Eicosanoids pp 155-163 | Cite as

Microvascular Actions and Interactions of Eicosanoids and Histamine in Inflammation

  • Per Hedqvist
  • Lennart Lindbom
  • Henrik Thorlacius
  • Johan Raud
Part of the NATO ASI Series book series (NSSA, volume 283)


The microvascular system has a key role in the expression of inflammatory reactions to allergens and other noxious stimuli. Inflammation in its acute phase is characterized by three partly overlapping reactions; increased blood flow, extravasation of plasma, and recruitment of circulating leukocytes. Even though the outlines of early inflammation are thus well-known and predictable, it is not a matter of a static phenomenon but of an instrument in continuous motion, played upon by various mediators, modulators, and feedback mechanisms. In order to follow the facets of this dynamic process, direct inspection of the microvascular bed is required, as can be achieved with intravital microscopy. With the development of quantitative measuring techniques (cf. Raud and Lindbom 1994) this methodology has proven most useful in elucidating the complex interplay between tissue cells, components of the blood, and the venular endothelium, which all together form the basis of the inflammatory process.


Allergic Inflammation Intravital Microscopy Cheek Pouch Plasma Extravasation Plasma Leakage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Björk, J., Hedqvist, P. and Arfors, K.-E. (1982). Increase in vascular permeability induced by leukotriene B4 and the role of polymorphonuclear leukocytes. Inflammation 6, 189–200.PubMedCrossRefGoogle Scholar
  2. Björk, J. and Smedegård, G. (1987). Immune-complex-induced inflammatory reaction studied by intravital microscopy: Role of histamine and arachidonic acid metabolites. Inflammation 11, 47–58.PubMedCrossRefGoogle Scholar
  3. Bray, M.A. (1986). Leukotrienes in inflammation. Agents Actions 19, 87–99.PubMedCrossRefGoogle Scholar
  4. Dahlén, S.-E., Björk, J., Hedqvist, P., Arfors, K.-E., Hammarström, S., Lindgren, J.-Å. and Samuelsson, B. (1981). Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: In vivo effects with relevance to the acute inflammatory response. Proc. Natl. Acad. Sci. USA 78, 3887–3891.PubMedCrossRefGoogle Scholar
  5. Dahlén, S.-E., Dahlén, B., Kumiin, M., Björck, T., Ihre, E. and Zetterström, O. (1994). Clinical and experimental studies of leukotrienes as mediators of airway obstruction in humans. Adv.Prostaglandin Thromboxane Leukotriene Res., 22, 155–166. Raven Press, New York.Google Scholar
  6. Ford-Hutchinson, A.W. (1990). Modification of the lipoxygenase pathway of arachidonic acid metabolism. Adv. Prostaglandin, Thromboxane and Leukotriene Res., 20, 161–169. Raven Press, New York.Google Scholar
  7. Hatzelmann, A., Fruchtmann, R., Mohrs, K.H., Raddatz, S., Matzke, M., Pleiss, U., Keldenich, J. and Müller-Peddinghaus, R. (1994). Mode of action of the leukotriene synthesis (FLAP) inhibitor Bay X1005:Implications for biological regulation of 5-lipoxygenase. Adv.Prostaglandin Thromboxane Leukotriene Res., 22, 23–31. Raven Press, New York.Google Scholar
  8. Hay, D.W.P., Muccitelli, R.M., Tucker, S.S., Vickery-Clark, L.M., Wilson, K.A., Gleason, J.G., Hall, R.F., Wasserman M.A. and Torphy, T.J. (1987). Pharmacologic profile of SK&F 104353: A novel, potent and selective peptido-leukotriene receptor antagonist in guinea pig and human airways. J. Pharmacol.Exp.Ther. 243, 474–481.PubMedGoogle Scholar
  9. Hedqvist, P., Lindbom, L. and Raud, J. (1994). Microvascular mechanisms in inflammation. Adv. Prostaglandin Thromboxane Leukotriene Res. 22, 91–99. Raven Press, New York.Google Scholar
  10. Hedqvist, P., Raud, J. and Dahlén, S.-E. (1990a). Microvascular actions of eicosanoids in the hamster cheek pouch. Adv. Prostaglandin Thromboxane Leukotriene Res. 20, 153–160. Raven Press, New York.Google Scholar
  11. Hedqvist, P., Raud, J., Palmertz, P., Kumiin, M. and Dahlén, S.-E. (1990b). Eicosanoids as mediators of and modulators of inflammation. Adv. Prostaglandin Thromboxane Leukotriene Res. 21, 537–543. Raven Press, New York.Google Scholar
  12. Hedqvist, P., Thureson-Klein, Å., Öhlén, A., Raud, J., Lindbom, L. and Dahlén, S.-E. (1987). Neuropeptides and arachidonic acid derivatives as messengers in microvascular function. In “Neuronal Messengers in Vascular Function” (eds A. Nobin, C. Owman and B. Arneklo-Nobin), pp. 435–446. Elsevier, Amsterdam.Google Scholar
  13. Joris, I., Majno, G., Corey, E.J. and Lewis, R.A. (1987). The mechanism of vascular leakage induced by leukotriene E4: Endothelial contraction. Am.J.Pathol. 126, 19–24.PubMedGoogle Scholar
  14. Keppler, D., Guhlmann, A., Oberdorfer, F., Krauss, K., Müller, J., Ostertag, H. and Huber, M. (1991). Generation and metabolism of cysteinyl leukotrienes in vivo. Ann. NY Acad. Sci. 629, 100–104.PubMedCrossRefGoogle Scholar
  15. Knapp, H.R. (1991). Reduced allergen-induced nasal congestion and leukotriene synthesis with an orally active 5-lipoxygenase inhibitor. N. Engl. J. Med. 323, 1745–1748.CrossRefGoogle Scholar
  16. Lawrence, M.B. and Springer, T.A. (1991). Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins. Cell 65, 859–873.PubMedCrossRefGoogle Scholar
  17. Lewis, R.A., Austen, K.F. and Soberman, R.J. (1990). Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N. Engl. J. Med. 323, 645–655.PubMedCrossRefGoogle Scholar
  18. Lindbom, L., Hedqvist, P., Dahlén, S.-E., Lindgren, J.-Å. and Arfors, K.-E. (1982). Leukotriene B4 induces extravasation and migration of polymorphonuclear leukocytes in vivo. Acta Physiol.Scand. 116, 105–108.PubMedCrossRefGoogle Scholar
  19. Lindbom, L., Xie, X., Raud, J. and Hedqvist, P. (1992). Chemoattractant-induced leukocyte adhesion to vascular endothelium in vivo is critically dependent on initial leukocyte rolling. Acta Physiol. Scand. 146, 415–521.PubMedCrossRefGoogle Scholar
  20. Raud, J. (1989). Intravital microscopic studies on acute mast cell-dependent inflammation. Acta Physiol. Scand. 135 (Suppl. 578), 1–58.Google Scholar
  21. Raud, J., Dahlén, S.-E., Sydbom, A., Lindbom, L., and Hedqvist, P. (1988). Enhancement of acute allergie inflammation by indomethacin is reversed by prostaglandin E2: Apparent correlation with in vivo modulation of mediator release. Proc.Natl Acad.Sci. USA 85, 2315–2319.PubMedCrossRefGoogle Scholar
  22. Raud, J. and Lindbom L. (1994). Studies by intravital microscopy of basic inflammatory mechanisms and acute allergic inflammation. In: Handbook of Immunopharmacology: Immunopharmacology of the Microcirculation, ed. S.D. Brain, pp. 127-170, Academic Press 1994.Google Scholar
  23. Raud, J., Lindbom, L. and Hedqvist, P. (1992). Histamine and leukotriene C4 act synergistically via a blood flow-independent mechanism to enhance microvascular plasma leakage. Acta Physiol. Scand. 146, 545–546.PubMedCrossRefGoogle Scholar
  24. Raud, J., Sydbom, A., Dahlén, S.-E. and Hedqvist, P. (1989). Prostaglandin E2 prevents diclofenac-induced enhancement of histamine release and inflammation evoked by in vivo challenge with compound 48/80 in the hamster cheek pouch. Agents Actions 28, 108–114.PubMedCrossRefGoogle Scholar
  25. Raud, J., Thorlacius, H., Xie, X., Lindbom, L. and Hedqvist, P. (1994). Interactions between histamine and leukotrienes in the microcirculation: Aspects of relevance to acute allergie inflammation. Ann. N.Y Acad. Sci. 744, 191–198, 1994.PubMedCrossRefGoogle Scholar
  26. Samuelsson, B., Dahlén, S.-E., Lindgren, J.Å., Rouzer, C.A. and Serhan, C.N. (1987). Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects. Science 237, 1171–1176.PubMedCrossRefGoogle Scholar
  27. Snyder, D.W., Giles, R.E., Keith, R.A., Yee, Y.K. and Krell, R.D. (1987). In vitro pharmacology of ICI 198,615: A novel, potent and selective peptide leukotriene antagonist. J.Pharmacol.Exp.Ther. 243, 548–556.PubMedGoogle Scholar
  28. Thureson-Klein, Å., Hedqvist, P. and Lindbom, L. (1986). Leukocyte diapedesis and plasma extravasation after leukotriene B4: Lack of structural injury to the endothelium. Tissue Cell 18, 1–12.PubMedCrossRefGoogle Scholar
  29. Thureson-Klein, Å., Hedqvist, P., Öhlén, A., Raud, J. and Lindbom, L. (1987) Leukotriene B4, platelet-activating factor and substance P as mediators of acute inflammation. Pathol. Immunopathol.Res. 6, 190–206.PubMedCrossRefGoogle Scholar
  30. Williams, T.J. and Morley, J. (1973). Prostaglandins as potentiators of increased vascular permeability in inflammation. Nature 246, 215–217.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Per Hedqvist
    • 1
  • Lennart Lindbom
    • 1
  • Henrik Thorlacius
    • 1
  • Johan Raud
    • 1
  1. 1.Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden

Personalised recommendations