Advertisement

Eicosanoids pp 195-204 | Cite as

Leukotriene Synthesis (FLAP) Inhibition: Biochemistry and Pharmacology of Bay X 1005

  • R. Müller-Peddinghaus
  • R. Kast
Chapter
Part of the NATO ASI Series book series (NSSA, volume 283)

Abstract

Leukotrienes have been recognized as mediators of inflammatory allergic diseases of the lung (22). Consequently, antileukotriene therapy appears to be nearly established as novel pharmacotherapy of allergic asthma (15, 31). Cysteinyl-leukotrienes (LTC4, LTD4, LTE4) appear to have considerable pathophysiological importance in allergie asthma, because functional lung parameters improve with antileukotriene therapy after LTD4 challenge, antigen provocation, cold air exposure, exercise-induced asthma, and even aspirin-induced asthma (22, 24, 46). Effective antileukotriene therapy comprises various LTD4 receptor antagonists (LTD4ra) and 5-lipoxygenase (5-LOX) inhibitors (15, 22). 5-LOX inhibitors can be differentiated into the direct 5-LOX inhibitors (LOI) and FLAP (Five Lipoxygenase Activating Protein) binding leukotriene synthesis inhibitors (LSI) (Figure 1).

Keywords

LTB4 Receptor Human PMNL LTD4 Receptor Antagonist Antileukotriene Therapy Five Lipoxygenase Activate Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramovitz M., Wong E., Cox E. M., Richardson C.D., Li C., and Vickers P.J., 1993, 5-lipoxygenase-ac-tivating protein stimulates the utilization of arachidonic acid by 5-lipoxygenase, Eur. J. Biochem. 215: 101–111.CrossRefGoogle Scholar
  2. 2.
    Barnes P.J., 1992, New aspects of asthma, J. Internal Med. 231: 453–461.PubMedCrossRefGoogle Scholar
  3. 3.
    Bell, R.L., Young, R.R., Albert D., Lanni C., Summers J.B., Brooks D.W., Rubin P. and Carter G.W., 1992, The discovery and development of zileuton: an orally active 5-lipoxygenase inhibitor, Int. J. Immunopharmac. 14: 505–510.CrossRefGoogle Scholar
  4. 4.
    Capriotti A.M., Furth E.E., Arrasmith M.E., and Laposata M., 1988, Arachidonate released upon agonist stimulation preferentially originates from arachidonate most recently incorporated into nuclar membrane phospholipids, J. Biol Chem. 263: 10029–10034.PubMedGoogle Scholar
  5. 5.
    Carter G.W., Young P.R., Albert D.H., Bouska J., Dyer R., Bell R.L., Summers J.B., Brooks D.W., 1991, 5-lipoxygenase inhibitory activity of zileuton, J. Pharmacol. Exp. Ther. 256: 929–937.PubMedGoogle Scholar
  6. 6.
    Chen X.-S., Sheller J.R., Johnson E.N. and Funk C.D., 1994, Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene, Nature 372: 179–182.PubMedCrossRefGoogle Scholar
  7. 7.
    Courts S.M., Khandwala A., van Inwegen R., Chakraborty U., Musser J., Bruens J., Jariwala N., Dally-Meade V., Ingram R., Pruss T., Jones H., Neiss E., and Weinryb I., 1985, Arymethyl Phenyl Ethers. Anew class of specific inhibitors of 5-lipoxygenase. In: Bailey J.M. (ed.) Prostaglandins, Leukotrienes, and Lipoxins. Biochemistry, mechanism of action, and clinical applications. Plenum Press. New York and London, 627–637.Google Scholar
  8. 8.
    Dahlén S.E., Dahlén B., Ihre E., Kumiin M., Franzén L., Stensvad F., Larsson C., Blonqvist H., Björck T. and Zettelström O., 1993, The leukotriene biosynthesis inhibitor BAX X 1005 is a potent inhibitor of allergen-induced airway obstruction and leukotriene formation in man, Am. Rev. Resp. Dis. 147: A837.Google Scholar
  9. 9.
    Dixon R.A.F., Diehl R.E., Opas E., Rands E., Vickers P.J., Evans J.F., Gillard J.W. and Miller D.K., 1990, Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis, Nature 343: 282–284.PubMedCrossRefGoogle Scholar
  10. 10.
    Evans J.F., Leblanc Y., Fitzsimmons B.J., Charleson S., Nathaniel D. and Léveillé C., 1987, Activation of leukocyte movement and displacement of [3H] leukotriene B4 from leukocyte membrane preparations by (12R)-and (12S)-hydroxy-eicosatetraenoic acid, Biochim. Biophys. Acta 917: 406–410.PubMedCrossRefGoogle Scholar
  11. 11.
    Evans J.F., Léveillé C., Mancini J.A., Prasit P., Thérien M., Zamboni R., Gauthier J.Y., Fortin R., Charleson Pl, Macintyre D.U., Luell S., Bach T.J. Meurer R. Guay J. Vickers P.J., Rouzer C.A., Gillard J.W., and Miller D.K., 1991, 5-lipoxyge-nase-activating protein is the target of a quinoline class of leukotriene synthesis inhibitors, Mol. Pharmacol. 40: 22–27.PubMedGoogle Scholar
  12. 12.
    Fischer A.R., Drazen J.M., Roth M., Rosenberg M.A., Loper M., Jungerwirth S., and Israel E., 1994, The effect of a leukotriene synthesis inhibitor, BAY X 1005 on bronchoconstriction induced by cold, dry air hyperventilation in asthmatics, Am. J. Resp. Crit. Care Med. 149: A1056.Google Scholar
  13. 13.
    Ford-Hutchinson A.W., 1993, 5-lipoxygenase activation in psoriasis: a dead issue?, Skin Pharmacol. 6: 292–297.PubMedCrossRefGoogle Scholar
  14. 14.
    Fruchtmann R., Mohrs K.-H., Hatzelmann A., Raddatz S., Fugmann B., Junge B., Horstmann H. and Müller-Peddinghaus R., 1993, In vitro pharmacology of BAY X 1005, a new inhibitor of leukotriene synthesis, Agents Actions 38: 188–195.PubMedCrossRefGoogle Scholar
  15. 15.
    Gardiner P.J., 1989, Inhibitors of the biosynthesis or actions of the leukotrienes, Asthma Rev. 2: 75–124.Google Scholar
  16. 16.
    Gardiner P.J., Cuthbert N.J., Francis H.P., Fitzgerald M.F., Thompson A.M., Carpenter T.G., Patel U.P., Newton B.B., Mohrs K., Müller-Peddinghaus R., Taylor W.A., 1994, Inhibition of antigen-induced contraction of guinea-pig airways by a leukotriene synthesis inhibitor, BAY X 1005, Europ. J. Pharmacol. 258: 95–102.CrossRefGoogle Scholar
  17. 17.
    Gorenne I., Labat C., Gascard J.P. Norel X., Müller-Peddinghaus R., Mohrs K.H., Taylor W.A., Gardiner P.J., and Brink C., 1993, (R)-2-[4-(quinolin-2-yl-methoxy) phenyl]-2-cyclopentyl] acetic acid (BAY x1005), a potent leukotriene synthesis inhibitor: effects of anti-IgE challenge in human airways, J. Pharmacol Exp. Therap. 268: 868–872.Google Scholar
  18. 18.
    Hatzelmann A., Fruchtmann R., Mohrs K.H. Raddatz S. and Müller-Peddinghaus R., 1993, Mode of action of the new selective leukotriene synthesis inhibitor BAY X 1005 {(R)-2-[4-(quinolin-2-yl-methoxy) phenyl]-2-cyclopentyl acetic acid} and structurally related compounds, Biochem. Pharmacol. 45: 101–111.PubMedCrossRefGoogle Scholar
  19. 19.
    Hatzelmann A., Goossens J., Fruchtmann R., Mohrs, K.H., Raddatz S., and Müller-Peddinghaus R., 1994, Inversely-correlated inhibition of human 5-lip-oxygenase activity by BAY X 1005 and other quinoline derivatives in intact cells and a cell-free system-implications for the function of 5-lipoxygenase activating protein, Biochem. Pharmacol. 47: 2259–2268.PubMedCrossRefGoogle Scholar
  20. 20.
    Hatzelmann A., Fruchtmann R., Mohrs K.H., Raddatz S., Matzke M., Pleiss U., Keldenich J. and Müller-Peddinghaus R., 1994, Mode of action of the leukotriene synthesis (FLAP) inhibitor BAY X 1005: implications for biological regulation of 5-lipoxygenase, Agents Actions 43: 64–68.PubMedCrossRefGoogle Scholar
  21. 21.
    Hatzelmann A., Fruchtmann R., Mohrs K.-H., Raddatz S. and Müller-Peddinghaus R., 1994, Ca2+ ionophore A23187-stimulated secretion of azurophil granules in human polymorphonuclear leukocytes is largely mediated by endogenously formed leukotriene B4, Biochem. Pharmacol. 48: 32–39.CrossRefGoogle Scholar
  22. 22.
    Henderson Jr. W.R., 1994, The role of leukotrienes in inflammation, Ann. Intern. Med. 121: 684–697.PubMedCrossRefGoogle Scholar
  23. 23.
    Hill E., Maclouf J., Murphy R.C., and Henson P.M., 1992, Reversible membrane association of neutrophil 5-lipoxygenase is accompanied by retention of activity and a change in substrate specificity, J. Biol. Chem. 267: 22048–22053.PubMedGoogle Scholar
  24. 24.
    Israel E., Dermarkarian R., Rosenberg M., Sperling R., Taylor G., Rubin P. and Drazen J.M., 1990, The effects of a 5-lipoxygenase inhibitor on asthma induced by cold, dry air, New England J. Med. 323: 1740–1744.CrossRefGoogle Scholar
  25. 25.
    de Jong E.M.G.J., van Vlijmen I.M.M.J., Schölte J.C.M. Buntinx A., Friedman B., Tanaka W., van de Kerkhof P.C.M., 1991, Clinical and biochemical effects of an oral leukotriene biosynthesis inhibitor (MK886) in psoriasis, Skin Pharmacol. 4: 278–285.PubMedCrossRefGoogle Scholar
  26. 26.
    Kargman S., Vickers P.J., and Evans J.F., 1992, A23187-induced translocation of 5-lipoxygenase in osteosarcoma cells, J. Cell Biol. 119: 1701–1709.PubMedCrossRefGoogle Scholar
  27. 27.
    Kast R., Fruchtmann R., Kupferschmidt R., Mohrs K.H., Raddatz S., Müller-Peddinghaus R., and Hatzelmann A., 1994, Role of 5-lipoxygenase-activating protein in the regulation of 5-lipoxygenase activity in human neutrophils, Agents Actions 41: C166–0168.CrossRefGoogle Scholar
  28. 28.
    Kreisle R.A., Parker C.W., Griffin G.L., Senior R.M., and Stenson W.F., 1985, Studies of leukotriene B4-specific binding and function in rat polymorpho-nuclear leukocytes: absence of a chemotactic response, J. Immunology 134: 3356–3362.Google Scholar
  29. 29.
    Lagarde M., Gualde N. and Rigaud M., 1989, Metabolic interactions between eicosanoids in blood and vascular cells, Biochem J. 257: 313–320.PubMedGoogle Scholar
  30. 30.
    Lam B.K., Penrose J.F., Freeman G.J., and Austen K.F., 1994, Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4, Proc. Natl. Acad. Sci. USA 91: 7663–7667.PubMedCrossRefGoogle Scholar
  31. 31.
    Larsen J.S. and Acosta E.P., 1993, Leukotriene-receptor anta-gonists and 5-lipoxygenase inhibitors in asthma, Ann. Pharmacother. 27: 898–903.PubMedGoogle Scholar
  32. 32.
    Laursen L.S., Naesdal. J. Bukhave K., Lauritsen K., Rask-Madsen J., 1990, Selective 5-lipoxygenase inhibition in ulcerative colitis, Lancet 335: 683–685.PubMedCrossRefGoogle Scholar
  33. 33.
    Malaviya R., Malaviya R., and Jakschik B.A., Reversible trans-location of 5-lipoxygenase in mast cells upon IgE/antigen Stimulation, 1993, J. Biol Chem. 268: 4949–4944.Google Scholar
  34. 34.
    Mancini J.A., Abramovitz M., Cox M.E., Wong E., Charleson S., Perrier H., Wang Z., Prasit P. and Vickers P.J., 1993, 5-lipogygenase-activating protein is an arachidonate binding protein, FEBS Letters 318: 277–281.PubMedCrossRefGoogle Scholar
  35. 35.
    Matzke M., Beckermann B., Fruchtmann R., Fugmann B., Gardiner P.J., Goossens J., Hatzelmann A., Junge B., Keldenich J., Kohlsdorfer C., Mohrs K.-H., Müller-Peddinghaus R., Raddatz S., 1994, Leukotriene synthesis inhibitors of the quinoline type: parameters for the optimization of efficacy, Proceedings XIIIth Interna-tional Symposium on Medicinal Chemistry, September 1994, Paris.Google Scholar
  36. 36.
    McColl S.R., Krump E., Naccache P.H., Caon A.C. and Borgeat P., 1989, Activation of the human neutrophil 5-lipoxygenase by exogenous arachidonic acid: involvement of pertussis toxin-sensitive guanine nucleotide-binding proteins, Br. J. Pharmacol. 97: 1265–1273.PubMedCrossRefGoogle Scholar
  37. 37.
    McMillan R.M. and Walker E.R.H., 1992, Designing therapeutically effective 5-lipoxygenase inhibitors, TIPS 13: 323–330.PubMedGoogle Scholar
  38. 38.
    McMillan R.M., Spruce K.E., Crawley G.C., Walker E.R.H. and Foster S.J., 1992, Pre-clinical pharmacology of ICI D2138, a potent orally-active non-redox inhibitor of 5-lipoxygenase, Br. J. Pharmacol. 107: 1042–1047.PubMedCrossRefGoogle Scholar
  39. 39.
    Meltzer S.S., Johns M.A., Rechsteiner E.A., Jungerwirth S., D’Amico J.M., Bleecker E.R., 1994, Bronchodilatory effects of BAY X 1005, a 5-lipoxygenase inhibitor in mild to moderate asthma, J. Allergy Clin. Immunol 93: 294, 792.Google Scholar
  40. 40.
    Miller D.K., Gillard J.W., Vickers P.J., Sadowski S., Léveillé C., Mancini J.A., Charleson P., Dixon R.A.E, Ford-Hutchinson A.W., Fortin R., Gauthier J.Y., Rodkey J., Rosen R., Rouzer C., Sigal I.S., Strader C.D. and Evans J.F., 1990, Identification and isolation of a membrane protein necessary for leukotriene production, Nature 343: 278.PubMedCrossRefGoogle Scholar
  41. 41.
    Müller-Peddinghaus R., Fruchtmann R., Hatzelmann A., Kohlsdorfer C., Theisen-Popp P., and Horstmann H., 1991, Preclinical inflammatory pharmacology of leukotriene synthesis inhibitors. Hurdles and Perspectives. In: Hedqvist P., Kalden J.R., Müller-Peddinghaus R., Robinson D.W., eds. Trends ins RA-Research. Adv. Rheumatol Inflammation Vol. 1, Eular Publishers, Basel, 109–206.Google Scholar
  42. 42.
    Müller-Peddinghaus R., Malorny U., Kohlsdorfer C., Theisen-Popp P. and Sorg C., 1992, Acute inflammation in the mouse skin to study leukocyte infiltration and the influence of leukotriene synthesis inhibition. In: Müller-Peddinghaus R., ed. Leukotrienes and vascular phenomena of inflammation related to rheumatoid arthritis, Adv. Rheumatol. Inflammation Vol. 1, Eular Publishers, Basel, 73–82.Google Scholar
  43. 43.
    Müller-Peddinghaus R., Kohlsdorfer C., Theisen-Popp P., Fruchtmann R., Perzborn E., Beckermann B., Bühner K., Ahr H.-J. and Mohrs K.-H., 1993, BAY X 1005, a new inhibitor of leukotriene synthesis: in vivo inflammation pharmacology and pharmacokinetics, J. Pharmacol Exp. Ther. 267: 51–57.PubMedGoogle Scholar
  44. 44.
    Müller-Peddinghaus R., Kast R., Hatzelmann A., Gardiner P.J., 1993, Preclinical pharmacology of the FLAP (Five Lipoxygenase Activating Protein)-binding leukotriene synthesis inhibitor BAY X 1005. Proceedings of the Key West Workshop. Advances in understanding and treatment of asthma and COPD, December 1-2, 1993.Google Scholar
  45. 45.
    Musser J.H. and Kreft A., 1992, 5-lipoxygenase: properties, pharmacology, and the quinolinyl(bridged)aryl class of inhibitors, J. Med. Chem. 35: 2501–2524.PubMedCrossRefGoogle Scholar
  46. 46.
    Nasser S.M.S., Bell G.S., Hawksworth R.J., Spruce K.E., MacMillan R., Williams A.J., Lee T.H., Arm J.P., 1994, Effect of the 5-lipoxygenase inhibitor ZD2138 on allergen-induced early and late asthmatic responses, Thorax 49: 743–748.PubMedCrossRefGoogle Scholar
  47. 47.
    Newsholme S.J., Griswold D.E. and Schwartz L., Conjunctival leukocyte infiltration evoked by leukotrienes: differing responses among rodent species, 1994, J. Lipid Mediators Cell Signalling 9: 197–203.Google Scholar
  48. 48.
    Percival M.D., 1991, Human 5-lipoxygenase contains an essential iron, J.Biol Chem. 266: 10058–10061.PubMedGoogle Scholar
  49. 49.
    Peters-Golden M. and McNish R.W., 1993, Redistribution of 5-lipoxygenase and cytosolic phospholipase A2 to the nuclear fraction upon macrophage activation, Biochem. Biophys. Res. Comm. 196: 147–153.PubMedCrossRefGoogle Scholar
  50. 50.
    Powell W.S., 1984, Properties of leukotriene B4 20-hydroxylase from polymorphonuclear leukocytes, J. Biol Chem. 259: 3082–3089.PubMedGoogle Scholar
  51. 51.
    Powell W.S., Gravel S., MacLeod R.J., Mills E., and Hashefi M., 1993, Stimulation of human neutrophils by 5-oxo-6,8,11, 14-ei-cosatetraenoic acid by a mechanism independent of the leukotriene B4 receptor, J. Biol Chem. 268: 9280–9286.PubMedGoogle Scholar
  52. 52.
    Reid G.K., Kargman S., Vickers P.J., Mancini J.A., Léveillé C., Ethier D., Miller D.K., Gillard J.W., Dixon R.A.F., and Evans J.F., 1990, Correlation between expression of 5-lipoxygenase-activating protein, 5-lipoxygenase, and cellular leukotriene synthesis, J. Biol. Chem. 265: 19818–19823.PubMedGoogle Scholar
  53. 53.
    Regier M.K., DeWitt D.L., Schindler M.S., and Smith W.L., 1993, Subcellular localization of prostaglandin endoperoxide synthase-2 in murine 3T3 cells, Arch. Biochem. Biophys. 301: 439–444.CrossRefGoogle Scholar
  54. 54.
    Rouzer C.A. and Kargman S., 1988, Translocation of 5-lipoxy-genase to the membrane in human leukocytes challenged with ionophore A23187, J. Biol Chem. 263: 10980–10988.PubMedGoogle Scholar
  55. 55.
    Rouzer C.A., Ford-Hutchinson A.W., Morton H.E., and Gillard J.W., 1990, MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes, J. Biol Chem. 265: 1436–1442.PubMedGoogle Scholar
  56. 56.
    Samuelsson B. and Funk C.D., 1989, Enzymes involved in the biosynthesis of leukotriene B4, J. Biol Chem. 264: 19469–19472.PubMedGoogle Scholar
  57. 57.
    Schröder J.-M, 1989, The monocyte-derived neutrophil activating peptide (NAP/Interleukin 8) stimulates human neutrophil arachidonate-5-lipoxygenase, but not the release of cellular arachidonate, J. Exp. Med. 170: 847–863.PubMedCrossRefGoogle Scholar
  58. 58.
    Steinhilber D., 1994, 5-lipoxygenase: enzyme expression and regulation of activity, Pharmac. Acta Helvetiae 69: 3–14.CrossRefGoogle Scholar
  59. 59.
    Vanderhoek J.Y, Bryant R.W., and Bailey J.M., 1989, Inhibition of the leukotriene biosynthesis by the leukocyte product 15-hydroxy-5,8,11,13-eicosatetraenoic acid, J. Biol. Chem. 255: 10064–10066.Google Scholar
  60. 60.
    Weinblatt M.E., Kremer J.M., Coblyn J.S. Helfgott S., Maier A.L., Petrillo G., Henson B., Rubin P., and Sperling R., 1992, Zileuton, a 5-lipoxygenase inhibitor in rheumatoid arthritis, 1992, J. Rheumatol 19: 1537–1541.PubMedGoogle Scholar
  61. 61.
    Woods J.W., Evans J.F., Ethier D., Scott S., Vickers P.J., Hearn L., Heibein J.A., Charleson S., and Singer LL, 1993, 5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes, J. Exp. Med. 178: 1935–1946.PubMedCrossRefGoogle Scholar
  62. 62.
    Yamamoto S., 1992, Mammalian lipoxygenases: molecular structures and functions, Biochim. Biophys. Acta 1128: 117–131.PubMedCrossRefGoogle Scholar
  63. 63.
    Young J.M., De Young L.M., 1989, Cutaneous models of inflammation for the evaluation of topical and systemic pharmacological agents, Modern Meth. Pharmacol. N.Y., 5: 215–231.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • R. Müller-Peddinghaus
    • 1
  • R. Kast
    • 1
  1. 1.Cardiovascular and Arteriosclerosis ResearchBayer AGWuppertalGermany

Personalised recommendations