Brainstem Motoneuron Cell Groups that die in Amyotrophic Lateral Sclerosis are Rich in the GLT-1 Glutamate Transporter

  • Loreta Medina
  • Griselle Figueredo-Cardenas
  • J. D. Rothstein
  • Anton Reiner
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)


Several studies have suggested that excessive Ca2+ influx into cells may underlie the selective destruction of motoneurons observed in the sporadic form of Amyotrophic Lateral Sclerosis (ALS)1–4. Consistent with this, in the cranial motor nuclei that survive better in sporadic ALS (i.e. oculomotor, trochlear and abducens motor nuclei), a high percentage of the motoneurons are enriched in the Ca2+ buffering protein parvalbumin in normal monkey and normal human brainstem5,6. In contrast, in the cranial motor nuclei that are dramatically affected in sporadic ALS (i.e. trigeminal, facial, and hypoglossal motor nuclei), only a low percentage of the motoneurons contain parvalbumin5,6. One possible clue as to why excessive Ca2+ influx into cells may occur in sporadic ALS has been provided by Rothstein and colleagues3. In brief, they have found a significant decrease of high-affinity glutamate transport in the motor cortex and spinal cord of sporadic ALS victims3, which seems to be due mainly to a profound loss of a specific glutamate transporter subtype, GLT-1, which is localized to astroglia7. A minor loss of another glutamate transporter subtype, EAAC1 (localized to neurons), also occurs in the motor cortex of ALS victims which may be secondary to the death of cortical neurons7. A defect in either glutamate transporter subtype would lead to an excess of extracellular glutamate in the vicinity of neurons depending on that transporter for glutamate clearance from the extracellular space.


Amyotrophic Lateral Sclerosis Glutamate Transporter Motor Nucleus Sporadic Amyotrophic Lateral Sclerosis Medial Longitudinal Fasciculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.W. Choi, Glutamate neurotoxicity and diseases in the nervous system, Neuron 1:623 (1988).PubMedCrossRefGoogle Scholar
  2. 2.
    J.D. Rothstein, G. Tsai, R.W. Kuncl, L. Clawson, D.R. Cornblath, D.B. Drachman, A. Pestronk, B.L. Stauch, and J.T. Coyle, Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis, Ann. Neurol. 28:18 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    J.D. Rothstein, L.J. Martin, and R.W. Kuncl, Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis, N. Engl. J. Med. 326:1464 (1992).PubMedCrossRefGoogle Scholar
  4. 4.
    S.H. Appel, Excitotoxic neuronal death in amyotrophic lateral sclerosis, Trends Neurosci. 16:3 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Reiner, S. Anfinson, and G. Figueredo-Cardenas, Motoneurons that are resistant to ALS are preferentially enriched in the calcium binding protein parvalbumin, Neurosci. Abstr. 19:197 (1993).Google Scholar
  6. 6.
    A. Reiner, L. Medina, G. Figueredo-Cardenas, and S. Anfinson, Brainstem motoneuron pools that are selectively resistant in amyotrophic lateral sclerosis are preferentially enriched in parvalbumin: evidence from monkey brainstem for a calcium-mediated mechanism in sporadic ALS, Exp. Neurol. 131:239 (1995).PubMedCrossRefGoogle Scholar
  7. 7.
    J.D. othstein, M. Van Kammen, A.I. Levey, L. Martin, and R.W. Kuncl, Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis, Ann. Neurol 37 (1995) in press.Google Scholar
  8. 8.
    J.D. Rothstein, L. Martin, A.I. Levey, M. Dykes-Hoberg, L. Jin, D. Wu, N. Nash, and R.W. Kuncl, Localization of neuronal and glial glutamate transporters, Neuron 13:713 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    G. Figueredo-Cardenas, K.D. Anderson, Q. Chen, CL. Veenman, and A. Reiner, Relative survival of striatal projections neurons and interneurons after intrastriatal injection of quinolinic acid in rats, Exp. Neurol. 129:37 (1994).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Plaitakis, E. Constatakakis, and T. Smith, The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis, Ann. Neurol. 24:446 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    P.S. Spencer, P.B. Nunn, S. Hugon, A.C. Ludolph, S.M. Ross, D.N. Roy, and R.C. Robertson, Guam amyotrophic lateral sclerosis-parkinsoniam dementia linked to a plant excitant neurotoxin, Science 239:517 (1987).CrossRefGoogle Scholar
  12. 12.
    M.F. Beal, Mechanisms of excitotoxicity in neurologic diseases, FASEB J. 6:3338 (1992).PubMedGoogle Scholar
  13. 13.
    M.F. Beal, Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?, Ann. Neurol. 31:119 (1992).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Orrenius, M.J. Burkitt, G.E.N. Kass, J.M. Dypbukt, and P. Nicotera, Calcium ions and oxidative cell injury, Ann. Neurol. 32:S33 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    J.D. Rothstein, L. Jin, M. Dykes-Hoberg, and R.W. Kuncl, Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity, Proc. Natl. Acad. Sci. USA 90:6591 (1993).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Dykes-Hoberg, L.J. Martin, A.I. Levey, D. Rye, N. Nash, L. Jin, R.W. Kuncl, and J.D. Rothstein, Cellular and ultrastructural localization of glutamate transporter subtypes in rat and human brain, Neurosci. Abstr. 20:927 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Loreta Medina
    • 1
  • Griselle Figueredo-Cardenas
    • 1
  • J. D. Rothstein
    • 2
  • Anton Reiner
    • 1
  1. 1.Department of Anatomy and NeurobiologyUniversity of TennesseeMemphisUSA
  2. 2.Department of NeurologyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations