Advertisement

Eicosanoids pp 37-44 | Cite as

Assessment of Pharmacological Inhibition of PGH-Synthases in Man

  • P. Patrignani
  • M. R. Panara
  • F. Cipollone
  • G. Santini
  • M. G. Sciulli
  • M. T. Rotondo
  • R. Padovano
  • M. di Giamberardino
  • C. Patrono
Chapter
Part of the NATO ASI Series book series (NSSA, volume 283)

Abstract

The conversion of arachidonic acid to prostaglandin(PG)H2 is catalyzed by PG-endoperoxide synthase (PGHS) which exhibits both cyclooxygenase and peroxidase activities (DeWitt, 1991). PGH2 is further metabolized by other enzymes to various prostanoids (PGs, prostacyclin and thromboxane A2). Two isozymes of PGHS are known, referred to as PGHS-1 and PGHS-2 (Smith, 1992). PGHS-1 is a constitutive enzyme present in almost all cell types (Simmons et al., 1991). Thus, PGHS-1 is the major isoform of gastrointestinal tissue (DeWitt & Smith, 1988). Prostanoid production by PGHS-1 is involved in physiological functions such as vascular homeostasis, control of kidney function and gastric cytoprotection (Smith, 1992). PGHS-2 is induced in a more restricted cell-specific fashion by mitogenic and inflammatory stimuli (Kujubu et al., 1991; Fletcher et al., 1992; O’Banion et al., 1992; Lee et al., 1992; O’Sullivan et al., 1992a; O’Sullivan et al., 1992b; Hempel et al., 1994; Patrignani et al., 1994).

Keywords

Cyclooxygenase Activity Prostaglandin Endoperoxide Inducible Cyclooxygenase Prostanoid Biosynthesis Instantaneous Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blower, P.R., 1992, The unique pharmacological profile of nabumetone. J. Rheumatol 19(suppl. 36): 13–19.Google Scholar
  2. Boyle, E.A., Freeman, P.C., Mangan, F.R., and Thomson, M.J., 1982, Nabumetone (BRL 14777, 4-[6-methoxy-2-napthyl]-butan-2-one); a new anti-inflammatory agent. J. Pharm. Pharmacol. 34:562–569.PubMedCrossRefGoogle Scholar
  3. Catella, R, and FitzGerald, G.A., 1987, Paired analysis of urinary thromboxane B2 metabolites in humans. Thromb. Res. 47:647–656.PubMedCrossRefGoogle Scholar
  4. Chan, C.-C., Boyce, S., Brideau, C., Ford-Hutchinson. A.W., Gordon, R., Guay, D., Hill, R., Li, C-S., Mancini, J., Penneton, M., Prasit, P., Rasori, R., Riendeau, D., Roy, P., Tagari, P., Vickers, P., Wong, E., and Rodger, I.W., 1995, Pharmacology of a selective cyclooxygenase-2 inhibitor L-745,337: a novel non-steroidal antiinflammatory agent with an ulcerogenic sparing effect in rat and non-human primate stomach. J. Pharmacol. Exp. Ther. in press.Google Scholar
  5. Chan, C.-C., Gordon, R., Brideau, C., Rodger, I.W., Li, C.-S., Prasit, P., Tagari, P., Ethier, D., Vickers, P., Boyce, S., Rupniak, N., Webb, J., Hill, R., and Ford-Hutchinson, A.W., 1994, In vivo Pharmacology of L-745,337: A novel non steroidal antiinflammatory agent (NSAID) with an ulcerogenic sparing effect in rat and monkey stomach. Can. J. Physiol. Pharm. 72 (Suppl. 1):266, (abstract).Google Scholar
  6. Cipollone, C., Ganci, A., Panara, M.R., Greco. A., Cuccurullo, F., Patrono, C., Patrignani, P., 1995, Effects of nabumetone on prostanoid biosynthesis in man, Clin. Pharm. Ther. in press.Google Scholar
  7. Copeland, R.A., Williams, J.M., Giannaras, J., Nurnberg, S., Covington, M., Pinto, D., Pick, S., and Trzaskos, J.M., 1994, Mechanism of selective inhibition of the inducible isoform of prostaglandin G/H synthase. Proc. Natl. Acad. Sci. USA 91:11202–11206.PubMedCrossRefGoogle Scholar
  8. Davi, G., Catalano, I., Averna, M., Notarbartolo, A., Strano, A., Ciabattoni, G., and Patrono, C., 1990, Thromboxane biosynthesis and platelet function in type-II diabetes mellitus. N. Engl. J. Med. 322:1769–1776.PubMedCrossRefGoogle Scholar
  9. Davi, G., Notarbartolo, A., Catalano, I., Averna, M., Barbagallo, C., Ciabattoni, G., and Patrono, C., 1992, Increased thromboxane biosynthesis in type IIa hypercholesterolemia. Circulation 85:1792–1797.PubMedCrossRefGoogle Scholar
  10. DeWitt, D.L., 1991, Prostaglandin endoperoxide synthase: regulation of enzyme expression. Biochim. Biophys. Acta 1083:121–134.PubMedCrossRefGoogle Scholar
  11. DeWitt, D.L., Meade, E.A., and Smith, W.L., 1993, PGH synthase isozyme selectivity: the potential for safer nonsteroidal antiinflammatory drugs. Am. J. Med. 95(suppl. 2A):40S–44S.PubMedCrossRefGoogle Scholar
  12. DeWitt, D.L., and Smith, W.L., 1988, Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc. Natl. Acad. Sci. USA 85:1412–1416.PubMedCrossRefGoogle Scholar
  13. Emery, P., Clarke, A., Williams, P., Kill, D., Cree, P., Redhead, R., and Poland, M., 1992, Nabumetone compared with Naproxen in the treatment of rheumatoid arthritis: a multicenter, double blind, randomized, parallel group trial in hospital outpatients. J. Rheumatol. 19(suppl. 36):41–47.Google Scholar
  14. Fletcher, B.S., Kujubu, D.A., Perrin, D.M., and Herschman, H.R., 1992, Structure of the mitogen-inducible TIS10 gene and demonstration that the TIS10-encoded protein is a functional prostaglandin G/H synthase. J. Biol. Chem. 267:4338–4344.PubMedGoogle Scholar
  15. Futaki, N., Takahashi, S., Yokoyama, M., Arai, I., Higuchi, S., and Otomo, S., 1994, NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins 47:55–59.PubMedGoogle Scholar
  16. Futaki, N., Yoshikawa, K., Hamasaka, Y., Arai, I., Higuchi, S., Iizuka, H., and Otomo, S., 1993, NS-398, a novel non-steroidal anti-inflammatory drug with potent analgesic and antipyretic effects, which causes minimal stomach lesions. Gen. Pharmacol. 24:105–110.PubMedCrossRefGoogle Scholar
  17. Goudie, A.C., Gaster, L.M., Lake, A.W., Rose, C.J., Freeman, P.C., Hughes, B.O., and Miller, D., 1978, 4-(6-methoxy-2-napthyl)butan-2-one and related analogues, a novel structural class of antiinflammatory compounds. J. Med. Chem. 21:1260–1264.PubMedCrossRefGoogle Scholar
  18. Hempel, S.L., Monick, M.M., and Hunninghake, G.W., 1994, Lypopolysaccharide induces prostaglandin H synthase-2 protein and mRNA in human alveolar macrophages and blood monocytes. J. Clin. Invest. 93:391–396.PubMedCrossRefGoogle Scholar
  19. Hyneck, M.L., 1992, An overview of the clinical pharmacokinetics of nabumetone. J. Rheumatol. 19(suppl. 36):20–24.Google Scholar
  20. Jones, D.A., Carlton, D.P., McIntyre, T.M., Zimmerman, G.A., and Prescott, S.M., 1993, Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J. Biol. Chem. 268:9049–9054.PubMedGoogle Scholar
  21. Koudstaal, P.J., Ciabattoni, G., Van Gijn, Nieuwenhuis, H.K., De Groot, P., Sixma, J.J., and Patrono, C., 1993, Increased thromboxane biosynthesis in patients with acute cerebral ischemia. Stroke 24:219–22.PubMedCrossRefGoogle Scholar
  22. Kutchera, W.A., Jones, D.A., Maclouf, J., Zimmerman, G.A., McIntyre, T.M., and Prescott, S.M., 1993, Regulation of expression of prostaglandin H synthase in human endothelial cells and macrophages. Ciculation 88(Part 2):I–621 (abstract).Google Scholar
  23. Kujubu, D.A., Fletcher, B.S., Varnum, B.C., Lim, R.W., and Hershman, H.R., 1991, TIS10, aprobol ester tumor promoter inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J. Biol Chem. 268:9049–9054.Google Scholar
  24. Laneuville, O., Breuer, D.K., DeWitt, D.L., Hla, T., Funk, C.D., and Smith, W.L., 1994, Differential inhibition of human prostaglandin endoperoxide H synthase-1 and-2 by nonsteroidal antiinflammatory drugs. J. Pharmacol Exp. Ther. 271:927–934.PubMedGoogle Scholar
  25. Lee, S.H., Soyoola, E., Chanmugam, P., Hart, S., Sun, W., Zhong, H., Liou, S., Simmons, D., and Hwang, D., 1992, Selective expression of mitongen-inducible cyclooxygenase in macrophages stimulated with lypopolysaccharide. J. Biol. Chem. 25934-25938.Google Scholar
  26. Lister, B.J., Poland, M., and Delapp, R.E., 1993, Efficacy of Nabumetone versus Diclofenac, Naproxen, Ibuprofen, and Piroxicam in Osteoarthritis and Rheumatoid Arthritis. Am. J. Med. 95(suppl. 2A):3S–9S.Google Scholar
  27. Masferrer, J.L., Zweifel, B.S., Manning, P.T., Hauser, S.D., Leahy, K.W., Smith, W.G., Isakson, P.C., and Seibert, K., 1994, Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. USA. 91:3228–3232.PubMedCrossRefGoogle Scholar
  28. Meade, E.A., Smith, W.L., DeWitt, D.L., 1993, Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J. Biol Chem. 268:6610–6614.PubMedGoogle Scholar
  29. Mitchell, J.A., Akarasereenont, P., Thiemermann, C., Flower, R.J., and Vane, J.R., 1993, Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl. Acad. Sci. USA. 90:11693–11697.PubMedCrossRefGoogle Scholar
  30. O’Banion, M.K., Winn, V.D., and Yung, D.A., 1992, cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. Proc. Natl. Acad. Sci. USA. 89:4888–4892.PubMedCrossRefGoogle Scholar
  31. O’Sullivan, M.G., Chilton, F.H., Huggins, E.M., and McCall, C.E., 1992a, Lipopolysaccharide priming of alveolar macrophages for enhanced synthesis of prostanoids involves induction of a novel prostaglandin H synthase. J. Biol Chem. 267:14547–14550.PubMedGoogle Scholar
  32. O’Sullivan, M.G., Huggins, E.M., Meade, E.A., DeWitt, D.L., and McCall, C.E., 1992b, Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages. Biochim. Biophys. Res. Commun. 187:1123–1127.CrossRefGoogle Scholar
  33. Panara, M.R., Greco, A., Santini, G., Sciulli, M.G., Rotondo, M.T., Padovano, R., di Giamberardino, M., Cipollone, F., Cuccurullo, F., Patrono, P., and Patrignani, P., 1995, Effects of novel antiinflammatory Compounds NS-398 and L-745,337 on the cyclooxygenase activity of human blood prostaglandin endoperoxide synthase. Br. J. Pharmac., in press.Google Scholar
  34. Patrignani, P., Filabozzi, P., and Patrono, C., 1982, Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J. Clin. Invest. 69:1366–1372.PubMedCrossRefGoogle Scholar
  35. Patrignani, P., Panara, M.R., Greco, A., Fusco, O., Natoli, C., Iacobelli, S., Cipollone, F., Ganci, A., Créminon, C., Maclouf, J., and Patrono, C., 1994, Biochemical and pharmacological characterization of the cyclooxygenase activity of human blood prostaglandin endoperoxide synthases. J. Pharmacol Exp. Then 271:1705–1712.Google Scholar
  36. Patrono, C., Ciabattoni, G., Patrignani, P., Pugliese, F., Filabozzi, P., Catella, F., Davi, G., and Forni, L., 1985, Clinical pharmacology of platelet cyclooxygenase inhibition. Circulation 72:1177–1184.PubMedCrossRefGoogle Scholar
  37. Patrono, C., Ciabattoni, G., Pinea, E., Pugliese, F., Castrucci, G., De Salvo, A., Satta, M.A., and Peskar, B.A., 1980, Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb. Res. 17:317–327.PubMedCrossRefGoogle Scholar
  38. Roth, G.J., Stanford, N., and Majerus, P.W., 1975, Acetylation of prostaglandin synthase by aspirin. Proc. Natl. Acad. Sci. USA. 72:3073–3076.PubMedCrossRefGoogle Scholar
  39. Simmons, D.L., Xie, W., Chipman, J.G., and Evett, G.E., 1991, Multiple cyclooxygenases: cloning of a mitogen-inducuble form. In: Prostaglandins, Leukotrienes, Lipoxins, and PAF, ed. Bailey J.M., pp. 67–68. New York: Plenum Press.CrossRefGoogle Scholar
  40. Smith, W.L., 1992, Prostanoid biosynthesis and mechanisms of action. Am. J. Physiol 263:F181–F191.PubMedGoogle Scholar
  41. Vane, J.R., 1971, Inhibition of prostaglandins as a mechanism of action for aspirin-like drugs. Nature New Biol. 231:232–235.PubMedGoogle Scholar
  42. Vane, J.R., 1994, Towards a better aspirin. Nature 367:215–216.PubMedCrossRefGoogle Scholar
  43. Von Schrader, H.W., Busher, G., Dierdorf, D., Mugge, H., and Wolf, D., 1984, Nabumetone, a novel anti-inflammatory drug: bioavailability after different dosage regimens. Int. J. Clin. Pharmacol. Ther. Toxicol. 22:672–676.Google Scholar
  44. Vejar, M., Fragasso, G., Lipkin, D.P., Maseri, A., Born, G.V.R., Ciabattoni, G., and Patrono, C., 1990, Dissociation of platelet activation and spontaneous myocardial icshemia in unstable angina. Thromb. Haemostas. 63:163–8.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • P. Patrignani
    • 1
  • M. R. Panara
    • 1
  • F. Cipollone
    • 1
  • G. Santini
    • 1
  • M. G. Sciulli
    • 1
  • M. T. Rotondo
    • 1
  • R. Padovano
    • 1
  • M. di Giamberardino
    • 1
  • C. Patrono
    • 1
  1. 1.Departments of Pharmacology and MedicineUniversity of Chieti “G. D’Annunzio” School of MedicineChietiItaly

Personalised recommendations