Progressive Neurodegeneration in Rat Brain after Chronic 3-VO or 2-VO

  • J. C. de la Torre
  • B. A. Pappas
  • T. Fortin
  • M. Keyes
  • C. Davidson
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)


Progressive neurodegeneration in the aging population is commonly associated with human dementia, including Alzheimer’s disease (AD) (Rose and Hennebery, 1994)


Left Subclavian Artery Chronic Cerebral Hypoperfusion Progressive Neurodegeneration Reactive Astrocytosis Vascular Insult 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral, D.G., and Insausti, R, 1990, Hippocampal formation. In: The Human Nervous System, Academic Press, New York, pp. 711–755.Google Scholar
  2. Ball, M., 1977, Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with aging and dementia. Acta Neuropathol. 37:111–117.PubMedCrossRefGoogle Scholar
  3. de la Torre, J.C., Fortin, T., Park, G., Butler, K., Kozlowski, P., Pappas, B., de Socarraz, H, Saunders, J. And Richard, M., 1992a, Chronic cerebrovascular insufficiency induces dementialike deficits in aged rats. Brain Res 582:186–195.PubMedCrossRefGoogle Scholar
  4. de la Torre, J.C., Fortin, T., Park, G., Saunders, J., Kozlowski, P., Butler, K., de Socarraz, H., Pappas, B. and Richard, M., 1992b, Aged but not young rats develop metabolic, memory deficits after chronic brain ischemia. Neurol Res 14 (Suppl.), 177–180.PubMedGoogle Scholar
  5. de la Torre, J.C., Fortin, T., Park, G. and Pappas, B., 1993b, Spatial memory loss without morphological damage to CA1 neurons. Soc Neurosci Abstr. 19:1045.Google Scholar
  6. de la Torre, J.C. and Fortin, T., A chronic physiological rat model of dementia, 1994, Behavior Brain Res 63:35–40.CrossRefGoogle Scholar
  7. de la Torre, J.C., Fortin, T. and Saunders, J., Correlates between NMR spectroscopy, diffusion weighted imaging and CA1 morphometry following chronic brain ischemia. J Neurol Sci Res, in press.Google Scholar
  8. de la Torre, J.C., Fortin, T., Park, G., Pappas, B., Saunders, J. and Richard, M., 1993a, Brain blood-flow restoration “rescues“ chronically damaged rat CA1 neurons. Brain Res 623:6–15.PubMedCrossRefGoogle Scholar
  9. Delacourte, A., 1993, General and dramatic glial reaction in Alzheimer brains. Neurology 40:33–37.CrossRefGoogle Scholar
  10. Duara, R., 1994, Neuroimaging with CT and MRI in Alzheimer’s disease. In: Alzheimer’s Disease. R. D. Terry, R. Katzman, K. Bick (eds) Raven Press, New York, pp. 75–86.Google Scholar
  11. Duffy, P.E., Rapport, M. and Graf, L., 1980, Glial fibrillary acidic protein and Alzheimer-type dementia. Neurology 30:778–782.PubMedCrossRefGoogle Scholar
  12. Grubb, R., Raichle, M., Gado, M., Eichling, J. and Hughes, C., 1977, Cerebral blood flow, oxygen utilization and blood volume in dementia. Neurology 27:905–910.PubMedCrossRefGoogle Scholar
  13. Harpin, L.L., Delaere, P. and Javoy-Agid, F., 1990, Glial fibrillary acidic protein and BA4 protein deposits in temporal lobe of aging brain and senile dementia of Alzheimer-type. J Neurosci Res 27:587–594.PubMedCrossRefGoogle Scholar
  14. Jack, C.R., Petersen, R., O’Brien, P., and Tangalos, E., 1992, MR — based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42:183–188.PubMedCrossRefGoogle Scholar
  15. McKhann, G., Drachman, D. And Folstein, M., 1981, Clinical diagnosis of Alzheimer’s disease. Neurology 34:93 9–944.Google Scholar
  16. Mendis, T., and Mohr, E., 1993, Dementia: A clinical approach. Canad J Diag 2:91–105.Google Scholar
  17. Mossakowski, M.J., Wrzolkown, T., Tukaj, C., and Gadamski, R., 1991, Comparative morphometric analysis of terminal vascularization of hippocampal CA1 and CA3 sectors in mongolian gerbils. Folia Neuropathol 32:1–7.Google Scholar
  18. Nitsch, R., Blustajn, J., Wurtman, R. and Growdon, J., 1991, Membrane phospholipid metabolites are abnormal in Alzheimer’s disease. Neurology 41 (Suppl.) 1:269.Google Scholar
  19. Pettegrew, J.W., Kanagasabai, P., Moossy, J., Martinez, J., 1988, Correlation of phosphorous-31 magnetic resonance spectroscopy and morphologic findings in Alzheimer’s disease. Arch Neurol 45:1093–1096.PubMedCrossRefGoogle Scholar
  20. Prohovnik, I., Mayeux, R., Sackheim, H., Smith, G., Stern, Y. and Alderson, P.Y., 1988, Cerebral perfusion as a diagnostic marker of early Alzheimer’s disease. Neurology 38:931–937.PubMedCrossRefGoogle Scholar
  21. Rose, C.D., and Henneberry, R.C., 1994, Etiology of the neurodegenerative disorders: A critical analysis. Neurobiol Aging 15:233–234.PubMedCrossRefGoogle Scholar
  22. Schmidt-Kastner, R., and Freund, T.G., 1991, Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636.PubMedCrossRefGoogle Scholar
  23. Sulkava, R., Haltia, M., Paetau, A., Wikstrom. J. and Palo, J., 1983, Accuracy of clinical diagnosis in primary degenerative dementia: correlation with neuropathological findings. J Neurol Neursurg Psychiatry 46:9–13.CrossRefGoogle Scholar
  24. Wade, J.P., Mirsen, T. and Hachinski, V., The clinical diagnosis of Alzheimer’s disease. Arch Neurol 44:24–27.Google Scholar
  25. West, M.J., Coleman, P., Flood, D., and Troncoso, J., 1994, Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769-772.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J. C. de la Torre
    • 1
  • B. A. Pappas
    • 2
  • T. Fortin
    • 2
  • M. Keyes
    • 2
  • C. Davidson
    • 2
  1. 1.Division of NeurosurgeryUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of PsychologyCarleton UniversityOttawaUSA

Personalised recommendations