Advertisement

Mutations of Human Cu, Zn Superoxide Dismutase Expressed in Transgenic Mice Cause Motor Neuron Disease

  • Mark E. Gurney
  • Arlene Y. Chiu
  • Mauro C. Dal Canto
  • John Q. Trojanowski
  • Virginia M.-Y. Lee
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)

Abstract

ALS causes the degeneration of motor neurons in cortex, brainstem and spinal cord with consequent paralysis and death.1 Most cases of ALS are sporadic and have an unknown etiology.2 However, about 10–15% of all ALS cases are inherited. An adultonset, autosomal dominantly inherited trait is the predominant form3, although there is a rare, recessively inherited childhood-onset form of ALS in which survival can be quite long4. In 1991, a fraction of families with the familial form of ALS (FALS) showed linkage to a disease locus on human chromosome 21q.5 Shortly thereafter, in 1993, the target of mutation on chromosome 21q was shown to be the gene (SOD1) encoding Cu,Zn Superoxide dismutase (Cu,Zn SOD). At least 22 different missense mutations causing the substitution of one amino acid for another have now been found in FALS kindreds. Cu,Zn SOD is a metalloenzyme that catalyzes the dismutation of Superoxide (O2×-) to hydrogen peroxide (H2O2). The copper ion provides the redox center for the dismutation of Superoxide, while the zinc ion plays a structural role. Three different genes encoding Superoxide dismutases are present in the human genome. All three enzymes contain a transition metal in their active site, but differ in their subcellular localization. Only Cu,Zn SOD is mutated in FALS. Cu,Zn SOD is primarily cytosolic and is expressed in every cell within the body.6,7 Why only motor neurons are affected by the mutations found in FALS is unknown. The mutations of Cu,Zn SOD found in affected families are primarily amino acid substitutions in structural regions of the polypeptide.8 No deletions of the human SOD1 gene have been described which suggests that expression of the mutant polypeptide is required for pathogenesis.

Keywords

Amyotrophic Lateral Sclerosis Motor Neuron Motor Neuron Disease Mutant SODI Mouse Somatic Motor Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mulder, D.W. (1982) Clinical limits of amyotrophic lateral sclerosis. In: Rowland, L.P., (Ed.) Human Motor Neuron Diseases, pp. 15-22. New York: Raven Press.Google Scholar
  2. 2.
    Tandan, R. and Bradley, W.G. (1985) Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology and ethical issues in management. Ann. Neurol. 18, 271–280.PubMedCrossRefGoogle Scholar
  3. 3.
    Mulder, D.W., Kurland, L.T., Offord, K.P., and Beard, CM. (1986) Familial adult motor neuron disease: Amyotrophic lateral sclerosis. Neurol. 36, 511–517.CrossRefGoogle Scholar
  4. 4.
    Ben Hamida, M., Hentati, F., and Ben Hamida, C. (1990) Hereditary motor system diseases (chronic juvenile amyorophic lateral sclerosis): conditions combining a bilateral pyramidal syndrome with limb and bulbar atrophy. Brain 113, 347–363.PubMedCrossRefGoogle Scholar
  5. 5.
    Siddique, T et al. (1994) Linkage of a gene causing familial amyotropic lateral sclerosis to chromosome 21 and evidence of locus heterogeneity. New Englnd. J. Med. 324, 1381–1384.CrossRefGoogle Scholar
  6. 6.
    Crapo, J.D., Oury, T., Rabouille, C., Slot, J.W., and Chang, L-Y. (1992) Copper, zinc Superoxide dismutase is primarily a cytosolic protein in human cells. Proc. Natl. Acad. Sci. USA 89, 10405–10409.Google Scholar
  7. 7.
    Beckman, J.S., Carson, M., Smith, C.D. and Koppenol, W.H. (1993) ALS, SOD and peroxynitrite. Nature 364, 584.PubMedCrossRefGoogle Scholar
  8. 8.
    Deng, H.X. et al. (1993) Amyotrophic lateral sclerosis and structural defects in Cu,Zn Superoxide dismutase. Science 261, 1047–1051.PubMedCrossRefGoogle Scholar
  9. 9.
    Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.C., Polchow, C.Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H.-X., et al. (1994) Motor neuron degeneration in mice expressing a human Cu, Zn Superoxide dismutase mutation. Science 264, 1772–1775.PubMedCrossRefGoogle Scholar
  10. 10.
    Ripps, M.E., Huntley, G.W., Hof, P.R., Morrison, J.H., and Gordon, J.W. (1995) Transgenic mice expressing an altered murine Superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 92, 689–693.PubMedCrossRefGoogle Scholar
  11. 11.
    Price, D. et al., see chapter from this symposium.Google Scholar
  12. 12.
    Avraham, K.B., Sugarman, H., Rotshenker, S. and Groner, Y. (1991) Down’s syndrome: morphological remodelling and increased complexity in the neuromuscular junction of transgenic CuZn-superoxide dismutase mice. J. Neurocytol. 20, 208–215.PubMedCrossRefGoogle Scholar
  13. 13.
    Avraham, K.B., Schickler, M., Sapoznikov, D., Yarom, R. and Groner, Y. (1988) Down’s syndrome: Abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu,Zn-superoxide dismutase. Cell 54, 823–829.PubMedCrossRefGoogle Scholar
  14. 14.
    Dal Canto, M.C. and Gurney, M.E. (1994) The development of CNS pathology in a murine transgenic model of human ALS. Am. J. Pathol. 145, 1271–1280.Google Scholar
  15. 15.
    Przedborski, S., Kostic, V., Jackson-Lewis, V., Naini, A.B., Simonetti, S., Fahn, S., Carlson, E., Epstein, C.J., and Cadet, J.L. (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to Nmethyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J. Neurosci. 12, 1658–1667.PubMedGoogle Scholar
  16. 16.
    Yang, G., Chan, P.H., Chen, J., Carlson, E., Chen, S.F., Weinstein, P., Epstein, C.J. and Kamii, H. (1994) Human copper-zinc Superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25, 165–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Epstein, C.J., Avraham, K.B., Lovett, M., Smith, S., Elroy-Stein, O., Rotman, G., Bry, C and Groner, Y. (1987) Transgenic mice with increased Cu/Zn-superoxide dismutase activity: Animal model of dosage effects in Down syndrome. Proc. Natl. Acad. Sci. USA 84, 8044–8048.PubMedCrossRefGoogle Scholar
  18. 18.
    Borchelt, D.R. et al. (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. USA 91, 8292–8296.PubMedCrossRefGoogle Scholar
  19. 19.
    Benz, R. (1990) Biphysical properties of porin pores from mitochondrial outer membrane of eukaryotic cells. Experientia 46, 131–137.PubMedCrossRefGoogle Scholar
  20. 20.
    Weisiger, R.A. and Fridovich, I. (1973) Mitochondrial Superoxide dismutase. Site of synthesis and intramitochondrial localization. J. Biol. Chem. 248, 4793–4796.PubMedGoogle Scholar
  21. 21.
    Liou, W., Chang, L.Y. Geuze, HJ. Strous, G.J. Crapo, J.D. and Slot, J.W. (1993) Distribution of CuZn Superoxide dismutase in rat liver. Free Radical Biol. Med. 14, 201–207.CrossRefGoogle Scholar
  22. 22.
    Yim, M.B., Chock, P.B. and Stadtman, E.R. (1993) Enzyme function of copper, zinc Superoxide dismutase as a free radical generator. J. Biol. Chem. 268, 4099–4105.PubMedGoogle Scholar
  23. 23.
    Beekman, J.S., Carson, M., Smith, C.D. and Koppenol, W.H. (1993) ALS, SOD and peroxynitrite. Nature 364, 584.CrossRefGoogle Scholar
  24. 24.
    Ribarov, S.R. and Bochev, P.G. (1984) The interaction of copper chloride with the erythrocyte membrane as a source of activated oxygen species. Gen. Physiol. Biophys. 3, 431–435.PubMedGoogle Scholar
  25. 25.
    Ogasawara, M. et al. (1993) Mild ALS in Japan associated with novel SOD mutation. Nature Genetics 5, 323–324.PubMedCrossRefGoogle Scholar
  26. 26.
    Caffi, M.T., Battistoni, A., Polizio, F., Desideri, A., and Rotilio, G. (1994) Impaired copper binding by the H46R mutant of human Cu,Zn Superoxide dismutase, invovled in amyotrophic lateral sclerosis. FEBS Letters 356, 314–316.CrossRefGoogle Scholar
  27. 27.
    Selkoe, D. J. (1994) Alzheimer’s disease: a central role for amyloid J. Neuropathol. Exp. Neurol. 53, 427–428.CrossRefGoogle Scholar
  28. 28.
    Tu, P.-H., Raju, P., Robinson, K.A., Gurney, M.E., Trojanowski, J.Q., and Lee, V. M.-Y. (1995) Transgenic mice carrying a human mutant Superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA. in press..Google Scholar
  29. 29.
    Collard, J.-F., Cote, F. and Julien, J.-P. (1995) Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61–64.PubMedCrossRefGoogle Scholar
  30. 30.
    Shaw, P.J. (1994) Excitotoxicity and motor neurone disease. J. Neurol. Sci. 124(Suppl.), 6–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Choi, D.W. (1988) Glutamate neurotoxicity and disease of the nervous system. Neuron 1, 623–634.PubMedCrossRefGoogle Scholar
  32. 32.
    Ince, P.G. et al. (1992) Parvalbumin and calbindin D-28K in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol..Google Scholar
  33. 33.
    Bensimon G. Lacomblez L. Meininger V. (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. New Englnd. J. Med. 330, 585–591.CrossRefGoogle Scholar
  34. 34.
    Plaitakis, A. Mandeli, J., Fesdjian, C. and Sivak, M.A. (1991) Dysregulation of glutamate metabolism in ALS: correlation with gender and disease type. Neurol. 41, 392–393.Google Scholar
  35. 35.
    Rothstein, J.D. et al. (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 28, 18–25.PubMedCrossRefGoogle Scholar
  36. 36.
    Rothstein, J.D., Martin, L.J., and Kuncl, R.W. (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. New Englnd. J. Med. 326, 1464–1468.CrossRefGoogle Scholar
  37. 37.
    Fix, A.S. et al. (1993) Neuronal vacuolization and necrosis induced by the noncompetitive N-metyl-D-aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): A light and electron microscopic evaluation of rat retrosplenial cortex. Exp. Neurol. 123, 204–215.PubMedCrossRefGoogle Scholar
  38. 38.
    Bowling, A.C., Schulz, J.B., Brown, R.H. Jr, and Beal, F.M. (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem. 61, 2322–2325.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Mark E. Gurney
    • 1
  • Arlene Y. Chiu
    • 2
  • Mauro C. Dal Canto
    • 1
  • John Q. Trojanowski
    • 3
  • Virginia M.-Y. Lee
    • 3
  1. 1.Northwestern UniversityChicagoUSA
  2. 2.City of Hope Medical CenterDuarteUSA
  3. 3.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations