Advertisement

Intracellular Signalling in Glutamate Excitotoxicity

  • Ian J. Reynolds
  • Kari R. Hoyt
  • R. James White
  • Amy K. Stout
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)

Abstract

The excitatory neurotransmitter glutamate is a potent and effective neurotoxin. When applied in vitro, a. brief exposure to a moderate concentration of glutamate is sufficient to kill neurons.1,2 In vivo, glutamate-induced neuronal injury probably contributes to damage that results from cerebrovascular accidents and trauma.2–4 A number of important studies have characterized the temporal and pharmacological characteristics of glutamate excitotoxicity in vitro.5–6 It is now clear that glutamate-induced activation of N-methyl-D-aspartate (NMDA) receptors for about 5 minutes is sufficient to kill neurons, and that death is expressed within 24 hours of glutamate application. Activation of non-NMDA receptors by, for example, kainate requires exposures of more than 30 minutes; death ensues over a similar time frame.

Keywords

NMDA Receptor Neuronal Injury NMDA Receptor Activation Glutamate Excitotoxicity Glutamate Neurotoxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.M. Rothman and J.W. Olney, Excitotoxicity and the NMDA receptor, Trends Neurosci., 10:299 (1987).CrossRefGoogle Scholar
  2. 2.
    D.W. Choi, Glutamate neurotoxicity and diseases of the nervous system, Neuron, 1:623 (1988).PubMedCrossRefGoogle Scholar
  3. 3.
    B.S. Meldrum and J. Garthwaite, Excitatory amino acid neurotoxicity and neurodegenerative disease, Trends Pharmacol. Sci., 11:379 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Benveniste, The excitotoxin hypothesis in relation to cerebral ischemia, Cerebrovasc. Brain Metab. Rev., 3:213 (1991).PubMedGoogle Scholar
  5. 6.
    D.W. Choi, M. Maulucci-Gedde and A.R. Kriegstein, Glutamate neurotoxicity in cortical cell culture, J. Neurosci., 7:357 (1987).PubMedGoogle Scholar
  6. 7.
    D.W. Choi, Ionic dependence of glutamate neurotoxicity, J. Neurosci., 7:369 (1987).PubMedGoogle Scholar
  7. 8.
    M.L. Mayer and G.L. Westbrook, Cellular mechanisms underlying excitotoxicity, Trends Neurosci., 10:59 (1987).CrossRefGoogle Scholar
  8. 9.
    B.K. Siesjo and T. Wieloch, Cerebral metabolism in ischemia: neurochemical basis for therapy, Br. J. Anaesth., 57:47 (1985).PubMedCrossRefGoogle Scholar
  9. 10.
    E.D. Hall and J.M. Braughler, Central nervous system trauma and stroke: II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation, Free Radic. Biol. Med., 6:303 (1989).PubMedCrossRefGoogle Scholar
  10. 11.
    M.E. Götz, G. Künig, P. Riederer and M.B.H. Youdim, Oxidative stress: Free radical production in neural degeneration, Pharmacol. Ther., 63:37 (1994).PubMedCrossRefGoogle Scholar
  11. 12.
    S.M. Rothman, K.A. Yamada and N. Lancaster, Nordihydroguaiaretic acid attenuates NMDA neurotoxicity—Action beyond the receptor, Neuropharmacology, 32:1279 (1993).PubMedCrossRefGoogle Scholar
  12. 13.
    V.L. Dawson, T.M. Dawson, E.D. London, D.S. Bredt and S.H. Snyder, Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures, Proc. Natl. Acad. Sci. USA, 88:6368 (1991).PubMedCrossRefGoogle Scholar
  13. 14.
    H. Manev, M. Favaron, A. Guidotti and E. Costa, Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death, Mol. Pharmacol., 36:106 (1989).PubMedGoogle Scholar
  14. 15.
    L.-Y. Wang, B.A. Orser, D.L. Brautigan and J.F. MacDonald, Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2A, Nature, 369:230 (1994).PubMedCrossRefGoogle Scholar
  15. 16.
    Y.T. Wang and M.W. Salter, Regulation of NMDA receptors by tyrosine kinases and phosphatases, Nature, 369:233 (1994).PubMedCrossRefGoogle Scholar
  16. 17.
    D.N. Lieberman and I. Mody, Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase, Nature, 369:235 (1994).PubMedCrossRefGoogle Scholar
  17. 18.
    M. Tymianski, M.P. Charlton, P.L. Carlen and C.H. Tator, Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons, J. Neurosci., 13:2085 (1993).PubMedGoogle Scholar
  18. 19.
    S. Rajdev and I.J. Reynolds, Glutamate-induced intracellular calcium changes and neurotoxicity in vitro: effects of chemical ischemia, Neuroscience, 62:667 (1994).PubMedCrossRefGoogle Scholar
  19. 20.
    J.B. Brocard, S. Rajdev and I.J. Reynolds, Glutamate induced increases in intracellular free Mg2+ in cultured cortical neurons, Neuron, 11:751 (1993).PubMedCrossRefGoogle Scholar
  20. 21.
    D.M. Hartley, M.C. Kurth, L. Bjerkness, J.H. Weiss and D.W. Choi, Glutamate receptor-induced 45Ca2+ accumulation in cortical culture correlates with subsequent neuronal degeneration, J. Neurosci., 13:1993 (1993).PubMedGoogle Scholar
  21. 22.
    S. Eimerl and M. Schramm, The quantity of calcium that appears to induce neuronal death, J. Neurochem., 62:1223 (1994).PubMedCrossRefGoogle Scholar
  22. 23.
    K.A. Hartnett, S. Rajdev, P.A. Rosenberg, E. Aizenman and I.J. Reynolds, A paradoxical requirement for extracellular Mg2+ in glutamate toxicity, Soc. Neurosci., 19:1344 (1993).Google Scholar
  23. 24.
    R. Vink, T.K. McIntosh and A.I. Faden, Mg2+ in neurotrauma: its role and therapeutic implications, in: “Mg2+ and excitable membranes,” P. Strata and E. Carbone (Eds.) Springer-Verlag, Berlin, (1991).Google Scholar
  24. 25.
    R.J. White and I.J. Reynolds, Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons, J. Neurosci., 15:1318 (1995).PubMedGoogle Scholar
  25. 26.
    D.A. Cox, L. Conforti, N. Sperelakis and M.A. Matlib, Selectivity of inhibition of Na+-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157, J. Cardiovasc. Pharmacol., 21:595 (1993).PubMedCrossRefGoogle Scholar
  26. 27.
    D.A. Cox and M.A. Matlib, Modulation of intramitochondrial free Ca2+ concentration by antagonists of Na+-Ca2+ exchange, Trends Pharmacol. Sci., 14:408 (1993).PubMedCrossRefGoogle Scholar
  27. 28.
    S.A. Thayer and R.J. Miller, Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro, J. Physiol., 425:85 (1990).PubMedGoogle Scholar
  28. 29.
    B. Halliwell, Reactive oxygen species in the central nervous system, J. Neurochem., 59:1609 (1992).PubMedCrossRefGoogle Scholar
  29. 30.
    I.J. Reynolds and T.G. Hastings, Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation, J. Neurosci., 15:3318 (1995).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ian J. Reynolds
    • 1
  • Kari R. Hoyt
    • 1
  • R. James White
    • 1
  • Amy K. Stout
    • 1
  1. 1.Department of PharmacologyUniversity of PittsburghPittsburghUSA

Personalised recommendations