1
  • O. Garofalo
    • 1
  • P. N. Leigh
    • 1
  • J.-M. Gallo
    • 1
  1. 1.Departments of NeurologyInstitute of PsychiatryLondonUK

Personalised recommendations