Manganese Neurotoxicity and Oxidative Damage

  • Michael Aschner


Manganese (Mn) is of critical importance to enzyme and membrane transport systems. Both deficiencies and excess body-burdens of Mn, whether genetic or acquired, can seriously impair vital physiological and biochemical processes. Although one of the least toxic of the heavy metals, Mn toxicity occasionally occurs in miners and ore milling plant workers exposed to prolonged inhalation of manganese dioxide (MnO2) (Chia et al., 1993). The impact of Mn on human health and disease upon low-level chronic exposure to environmental Mn is uncertain. While it remains largely speculative as to whether excessive Mn exposure plays a role in the pathogenesis of neurodegenerative disorders, distinct similarities between Parkinson’s disease and manganism have led to an intense pursuit of its possible role in Parkinson’s disease, as well as in a number of other neurodegenerative disorders of, as yet, uncertain etiologies (Calne et al., 1994).


Glutamine Synthetase Globus Pallidus Manganese Dioxide Dialuric Acid Semiquinone Free Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aisen, P., Aasa, R., and Redfield, A. G., 1969, The chromium, manganese, and cobalt complexes of transferrin, J. Biol. Chem. 244:4628–4633.PubMedGoogle Scholar
  2. Ambani, L. M., Vanwoert, M. H., and Murphy, S., 1975, Brain peroxidase and catalase in Parkinson’s disease, Arch. Neurol. 32:114–118.PubMedGoogle Scholar
  3. Archibald, F. S., and Tyree, C., 1987, Manganese poisoning and the attack of trivalent manganese upon catecholamines, Arch. Biochem. Biophys. 256:638–650.PubMedGoogle Scholar
  4. Aschner, M., and Aschner, J. L., 1990, Manganese transport across the blood-brain barrier: Relationship to iron homeostasis, Brain Res. Bull. 24:857–860.PubMedGoogle Scholar
  5. Aschner, M., and Aschner, J. L., 1991, Manganese neurotoxicity: Cellular effects and blood-brain barrier transport mechanisms, Neurosci. Biobehav. Rev. 15:333–340.PubMedGoogle Scholar
  6. Aschner, M., and Gannon, M., 1994, Manganese (Mn) transport across the blood-brain barrier: Saturable and transferrin-dependent transport mechanisms, Brain Res. Bull. 33:345–349.PubMedGoogle Scholar
  7. Barbeau, A., 1984, Manganese and extrapyramidal disorders, Neurotoxicol. 5:13–36.Google Scholar
  8. Barbeau, A., Inoué, N., and Cloutier, T., 1976, Role of manganese in dystonia, Adv. Neurol. 14:339–352.PubMedGoogle Scholar
  9. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. M., and Freeman, B. A., 1990, Apparent hydroxyl radical production from peroxynitrite: Implications for endothelial injury by nitric oxide and superoxide, Proc. Natl. Acad. Sci. USA 87:1620–1624.PubMedGoogle Scholar
  10. Ben Sachar, D., Eshel, G., Finberg, J. P. M., and Youdim, M. B. H., 1991, The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons, J. Neurochem. 56:1441–1444.Google Scholar
  11. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F., 1973, Brain dopamine and the syndromes of Parkinson and Huntington-clinical, morphological and neurochemical correlations, J. Neurol. Sci. 20:415–425.PubMedGoogle Scholar
  12. Bondy, S. C., and LeBel, C. P., 1992, Formation of excess reactive oxygen species within the brain, in: The Vulnerable Brain and Environmental Risks, Volume 2 (R. L. Isaacson and K. F. Jensen, eds.), Plenum Press, New York, pp. 255–272.Google Scholar
  13. Bradford, H. F., (ed.), 1986, in: Chemical Neurobiology, Freeman, New York.Google Scholar
  14. Brouillet, E. P., Shinobu, L., McGarvey, U., Hochberg, F., and Beal, M. F., 1993, Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism, Experim. Neurol. 120: 89–94.Google Scholar
  15. Calne, D. B., Chu, N. S., Huang, C. C., Lu, C. S., and Olanow, W., 1994, Manganism and idiopathic parkinsonism: similarities and difference, Neurology 44:1583–1586.PubMedGoogle Scholar
  16. Carl, G. F, Critchfield, J. W., Thompson, J. L., McGinnis, L. S., Wheeler, G. A., Gallagher, B. B., Holmes, G. L., Hurley, L. S., and Keen, C. L., 1989, Effect of kainate-induced seizures on tissue trace element concentrations in the rat, Neuroscience 33:223–227.PubMedGoogle Scholar
  17. Carl, G. F., Blackwell, L. K., Barnett, F C., Thompson, L. A., Rissinger, C. J., Olin, K. L., Critchfield, J. W., Keen, C. L., and Gallagher, B. B., 1993, Manganese and epilepsy: Brain glutamine synthetase and liver arginase activities in genetically epilepsy prone and chronically seizured rats, Epilepsia 34:441–446.PubMedGoogle Scholar
  18. Cavallini, L., Valente, M., and Bindoli, A., 1984, On the mechanism of inhibition of lipidperoxidation by manganese, Inorg. Chim. Acta 91:117–120.Google Scholar
  19. Chance, B., 1965, The energy-linked reaction of calcium with mitochondria, J. Biol. Chem. 240:2729–2748.PubMedGoogle Scholar
  20. Chia, S. E., Foo, S. C., Gan, S. L., Jeyaratnam, J., and Tian, C. S., 1993, Neurobehavioral functions among workers exposed to manganese ore, Scand. J. Work 19:264–270.Google Scholar
  21. Chiueh, C. C., Murphy, D. L., Miyake, H., Lang, K., Tulsi, P. K., and Huang, S.-J., 1993, Hydroxyl free radical (OH) formation reflected by salicylate hydroxylation and neuromelanin. In vivo markers for oxidant injury of nigral neurons, Ann. NY Acad. Sci. 679:370–375.PubMedGoogle Scholar
  22. Cohen, G., 1984, Oxy-radical toxicity in catecholamine neurons, Neurotoxicol. 5:77–82.Google Scholar
  23. Cohen, G., and Heikkila, R. E., 1974, The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents, J. Biol. Chem. 249:2447–2452.PubMedGoogle Scholar
  24. Cotzias, G. C., Horiuchi, K., Fuenzalida, S., and Mena, I., 1968, Chronic manganese poisoning: Clearance of tissue manganese concentrations with persistence of the neurological picture, Neurology 18:376–382.PubMedGoogle Scholar
  25. Coy le, J. T., and Puttfarcken, 1993, Oxidative stress, glutamate, and neurodegenerative disorders, Science 262:689–695.PubMedGoogle Scholar
  26. Critchfield, J. W., Carl, G. R, and Keen, C. L., 1993, The influence of manganese supplementation on seizure onset and severity, and brain monoamines in the genetically epilepsy prone rat, Epilepsy Res. 14:3–10.PubMedGoogle Scholar
  27. Crompton, M., 1990, The role of Ca2+ in the function and dysfunction of heart mitochondria, in: Calcium and the Heart (G. A. Langer, ed.), Raven Press, New York, pp. 167–197.Google Scholar
  28. Diez-Ewald, M., Weintraub, L. R., and Crosby, W. H., 1968, Inter relationship of iron and manganese metabolism, Proc. Soc. Exp. Biol. Med. 129:448–151.PubMedGoogle Scholar
  29. Donaldson, J., 1987, The Physiopathologie significance of manganese in brain: Its relation to schizophrenia and neurodegenerative disorders, Neurotoxicol. 8:451–462.Google Scholar
  30. Donaldson, J., and Barbeau, A., 1985, in: Metal Ions in Neurology and Psychiatry, Alan R. Liss, New York, pp. 259–285.Google Scholar
  31. Donaldson, J., Labella, F. S., and Gesser, D., 1980, Enhanced autoxidation of dopamine as a possible basis of manganese neurotoxicity, Neurotoxicol. 2:53–64.Google Scholar
  32. Donaldson, J., McGregor, D., and Labella, E S., 1982, Manganese neurotoxicity: A model for free radical mediated neurodegeneration? Can. J. Physiol. Pharmacol. 60:1398–1405.PubMedGoogle Scholar
  33. Eriksson, H., Morath, C., and Heilbronn, E., 1984, Effects of manganese on the nervous system, Acta Neurol. Scand. 70:89–93.Google Scholar
  34. Eriksson, H., Lenngren, S., and Geilbronn, E., 1987a, Effect of long-term administration of Mn on biogenic amine levels in discrete striatal regions of rat brain, Arch. Toxicol. 59:426–431.PubMedGoogle Scholar
  35. Eriksson, H., Magista, K., Plantin, L.-O., Fonnum, E., Hedstrom, K.-G., Theodorsson-Norheim, E., Kristensson, K., Stalberg, E., and Heilbronn, E., 1987b, Effects of manganese oxide on monkeys as revealed by a combined neurochemical, histological and neurophysiological evaluation, Arch. Toxicol. 61:46–52.PubMedGoogle Scholar
  36. Eriksson, H., Tedroff, J., Thuomas, K. A., Aquilonius, S. M., Hartvig, P., Fasth, K. J., Bjurling, P., Langstrom, B., Hedstrom, K. G., and Heilbronn, E., 1992, Manganese induced brain lesions in Macaca fascicularis as revealed by positron emission tomography and magnetic resonance imaging, Arch. Toxicol. 66:403–407.PubMedGoogle Scholar
  37. Faulkner, K. M., Liochev, S. I., and Fridovich, I., 1994, Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo, J. Biol. Chem. 269:23471–23476.PubMedGoogle Scholar
  38. Fishman, J. B., Handrahan, J. B., Rubir, J. B., Connor, J. R., and Fine, R. E., 1985, Receptor-mediated trancytosis of transferrin across the blood-brain barrier, J. Cell. Biol. 101:423A.Google Scholar
  39. Florence, M., Environmental exposure to Mn in Groote Eyland, Australia, 1995, in: Proceedings of the Workshop on the Bioavailability and Oral Toxicity of Manganese, (S. Velazquez, EPA Liaison), US EPA, Environmental Criteria and Assessment Office, pp. 83–94.Google Scholar
  40. Freeman, B., and Crapo, J. D., 1982, Biology of disease: Free radicals and tissue injury, Lab. Invest. 47:412–426.PubMedGoogle Scholar
  41. Garner, C. D., and Nachtman, J. P., 1989, Manganese catalyzed auto-oxidation of dopamine to 6-hydroxydopamine in vitro, Chem. Biol. Interactions 69:345–351.Google Scholar
  42. Gavin, C. E., Gunter, K. K., and Gunter, T. E., 1990, Manganese and calcium efflux kinetics in brain mitochondria: Relevance to manganese toxicity, Biochem. J. 266:329–334.PubMedGoogle Scholar
  43. Gavin, C. E., Gunter, K. K., and Gunter, T. E., 1992, Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation, Toxicol. Appl. Pharmacol. 115:1–5.PubMedGoogle Scholar
  44. Graham, D. G., 1984, Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson’s disease, Neurotoxicol. 5:83–96.Google Scholar
  45. Graham, D. G., Tiffany, S. M., Bell, W. R., Jr., and Gutknecht, W. F., 1978, Autooxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C 1300 neuroblastoma cells in vitro, Molec. Pharmacol. 14:644–653.Google Scholar
  46. Gunter, T. E., and Pfeiffer, D., 1990, Mechanisms by which mitochondria transport calcium, Am. J. Physiol. 258:C755-C786.Google Scholar
  47. Gunter, T. E., Puskin, J. S., and Russell, P. R., 1975, Quantitative magnetic resonance studies of manganese uptake by mitochondria, Biophys. J. 15:319–333.PubMedGoogle Scholar
  48. Halliwell, B., 1984, Manganese ions, oxidation reactions and the superoxide radical, Neurotoxicol. 5:113–118.Google Scholar
  49. Halliwell, B. J., and Gutteridge, J. M. C., 1984, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219:1–14.PubMedGoogle Scholar
  50. Hammer, B., Parker, W. D., Jr., and Bennett, J. P., Jr., 1993, NMDA receptors increase OH radicals in vivo by using nitric oxide synthase and protein kinase C., Neuroreport 5:72–74.PubMedGoogle Scholar
  51. Hassan, H. M., and Schrum, L. W., 1994, Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase in Escherichia coli, FEMS Microbiol. Rev. 14:315–323.Google Scholar
  52. Hauser, R. A., Zesiewicz, T. A., and Rosemurgy, A. S., 1994, Manganese intoxication and chronic liver failure, Annal. Neurol. 36:871–875.PubMedGoogle Scholar
  53. Heilbronn, E., Eriksson, H., and Haggblad, J., 1982, Neurotoxic effects of manganese: Studies on cell cultures, tissue homogenates and intact animals, Neurobehav. Toxicol. Teratol. 4:655–658.PubMedGoogle Scholar
  54. Hill, J. M., 1990, Iron and proteins of iron metabolism in the central nervous system, in: Iron Transport and Storage (P. Ponka, H. M. Schulman, and R. C. Woodworm, eds.), CRC Press, Boca Raton, Florida, pp. 315–330.Google Scholar
  55. Hill, J. M., and Switzer, R. C., III, 1984, The regional distribution and cellular localization of iron in the rat brain, Neuroscience 11:595–603.PubMedGoogle Scholar
  56. Hill, J. M., Ruff, M. R., and Weber, R. J., 1985, Transferrin receptors in rat brain: Neuropeptide-like pattern and relationship to iron distribution, Proc. Natl. Acad. Sci. USA 82:4553–4557.PubMedGoogle Scholar
  57. Jeffries, W A., Brandon, M. R., Hunt, S. V., Williams, A. E, and Mason, D. Y., 1984, Transferrin receptor on endothelium of brain capillaries, Nature 132:162–163.Google Scholar
  58. Keefer, R. C., Barak, A. J., and Boyett, J. D., 1970, Binding of manganese and transferrin in rat serum, Biochim. Biophys. Acta 221:390–393.PubMedGoogle Scholar
  59. Keen, C. L., 1995, Overview of manganese toxicity, in: Proceedings of the Workshop on the Bioavailability and Oral Toxicity of Manganese, (S. Velazquez, EPA Liaison), US EPA, Environmental Criteria and Assessment Office, pp. 3–11.Google Scholar
  60. Komura, J., and Sakamoto, M., 1994, Chronic oral administration of methylcyclopentadienyl manganese tricarbonyl altered brain biogenic amines in the mouse: comparison with inorganic manganese, Toxicol. Lett. 73:65–73.PubMedGoogle Scholar
  61. Koster, J. F., and Sluiter, W., 1994, Physiological relevance of free radicals and their relation to iron, in: Free Radicals in the Environment, Medicine and Toxicology (N. Nohl, H. Esterbauer, and C. Rice-Evans, eds.), Richelieu Press, London, pp. 409–427.Google Scholar
  62. Kutty, R. K., and M. D. Maines, 1987, Characterization of an NADH-dependent haem-degrading system in ox heart mitochondria, Biochem. J. 246:467–474.PubMedGoogle Scholar
  63. Lehninger, A. L., 1972, The coupling of Ca transport to electron transport in mitochondria, in: Molecular Basis of Electron Transport (J. Schultz and B. F. Cameron, eds.), Academic Press, New York, pp. 133–151.Google Scholar
  64. Liccione, J. J., and Maines, D. M., 1988, Selective vulnerability of glutathione metabolism and cellular defense mechanisms in rat striatum to manganese, J. Pharmacol. Exp. Therap. 247:157–161.Google Scholar
  65. Liccione, J. J., and Maines, D. M., 1989, Manganese-mediated increase in the rat brain mitochondrial cytochrome P-450 and drug metabolism activity: Susceptibility of the striatum, J. Pharmacol. Exp. Therap. 248:222–228.Google Scholar
  66. Lill, D. W, Mountz, J. M., and Darji, J. T., 1994, Technetium-99m-HMPAO brain SPECT evaluation of neurotoxicity due to manganese toxicity, J. Nuclear Med. 35:863–866.Google Scholar
  67. London, R. E., Toney, G., Gabel, S. A., and Funk, A., 1989, Magnetic resonance imaging studies of the brains of anesthetized rats treated with manganese chloride, Brain Res. Bull. 23:229–235.PubMedGoogle Scholar
  68. Marinho, C. R., and Manso, C. F., 1993, O2 generation during neuromelanin synthesis. The action of manganese, Acta Med. Portug. 6:547–554.Google Scholar
  69. Maynard, L. S., and Cotzias, G. C., 1955, Partition of manganese among organs and intracellular organelles of the rat, J. Biochem. Chem. 214:489–495.Google Scholar
  70. Mena, I., Horiuchi, K., and Lopez, G., 1974, Factors enhancing entrance of manganese into brain: iron deficiency and age, J. Nuc. Med. 15:516.Google Scholar
  71. Millar, D. M., Buttner, G. R., and Aust, S. D., 1990, Transition metals as catalysts of “autooxidation” reactions, Free Rad. Biol. Med. 8:95–108.Google Scholar
  72. Miller, W. C., and DeLong, M., 1986, Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism, in: The Basal Ganglia, Volume 2 (M. B. Carpenter, and A. Jayarman, eds.), Plenum Press, New York, pp. 415–427.Google Scholar
  73. Mitchell, I. J., Cross, A. J., Sambrook, M. A., and Crossman, A. R., 1986, Neural mechanisms mediating l-methyl-4-phenyl-l,2,3,4-tetrahydropyridine-induced Parkinsonism in the monkey: Relative contributions of the striatopallidal and striatonigral pathways as suggested by 2-deoxyglucose uptake, Neurosci. Lett. 63:61–66.PubMedGoogle Scholar
  74. Morris, C. M., Keith, A. B., Edwardson, J. A., and Pullen, R. G. L., 1992a, Uptake and distribution of iron and transferrin in the adult brain, J. Neurochem. 59:300–306.PubMedGoogle Scholar
  75. Morris, C. M., Candy, J. M., Keith, A. B., Oakley, A., Taylor, G., Pullen, R. G. L., C. A. Bloxham, Gocht, A., and Edwardson, J. A., 1992b, Brain iron homeostasis, J. Inorganic Biochem. 47:257–265.Google Scholar
  76. Murphy, V. A., Wadhwani, K. C., Smith, Q. R., and Rapoport, S. I., 1991, Saturable transport of manganese (II) across the rat blood-brain barrier, J. Neurochem. 57:948–954.PubMedGoogle Scholar
  77. Nagy, J. I., Carter, D. A., and Fibiger, H. C., 1978, Evidence for a GABA-containing projection from the enopenduncular nucleus to the lateral habenula in the rat, Brain Res. 145:360–364.PubMedGoogle Scholar
  78. Newland, M. C., Ceckler, T. L., Kordower, J. H., and Weiss, B., 1989, Visualizing manganese in the basal ganglia with magnetic resonance imaging, Exp. Neurol. 106:251–258.PubMedGoogle Scholar
  79. Parenti, M., Flauto, C., Parati, E., Vescovi, A., and Groppetti, A., 1986, Manganese neurotoxicity: Effect of L-DOPA and pargyline treatments, Brain Res. 367:8–13.PubMedGoogle Scholar
  80. Parenti, M., Rusconi, L., Cappabianca, V, Parati, E., and Groppetti, A., 1988, Role of dopamine in manganese neurotoxicity, Brain Res. 473:236–240.PubMedGoogle Scholar
  81. Partridge, W. M., Eisenberg, J., and Yang, J., 1987, Human blood-brain barrier transferrin receptor, Metabolism 36:892–895.Google Scholar
  82. Perry, T. L., Godin, D. V, and Hansen, S., 1982, Parkinson’s disease: a disease due to nigral glutathione deficiency?, Neurosci. Lett. 33:305–310.PubMedGoogle Scholar
  83. Prohaska, J. R., 1987, Function of trace elements in brain metabolism, Physiol. Rev. 67:858–901.PubMedGoogle Scholar
  84. Puppo, A., and Halliwell, B., 1988, Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent? Biochem. J. 249:185–190.PubMedGoogle Scholar
  85. Rabin, O., Hegedus, L., Bourre, J. M., and Smith, Q. R., 1993, Rapid brain uptake of manganese(II) across the blood-brain barrier, J. Neurochem. 61:509–517.PubMedGoogle Scholar
  86. Roy, B. P., Paice, M. G., Archibald, F. S., Misra, S. K., and Misiak, L. E., 1994, Creation of metal-complexing agents, reduction of manganese dioxide, and promotion of manganese peroxidase-mediated Mn(III) production by cellobiose:quinone oxidoreductase from Trametes versicolor, J. Biol. Chem. 269:19745–19750.PubMedGoogle Scholar
  87. Scheuhammer, A. M., and Cherian, M. G., 1985, Binding of manganese in human and rat plasma, Biochim. Biophys. Acta 840:163–169.PubMedGoogle Scholar
  88. Siesjo, B. K., 1988, Acidosis and ischemic brain damage, Neurochem. Pathol. 9:31–88.PubMedGoogle Scholar
  89. Sloot, W. N., and Gramsbergen, J. B., 1994, Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia, Brain Res. 657:124–132.PubMedGoogle Scholar
  90. Sokoloff, L., 1974, Changes in enzyme activities in neural tissues with maturation and development of the nervous system, in: The Neurosciences: Third Study Program (F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, pp. 885–898.Google Scholar
  91. Suarez, N., and Eriksson, H., 1993, Receptor-mediated endocytosis of a manganese complex of transferrin into neuroblastoma (SHSY5Y) cells in culture, J. Neurochem. 61:127–31, 1993.PubMedGoogle Scholar
  92. Sun, A. Y, Yang, W L., and Kim, H. D., 1993, Free radical and lipid peroxidation in manganese-induced neuronal cell injury, Annal. NY Acad. Sci. 679:358–363.Google Scholar
  93. Takeda, A., Akiyama, T., Sawashita, J., and Okada, S., 1994, Brain uptake of trace metals, zinc and manganese, in rats, Brain Res. 640:341–344.PubMedGoogle Scholar
  94. Tampo, Y, and Yonaha, M., 1992, Antioxidant mechanism of Mn(II) in phospholipid peroxidation, Free Rad. Biol. Med. 13:115–120.PubMedGoogle Scholar
  95. USEPA, 1984, in: Health Assessment Document for Manganese, United States Environmental Protection Agency, EPA 600/8–83–013F.Google Scholar
  96. Walaas, I., and Fonnum, F., 1979, The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions, Brain Res. 177:325–336.PubMedGoogle Scholar
  97. Wedler, F. C., 1993, Biological significance of manganese in mammalian systems, in: Progress in Medicinal Chemistry, Volume 30 (G. P. Ellis, and D. K. Luscombe, eds.), Elsevier Science P., Amsterdam, pp. 89–133.Google Scholar
  98. Wedler, F C., and Denman, R. B., 1984, Glutamine synthetase: the major Mn (II) enzyme in mammalian brain, Curr. Top. Cell. Regul. 24:153–169.PubMedGoogle Scholar
  99. Wedler, F C., Denman, R. B., and Roby, W. G., 1982, Glutamine synthetase from bovine brain is a manganese (II) enzyme, Biochemistry 21:6389–6396.PubMedGoogle Scholar
  100. Wedler, F. C., and Ley, B., 1994, Kinetic, ESR, and trapping evidence for in vivo binding of Mn (II) to glutamine synthetase in brain cells, Neurochem. Res. 19:139–144.PubMedGoogle Scholar
  101. Wedler, F. C., Vichnin, M. C., Ley, B. W., Tholey, G., Ledig, M., and Copin, J. C., 1994, Effects of Ca(II) ions on Mn(II) dynamics in chick glia and rat astrocytes: Potential regulation of glutamine synthetase, Neurochem. Res. 19:145–151.PubMedGoogle Scholar
  102. Yanagihara, R., 1982, Heavy metals and essential minerals in motor neuron disease, in: Human Motor Neuron Diseases (L. P. Rowland, ed.), Raven Press, New York, 233–247.Google Scholar
  103. Yase, Y., 1972, The pathogenesis of amyotrophic lateral sclerosis, Lancet 2:292–296.PubMedGoogle Scholar
  104. Zhang, P., Anglade, P., Hirsch, E. C., Javoy-Agid, F, and Agid, Y, 1994, Distribution of manganese-dependent superoxide dismutase in the human brain, Neuroscience 61:317–330.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Michael Aschner
    • 1
  1. 1.Department of Physiology and PharmacologyBowman Gray School of MedicineWinston-SalemUSA

Personalised recommendations