Antioxidant Therapeutic Strategies in CNS Disorders

  • Edward D. Hall


A major role of oxygen-radical-induced cellular injury in the pathophysiology of acute central nervous system (CNS) injuries and in the pathogenesis of the chronic neurodegenerative disorders has been increasingly recognized. While proteins, nucleic acids, and carbohydrates are all susceptible to oxygen radical damage, perhaps the most avid targets of oxygen-radical-induced injury are cell membrane lipids, including cholesterol and, in particular, polyunsaturated fatty acids. The process of lipid damage by oxygen radicals is known as lipid peroxidation (LP). Central nervous tissue provides an especially avid environment for the occurrence of LP reactions. One reason for this is the high content of iron found in many brain regions, which varies in parallel with the regional sensitivity to ex vivo LP (Zaleska and Floyd, 1985). Iron participates in both the initiation and propagation of LP (see section 17.2). Additionally, brain and spinal cord membrane phospholipids contain a higher proportion of polyunsaturated fatty acids, such as linoleic acid (18:2) and arachidonic acid (20:4), that are sensitive to LP (White, 1973) in comparison to other tissues.


Amyotrophic Lateral Sclerosis Central Nervous System Injury Neuroprotective Efficacy Methylprednisolone Sodium Succinate Brain Microvessel Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Althaus, J. S., Andrus, P. K., Williams, C. M., VonVoigtlander, P. F., Cazers, A. R., and Hall, E. D., 1993, The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury: Reversal by tirilazad mesylate (U-74006F), Molec. Chem. Neuropath. 20:147–162.CrossRefGoogle Scholar
  2. Althaus, J. S., Oien, T. T., Fici, G. J., Scherch, H. M., Sethy, V. H., and VonVoigtlander, P. F., 1994, Structure-activity relationships of peroxynitrite scavengers: An approach to nitric oxide neurotoxicity, Res. Comm. Chem. Path. Pharmacol. 83:243–254.Google Scholar
  3. Andrus, P. K., Reck, T. J., and Hall, E. D., 1995, Neuroprotective efficacy of the novel brain-penetrating antioxidant U-101033E in the gerbil forebrain ischemia model, J. Neurotrauma 12:967.Google Scholar
  4. Araki, N., Greenberg, J. H., Uematsu, D., Sladky, J. T., and Reivich, M., 1992, Effect of superoxide dismutase on intracellular calcium in stroke, J. Cereb. Blood Flow Metab. 12:43–52.PubMedCrossRefGoogle Scholar
  5. Asano, T., Johshita, H., Koide, T., and Takakura, K., 1984, Amelioration of ischaemic cerebral oedema by a free radical scavenger, AVS:l,2-bis(nicotinamido)-propane. An experimental study using a regional ischaemia model in cats, Neurol. Res. 6:163–168.PubMedGoogle Scholar
  6. Asano, T., Matsui, T., and Takuwa, Y., 1991, Lipid peroxidation, protein kinase C and cerebral vasospasm, Crit. Rev. Neurosurg. 1:361–379.Google Scholar
  7. Audus, K. L., Guillot, F. L., and Braughler, J. M., 1991, Evidence for 21-aminosteroid association with the hydrophobic domains of brain microvessel endothelial cells, Free Rad. Biol. Med. 11:361–371.PubMedCrossRefGoogle Scholar
  8. Beckman, J. S., 1991, The double-edged role of nitric oxide in brain function and superoxide-mediated injury, J. Devel. Physiol. 15:53–59.Google Scholar
  9. Boisvert, D. P. C., and Schreiber, C., 1992, Interrelationship of excitotoxic and free radical mechanisms, in: Pharmacology of Cerebral Ischemia (J. Krieglstein and H. Oberpichler, eds.), Wassenschaftliche Verlaggesellschaft, Stuttgart, pp. 1–10.Google Scholar
  10. Braughler, J. M., and Hall, E. D., 1989, Central nervous system trauma and stroke: I. Biochemical considerations for oxygen radical formation and lipid peroxidation, Free Rad. Biol. Med. 6:289–301.PubMedCrossRefGoogle Scholar
  11. Braughler, J. M., and Pregenzer, J. F., 1989, The 21-aminosteroid inhibitors of lipid peroxidation: Reactions with lipid peroxyl and phenoxyl radicals, Free Rad. Biol. Med. 7:125–130.PubMedCrossRefGoogle Scholar
  12. Braughler, J. M., Pregenzer, J. F., Chase, R. L., Duncan, L. A., Jacobsen, E. J., and McCall, J. M., 1987, Novel 21-aminosteroids as potent inhibitors of iron-dependent lipid peroxidation, J. Biol. Chem. 262:10438–10440.PubMedGoogle Scholar
  13. Clemens, J. A., Ho, P. P. K., and Panetta, J. A., 1991, LY178002 reduces rat brain damage after transient global ischemia, Stroke 22:1048–1052.PubMedCrossRefGoogle Scholar
  14. Cohen, G., 1986, Monoamine oxidase, hydrogen peroxide and Parkinson’s disease, Adv. Neurol. 45:119–125.Google Scholar
  15. Grammas, P., Liu, G.-J., Wood, K., and Floyd, R. A., 1993, Anoxia/reoxygenation induces hydroxyl free radical formation in brain microvessels, Free Rad. Biol. Med. 14:553–557.PubMedCrossRefGoogle Scholar
  16. Gurney, M. E., Cutting, F. B., Zhai, P., Doble, A., Taylor, C. P., Andrus, P. K., and Hall, E. D., 1996, Antioxidants and inhibitors of glutamatergic transmission have therapeutic benefit in a transgenic model of familial amyotrophic lateral sclerosis, Ann. Neurol. 39:147–157.PubMedCrossRefGoogle Scholar
  17. Hall, E. D., 1992, Neuroprotective pharmacology of methylprednisolone: A review, J. Neurosurg. 76:13–22.PubMedCrossRefGoogle Scholar
  18. Hall, E. D., and Braughler, J. M., 1989, Central nervous system trauma and stroke: II. Physiological and pharmacological evidence for the involvement of oxygen radicals and lipid peroxidation, Free Rad. Biol. Med. 6:303–313.PubMedCrossRefGoogle Scholar
  19. Hall, E. D., and Braughler, J. M., 1993, Free radicals in CNS injury, in: Molecular and Cellular Approaches to the Treatment of Neurological Diseases (S. G. Waxman, ed.), Raven Press, New York, pp. 81–105.Google Scholar
  20. Hall, E. D., Pazara, K. E., and Braughler, J. M., 1988, The 21-aminosteroid lipid peroxidation inhibitor U-74006F protects against cerebral ischemia in gerbils, Stroke 19:997–1002.PubMedCrossRefGoogle Scholar
  21. Hall, E. D., Yonkers, P. A., Horan, K. L., and Braughler, J. M., 1989, Correlation between attenuation of posttraumatic spinal cord ischemia and preservation of vitamin E by the 21-aminosteroid U-74006F: Evidence for an in vivo antioxidant action, J. Neurotrauma 6:169–176.PubMedCrossRefGoogle Scholar
  22. Hall, E. D., Pazara, K. E., Braughler, J. M., Linseman, K. L., and Jacobsen, E. J., 1990, Non-steroidal lazaroid U-78517F in models of focal and global cerebral ischemia, Stroke 21(Suppl III):83–87.Google Scholar
  23. Hall, E. D., Braughler, J. M., Yonkers, P. A., Smith, S. L., Linseman, K. L., Means, E. D., Scherch, H. M., Jacobsen, E. J., and Lahti, R. A., 1991a, U-78517F: A potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia, J. Pharmacol. Exp. Ther. 258:688–694.PubMedGoogle Scholar
  24. Hall, E. D., Pazara, K. E., and Braughler, J. M., 1991b, Effects of tirilazad mesylate on post-ischemic brain lipid peroxidation and recovery of extracellular calcium in gerbils, Stroke 22:361–366.PubMedCrossRefGoogle Scholar
  25. Hall, E. D., Yonkers, P. A., Andrus, P. K., Cox, J. W., and Anderson, D. K., 1992, Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury, J. Neurotrauma 9(Suppl 2):425–442.CrossRefGoogle Scholar
  26. Hall, E. D., Andrus, P. K., and Yonkers, P. A., 1993, Brain hydroxyl radical generation in acute experimental head injury, J. Neurochem. 60:588–594.PubMedCrossRefGoogle Scholar
  27. Hall, E. D., McCall, J. M., and Means, E. D., 1994, Therapeutic potential of the lazaroids (21-aminosteroids) in CNS trauma, ischemia and subarachnoid hemorrhage, Adv. Pharmacol. 28:221–268.PubMedCrossRefGoogle Scholar
  28. Hall, E. D., Andrus, P. K., Smith, S. L., Oostveen, J. A., Scherch, H. M., Lutzke, B. S., Raub, T. J., Sawada, G. A., Palmer, J. R., Banitt, L. S., Tustin, J. M., Belonga, K. L., Ayer, D. E., and Bundy, G. L., 1995, Neuroprotective efficacy of microvascularly-localized versus brain-penetrating antioxidants, Acta Neurochir. 66(Suppl.):107–113.Google Scholar
  29. Halliwell, B., and Gutteridge, J. M. C., 1991, Free Radicals in Biology and Medicine, Oxford University Press, New York, pp. 1–543.Google Scholar
  30. Imaizumi, S., Woolworth, V., Fishman, R. A., and Chan, P. H., 1990, Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats, Stroke 21:1312–1317.PubMedCrossRefGoogle Scholar
  31. Jenner, P., Schapira, A. H. V., and Marsden, C. D., 1992, New insights into the cause of Parkinson’s disease, Neurology 42:2241–2250.PubMedCrossRefGoogle Scholar
  32. Kassell, N., Haley, E. C., Apperson-Hansen, C., and Alves, W. M., 1996, A randomized double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: A cooperative study in Europe/Australia/New Zealand, J. Neurosurg. 84:221–228.PubMedCrossRefGoogle Scholar
  33. Kukreja, R. C., Kontos, H. A., Hess, M. L., and Ellis, E. F., 1986, PGH synthase and lipoxygenase generate superoxide in the presence of NADH and NADPH, Circ. Res. 59:612–619.PubMedCrossRefGoogle Scholar
  34. Kumar, K., White, B. C., Krause, G. S., Indrieri, R. J., Evans, A. T., Hoehner, T. J., Garritano, A. M., and Koestner, A., 1988, A quantitative morphological assessment of lidoflazine and deferoxamine therapy in global brain ischemia, Neurol. Res. 10:136–140.PubMedGoogle Scholar
  35. Lin, Y, and Phillis, J. W., 1992, Deoxycoformycin and oxypurinol: Protection against focal ischemic brain injury in the rat, Brain Res. 571:272–280.PubMedCrossRefGoogle Scholar
  36. MacDonald, R. L., Weir, B. K. A., Runzer, T. D., Grace, M. G. A., and Poznansky, M. J., 1992, Effect of intrathecal superoxide dismutase and catalase on oxyhemoglobin-induced vasospasm in monkeys, Neurosurgery 30:529–539.PubMedCrossRefGoogle Scholar
  37. Mathews, W. R., Marschke, C. K., Jr., and McKenna, R., 1992, Tirilazad mesylate protects endothelium from damage by reactive oxygen, J. Mol. Cell Cardiology 24(suppl. III):517.Google Scholar
  38. McCay, P. B., 1985, Vitamin E: Interactions with free radicals and ascorbate, Ann. Rev. Nutr. 5:323–340.CrossRefGoogle Scholar
  39. McCord, J. M., 1985, Oxygen-derived radicals in postischemic tissue injury, New Engl. J. Med. 312:159–163.PubMedCrossRefGoogle Scholar
  40. Monyer, H., Hartley, D. M., and Choi, D. W, 1990, 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures, Neuron 5:121–126.PubMedCrossRefGoogle Scholar
  41. Oostveen, J. A., Andrus, P. K., and Hall, E. D., 1995a, Attenuation of retrograde degeneration of nigrostriatal dopamine neurons in the gerbil forebrain ischemia model, J. Neurotrauma 12:967.Google Scholar
  42. Oostveen, J. A., Carter, D. B., Dunn, E. J., and Hall, E. D., 1995b, Effects of U-101033E on the expression of amyloid protein precursor, apolipoprotein E, glial fibrillary acidic protein and β-amyloid expression following a bilateral carotid occlusion in the gerbil, Neurosci. Abs. 21:1979.Google Scholar
  43. Pahlmark, K., Folbergrova, J., Smith, M.-L., and Siesjo, B. K., 1993, Effects of dimethylthiourea on selective neuronal vulnerability in forebrain ischemia in rats, Stroke 24:731–737.PubMedCrossRefGoogle Scholar
  44. Panter, S. S., Braughler, J. M., and Hall, E. D., 1992, Dextran-coupled deferoxamine improves outcome in a murine model of head injury, J. Neurotrauma 9:47–53.PubMedCrossRefGoogle Scholar
  45. Phillis, J. W., 1989, Oxypurinol attenuates ischemia-induced hippocampal damage in the gerbil, Brain Res. Bull 23:267–470.CrossRefGoogle Scholar
  46. Phillis, J. W., and Cao, X., 1994, N-t-butyl-α-phenylnitrone (PBN) attenuates focal cortical injury in the rat, Stroke 25:262.Google Scholar
  47. Phillis, J. W., and Clough-Helfman, C., 1990, Protection from cerebral ischemic injury in gerbils with the spin trap agent N-tert-butyl-alpha nitrone, Neurosci. Letts. 116:315–319.CrossRefGoogle Scholar
  48. Prehn, J. H. M., Karkoutly, C., Nuglisch, J., Peruche, B., and Krieglstein, J., 1992, Dihydrolipoate reduces neuronal injury after cerebral ischemia, J. Cereb. Blood Flow Metab. 12:78–87.PubMedCrossRefGoogle Scholar
  49. Raub, T. J., Barsuhn, C. L., Williams, L. R., Decker, D. E., Sawada, G. A., and Ho, N. F. H., 1993, Use of a biophysical-kinetic model to understand the roles of protein binding and membrane partitioning on passive diffusion of highly lipophilic molecules across cellular barriers, J. Drug Targeting 1:269–286.CrossRefGoogle Scholar
  50. Rohn, T. T., Hinds, T. R., and Vincenzi, F. F., 1993, Ion transport ATPases as targets for free radical damage: Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes, Biochem. Pharmacol. 46:525–534.PubMedCrossRefGoogle Scholar
  51. Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O’Regan, J. P., Deng, H.-X., Rahmani, Z., Krizus, A., McKenna-Yasek, D., Cayabyab, A., Gaston, S. M., Berger, R., Tanzi, R. E., Halperin, J. J., Herzfeldt, B., Van den Bergh, R., Hung, W.-Y., Bird, R., Deng, G., Mulder, D. W., Smyth, C., Laing, N. G., Soriano, E., Pericak-Vance, M. A., Haines, J., Rouleau, G. A., Gusella, J. S., Horvitz, H. R., and Brown, R. H., 1993, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 362:59–62.PubMedCrossRefGoogle Scholar
  52. Rosenthal, R. E., Chanderbhan, R., Marshall, G., and Fiskum, G., 1992, Prevention of post-ischemic brain lipid conjugated diene production and neurological injury by hydroxyl-ethyl starch-conjugated deferoxamine, Free Rad. Biol. Med. 12:29–33.PubMedCrossRefGoogle Scholar
  53. Sano, K., Asano, T., Tanishima, T., and Sasaki, T, 1980, Lipid peroxidation as a cause of cerebral vasospasm, Neurol. Res. 2:253–272.PubMedGoogle Scholar
  54. Siesjo, B. K., Agardh, C.-D., and Bengtsson, F., 1989, Free radicals and brain damage, Cerebrovasc. Brain Metab. Rev. 1:165–211.Google Scholar
  55. Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., and Floyd, R. A., 1991, Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 88:10540–10543.PubMedCrossRefGoogle Scholar
  56. Smith, M. A., Richey, P. L., Taneda, S., Kutty, R. K., Sayre, L. M., Monnier, V M., and Perry, G., 1994, Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease, Ann. N.Y. Acad. Sci. 738:447–454.PubMedCrossRefGoogle Scholar
  57. Spina, M. B., and Cohen, G., 1989, Dopamine turnover and glutathione oxidation: Implications for Parkinson’s disease, Proc. Natl. Acad. Sci. USA 86:1398–1400.PubMedCrossRefGoogle Scholar
  58. Subbarao, K. V., Richardson, J. S., and Ang, L. C., 1990, Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro, J. Neurochem. 55:342–345.PubMedCrossRefGoogle Scholar
  59. Traystman, R. J., Kirsch, J. R., and Koehler, R. C., 1991, Oxygen radical mechanisms of brain injury following ischemia and reperfusion, J. Appl. Physiol. 71:1185–1195.PubMedGoogle Scholar
  60. Uyama, O., Shiratsuki, N., Matsuyama, T., Nakanishi, T., Matsumoto, Y., Yamada, T., Narita, M., and Sugita, M., 1990, Protective effects of superoxide dismutase on acute cerebral injury of gerbil brain, Free Rad. Biol. Med. 8:265–268.PubMedCrossRefGoogle Scholar
  61. Uyama, O., Matsuyama, T., Michishita, H., Nakamura, H., and Sugita, M., 1992, Protective effects of human recombinant superoxide dismutase on transient ischemic injury of CA1 neurons in gerbils, Stroke 23:75–81.PubMedCrossRefGoogle Scholar
  62. Vollmer, D. G., Hongo, K., Ogawa, H., Tsukahara, T., and Kassell, N. F., 1991, A study of the effectiveness of the iron-chelating agent deferoxamine as vasospasm propylaxis in a rabbit model of subarachnoid hemorrhage, Neurosurgery 28:27–32.PubMedCrossRefGoogle Scholar
  63. White, D. A., 1973, The phospholipid composition of mammalian tissues, in: Function of Phospholipids (G. B. Ansell, J. N. Hawthorne, and R. M. Dawson, eds.), Elsevier, Amsterdam, pp. 441–482.Google Scholar
  64. Youdim, M. B. H., Ben-Schachar, D., and Riederer, P., 1993, The possible role of iron in the etiopathology of Parkinson’s disease, Movement Disorders 8:1–12.PubMedCrossRefGoogle Scholar
  65. Zaleska, M. M., and Floyd, R. A., 1985, Regional lipid peroxidation in rat brain in vitro: Possible role of endogenous iron, Neurochem. Res. 10:397–410.PubMedCrossRefGoogle Scholar
  66. Zhang, J., and Piantodosi, C. A., 1994, Prolonged production of hydroxyl radical in rat hippocampus after brain ischemia-reperfusion is decreased by 21-aminosteroids, Neurosci. Letts. 177:127–130.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Edward D. Hall
    • 1
  1. 1.CNS Diseases Research, Pharmacia and Upjohn, Inc.KalamazooUSA

Personalised recommendations