The Role of Zinc in Brain and Nerve Functions

  • Ananda S. Prasad


Although the role of zinc in microorganisms, plants, and animals has been known for many years, its role in humans was recognized only in the early 1960s (Prasad et al., 1963). Severe growth retardation, hypogonadism in males, hepatosplenomegaly, rough and dry skin, mental lethargy, and susceptibility to infections were reported in zinc-deficient humans from the Middle East in 1963 (Prasad et al., 1963).


Zinc Deficiency Neurofibrillary Tangle Opioid Peptide Free Radieals Mossy Fiber Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ball, M. J., 1977, Neuronal loss, neurofibrillary tangles and granulvacuolar degeneration in hippocampal cortex of aging and demented patients: A quantitative study, Acta. Neuropath. 37:111–118.PubMedCrossRefGoogle Scholar
  2. Baraldi, M., Caselgrandi, E., and Santi, M., 1984, Effect of zinc on specific binding of GABA to rat brain membranes, in: Neurobiology of Zinc, Part A (C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.), Wiley-Liss, New York, pp. 59–71.Google Scholar
  3. Blamberg, D. L., Blackwood, U. B., Supplee, W. C., and Combs, G. F., 1960, Effect of zinc deficiency in hens on hatchability and embryonic development, Proc. Soc. Exp. Biol. Med. 104:217–220.PubMedGoogle Scholar
  4. Bourre, J. M., 1988, The effect of dietary lipids on the central nervous system in aging and disease: Importance of protection against free radicals and peroxydation, in: Importance of Protection against Free Radicals and Peroxydation (M. Bergener, M. Ermini, and H. B. Stahelin, eds.), Academic Press, London, pp. 141–167.Google Scholar
  5. Burger, P. C., and Vogel, F. S., 1973, The development of the pathologic changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome, Am. J. Pathol. 73:457–476.PubMedGoogle Scholar
  6. Burke, J. P., and Fenton, M. R., 1985, Effect of zinc deficient diet on lipid peroxidation in liver and tumor subcellular membranes, Proc. Soc. Exp. Biol. Med. 179:187–191.PubMedGoogle Scholar
  7. Burnet, F. M., 1982, New horizons in the role of zinc in cellular function, in: Clinical Applications of Recent Advances in Zinc Metabolism, (A. S. Prasad, I. E. Dreosti, and B. S. Hetzel, eds.), Alan R. Liss, New York, pp. 181–192.Google Scholar
  8. Bush, A. I., Pettingel, W. H., Multhaup, G., Paradis, M., Vonsattel, J. P., Gusella, J. F., Beyreuther, K., Masters, C. L., and Tanzi, R. E., 1994, Rapid induction of Alzheimer Aß amyloid formation by zinc, Science 265:1464–1467.PubMedCrossRefGoogle Scholar
  9. Caldwell, D. F., Oberleas, D., Clancy, J. J., and Prasad, A. S., 1970, Behavioral impairment in adult rats following acute zinc deficiency, Proc. Soc. Exp. Biol. Med. 133:1417–1421.PubMedGoogle Scholar
  10. Caldwell, D. F., Oberleas, D., and Prasad, A. S., 1973, Reproductive performance of chronic mildly zinc deficient rats and the effects on behavior of their offspring, Nutr. Rep. Int. 7:309–319.Google Scholar
  11. Cavdar, A. O., Arcasoy, A., Baycu, T., and Himmetoglu, O., 1980, Zinc deficiency and anencephaly in Turkey, Teratology 23:141 (letter). Constantinidis, J., 1991a, Hypothesis regarding amyloid and zinc in the pathogenesis of Alzheimer’s disease: Potential for preventive intervention, Alzheimer Disease and Associated Disorders 5:31–35.Google Scholar
  12. Constantinidis, J., 1991b, The hypothesis of zinc deficiency in the pathogenesis of neurofibrillary tangles, Med. Hypotheses. 35:319–323.PubMedCrossRefGoogle Scholar
  13. Coppen, D. E., Richardson, D. E., and Cousins, R. J., 1988, Zinc suppression of free radicals induced in cultures of rat hepatocytes by iron, T-butyl hydroperoxide, and 3 methylindole, Proc. Soc. Exp. Biol. Med. 189:100–109.PubMedGoogle Scholar
  14. Corder, E. H., Saunders, A. M., Strittmalter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., and Pericak-Vance, M. A., 1993, Gene dose of apolipoprotein E Type 4 allele and the risk of Alzheimer’s disease in late onset families, Science 261:828–829.CrossRefGoogle Scholar
  15. Corrigan, F. M., Reynolds, G. P., and Ward, N. I., 1993, Hippocampal tin, aluminum and zinc in Alzheimer’s disease, Bio. Metals. 6:149–154.Google Scholar
  16. Crawford, I. L., and Connor, J. D., 1972, Zinc in maturing rat brain: Hippocampal concentration and localization, J. Neurochem. 19:1451–1458.PubMedCrossRefGoogle Scholar
  17. de la Torre, J., Villasante, A., Corral, J., and Avila, J., 1981, Factors implicated in determining the structure of zinc tubulin-sheets: Lateral tubulin-tubulin interaction is promoted by the presence of zinc, J. Supramol. Struct. Cell Biochem. 17:183–196.PubMedCrossRefGoogle Scholar
  18. Dewji, N. N., and Singer, S. J., 1996, Genetic clues to Alzheimer’s disease, Science 271:159–160.PubMedCrossRefGoogle Scholar
  19. Donaldson, J., St. Pierre T., Minnich, J., and Barbeau, A., 1971, Seizures in rats associated with divalent cation inhibition of Na+K+ ATPase, Can. J. Biochem. 49:1217–1224.PubMedCrossRefGoogle Scholar
  20. Dreosti, I. E., 1984, Zinc in the central nervous system: The emerging interactions, in The Neurobiology of Zinc, Part A (C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.), Alan R. Liss, New York, pp. 1–26.Google Scholar
  21. Dreosti, I. E., 1993, Zinc in brain development and function, in: Essential and Toxic Trace Elements in Human Health and Disease: An Update, (A. S. Prasad, ed.), Wiley-Liss, New York, pp. 81–90.Google Scholar
  22. Dreosti, I. E., Grey, P. C., and Wilkins, P. J., 1972, Deoxyribonucleic acid synthesis, protein synthesis and teratogenesis in zinc deficient rats, Afr. Med J. 46:1585–1588.Google Scholar
  23. Duerre, J. A., Ford, K. M., and Sandstead, H. H., 1977, Effect of zinc deficiency on protein synthesis in brain and liver of suckling rats, J. Nutr. 107:1082–1093.PubMedGoogle Scholar
  24. Ebadi, M., and Pfeiffer, R. F., 1984, Zinc in neurological disorders and in experimentally induced epileptiform seizures, in The Neurobiology of Zinc, Part B (C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.), Alan R. Liss, New York, pp. 307–324.Google Scholar
  25. Eckert, C. D., and Hurley, L. S., 1977, Reduced DNA synthesis in zinc deficiency: Regional differences in embryonic rats, J. Nutr. 107:855–861.Google Scholar
  26. Erickson, J. C., Sewell, A. K., Jenson, L. T., Winge, D. R., and Palmiter, R. D., 1994, Enhanced neurotrophic activity in Alzheimer’s disease cortex is not associated with down-regulation of metallothionein-III (GIF), Brain Res. 649:297–304.PubMedCrossRefGoogle Scholar
  27. Essatara, M. B., McClain, C. J., Levine, A. S., and Morley, J. E., 1984a, Zinc deficiency and anorexia in rats: The effect of central administration of norepinephrine, muscimol and bromergocryptine, Physiol. Behav. 32:479–482.PubMedCrossRefGoogle Scholar
  28. Essatara, M. B., Morley, J. E., Levine, A. S., Elson, M. K., Shafer, R. B., and McClain, C. J., 1984b, The role of endogenous opiates in zinc anorexia, Physiol. Behav. 32:475–478.PubMedCrossRefGoogle Scholar
  29. Fitzgerald, D. J., 1995, Zinc and Alzheimer’s disease, Science 268:1920.PubMedCrossRefGoogle Scholar
  30. Fosmire, G. J., al-Ubaidi, Y Y, and Sandstead, H. H., 1975, Some effects of postnatal zinc deficiency on developing rat brain, Pediatr. Res. 9:89–93.PubMedCrossRefGoogle Scholar
  31. Goldberg, H. J., and Sheehy, E. M., 1982, Fifth day fits: An acute zinc deficiency syndrome? Arch. Dis. Child. 57:632–635.CrossRefGoogle Scholar
  32. Halsted, J. A., Ronaghy, H. A., Abadi, P., Haghshenass, M., Amirhakemi, G. H., Barakat, R. M., and Reinhold, J. G., 1972, Zinc deficiency in man: Shiraz experiment, Am. J. Med. 53:277–284.PubMedCrossRefGoogle Scholar
  33. Hao, R., Cerutis, D. R., Blaxall, H. S., Rodriguez-Sierra, J. F., Pfeiffer, R. F., and Ebadi, M., 1994, Distribution of zinc metallothionein I mRNA in rat brain, Neurochem. Res. 19:761–767.PubMedCrossRefGoogle Scholar
  34. Hershey, C. O., Hershey, L. A., Varnes, A., Vibhakar, S. D., Lavin, P., and Strain, W. H., 1983, Cerebrospinal fluid trace element content in dementia: Clinical radiologic, and pathologic correlations, Neurology 33:1350–1353.PubMedCrossRefGoogle Scholar
  35. Hurley, L. S., and Swenerton, H., 1966, Congenital malformations resulting from zinc deficiency in rats, Proc. Soc. Exp. Biol. Med. 123:692–696.PubMedGoogle Scholar
  36. Itoh, M., and Ebadi, M., 1982, The selective inhibition of hippocampal glutamic acid decarboxylase in zinc-induced epileptic seizures, Neurochem. Res. 7:1287–1298.PubMedCrossRefGoogle Scholar
  37. Itoh, M., Ebadi, M., and Swanson, S., 1983, The presence of zinc binding proteins in brain, J. Neurochem. 41:823–829.PubMedCrossRefGoogle Scholar
  38. Kapaki, E., Segditsa, J., and Papageorgiou, C., 1989, Zinc, copper and magnesium concentrations in serum and CSF of patients with neurological disorders, Acta. Neurol. Scand. 79:373–378.PubMedCrossRefGoogle Scholar
  39. Kasarskis, E. J., 1984, Regulation of zinc homeostasis in rat brain, in: Neurobiology of Zinc, Part A (C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.) Alan R. Liss, New York, pp. 27–37.Google Scholar
  40. Knull, H. R., and Wells, W. W., 1975, Axonal transport of cations in the chick optic system, Brain Res. 100:121–124.PubMedCrossRefGoogle Scholar
  41. Lai, F., and Williams, R. S., 1989, A prospective study of Alzheimer disease in Down syndrome, Arch. Neurol. 46:849–853.PubMedCrossRefGoogle Scholar
  42. Lindeman, R. D., Baxter, D. J., Yunice, A. A., and Kraikitpanitch, S., 1978, Serum concentration and urinary excretions of zinc in cirrhosis, nephrotic syndrome and renal insufficiency, Am. J. Med. Sci. 275:17–31.PubMedCrossRefGoogle Scholar
  43. Maggio, J. E., Esler, W. P., Stemson, E. R., Jennings, J. M., Ghilardi, J. R., and Mantyh, P. W, 1995, Zinc and Alzheimer’s disease, Science 268:1920–1921.PubMedCrossRefGoogle Scholar
  44. Mann, D. M. A., 1985, The neuropathology of Alzheimer’s disease: A review with pathogenic, etiological and therapeutic considerations, Mech. Ageing Dev. 31:213–255.PubMedCrossRefGoogle Scholar
  45. Markesbury, W. R., Ehmann, W. D., Alauddin, M., and Hossain, T. I. M., 1984, Brain trace element concentrations in aging, Neurobiol. Aging 5:19–28.CrossRefGoogle Scholar
  46. McGinty, J. F., Henriksen, S. J., and Chavkin, C., 1984, Is there an interaction between zinc and opioid peptides in hippocampal neurons? in: Neurobiology of Zinc, Part A (C. J. Fredrickson, G. A. Howell, and W. J. Kasarskis, eds.), Alan R. Liss, New York, pp. 73–89.Google Scholar
  47. McKenzie, J. M., Fosmire, G. J., and Sandstead, H. H., 1975, Zinc deficiency during the latter third of pregnancy: Effects on fetal rat brain, liver and placenta, J. Nutr. 105:1466–1475.PubMedGoogle Scholar
  48. Miller, L. P., Martin, D. L., Mazumdar, A., and Walters, J. P., 1978, Studies on the regulation of GABA synthesis: Substrate-promoted dissociation of pyridoxal-5′-phosphate from GAD, J. Neurochem. 30:361–369.PubMedCrossRefGoogle Scholar
  49. O’Dell, B. L., Becker, J. K., Emery, M. P., and Browning, J. D., 1989, Production and reversal of the neuromuscular pathology and related signs of zinc deficiency in guinea pigs, J. Nutr. 119:196–201.PubMedGoogle Scholar
  50. Palm, R., and Hallmans, G., 1982, Zinc and copper metabolism in phenytoin therapy, Epilepsia 23:453–461.PubMedCrossRefGoogle Scholar
  51. Peters, S., Koh, J., and Choi, D. W., 1987, Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons, Science 236:589–593.PubMedCrossRefGoogle Scholar
  52. Prasad, A.S., 1993, Biochemistry of Zinc, Plenum Press, New York, pp. 149–164.CrossRefGoogle Scholar
  53. Prasad, A. S., and Oberleas, D., 1974, Thymidine kinase activity and incorporation of thymidine into DNA in zinc deficient tissue, J. Lab. Clin. Med. 83:634–639.PubMedGoogle Scholar
  54. Prasad, A. S., Halsted, J. A., and Nadimi, M., 1961, Syndrome of iron deficiency anemia, hepato-splenomegaly, hypogonadism, dwarfism and geophagia, Am. J. Med. 31:532–546.PubMedCrossRefGoogle Scholar
  55. Prasad, A. S., Miale, A., Farid, Z., Schulert, A., and Sandstead, H. H., 1963, Zinc metabolism in patients with the syndrome of iron deficiency anemia, hypogonadism, and dwarfism, J. Lab. Clin. Med. 61:537–549.PubMedGoogle Scholar
  56. Pryor, D. S., Don, N., and Macourt, D. C., 1981, Fifth day fits: A syndrome of neonatal convulsions, Arch. Dis. Child. 56:753–758.PubMedCrossRefGoogle Scholar
  57. Sandstead, H. H., 1984, Neurobiology of zinc, in: Neurobiology of Zinc, Part B (C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.), Alan R. Liss, New York, pp. 1–16.Google Scholar
  58. Sandstead, H. H., Fosmire, G. J., McKenzie, J. M., and Halas, E. S., 1975, Zinc deficiency and brain development in the rat, Fed. Proc. 34:86–88.PubMedGoogle Scholar
  59. Sever, L. E., and Emanuel, I., 1973, Is there a connection between maternal zinc deficiency and congenital malformations of the central nervous system? Teratology 7:117.PubMedCrossRefGoogle Scholar
  60. Shrestha, K. P., and Oswaldo, A., 1987, Trace elements in hair of epileptic and normal subjects, Sci. Total Environ. 67:215–225.PubMedCrossRefGoogle Scholar
  61. Slevin, J. L, and Kasarskis, E. J., 1985, Effects of zinc on markers of glutamate and aspartate neurotransmission in rat hippocampus, Brain Res. 334:281–286.PubMedCrossRefGoogle Scholar
  62. Sloviter, R. S., 1985, A selective loss of hippocampal mossy fiber Timm stain accompanies granule cell seizure activity induced by perforans path stimulation, Brain Res. 330:150–153.PubMedCrossRefGoogle Scholar
  63. Stengaard-Pederson, K., Fredens, K., and Larsson, L. L, 1981, Enkephalin and zinc in the mossy fiber system, Brain Res. 212:230–233.CrossRefGoogle Scholar
  64. Swenerton, H., Shrader, R. E., and Hurley, R. L., 1969, Zinc deficient embryos: reduced thymidine incorporation, Science 166:1014–1015.PubMedCrossRefGoogle Scholar
  65. Vanella, A., Geremia, E., D’Urso, G., Tiriolo, P., Di Silvestro, K., Grimaldi, R., and Pinturo, R., 1982, Superoxide dismutase activities in aging rat brain, Gerontology 28:108–113.PubMedCrossRefGoogle Scholar
  66. Walker, D. W., Barnes, D. E., Zormetzer, S. F., Hunter, B. E., and Kubanis, P., 1980, Neuronal loss in hippocampus induced by prolonged ethanol consumption in rats, Science 209:711–713.PubMedCrossRefGoogle Scholar
  67. Wallwork, J. C., and Sandstead, H. H., 1993, Zinc and brain function in: Essential and Toxic Trace Elements in Human Health and Disease: An Update (A. S. Prasad, ed.) Wiley-Liss, New York, pp. 65–80.Google Scholar
  68. West, J. R., Hodges, C. A., and Black, A. C., 1981, Prenatal exposure to ethanol alter the organization of the hippocampal mossy fibres, Science 211:957–959.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ananda S. Prasad
    • 1
  1. 1.Division of Hematology-Oncology, Department of Internal MedicineWayne State University School of Medicine, and Harper HospitalDetroitUSA

Personalised recommendations