The use of antipsychotic drugs is associated with a number of neurologic complications. Some of these complications occur after acute administration, while others occur after chronic use of the drugs (Table 16.1). The treatment of the acute side-effects often involves decreasing the amount of neuroleptics. When this is not possible because of the patients’ clinical status, the addition of anticholinergic drugs can provide significant relief to the patients. The treatment of the long-term complications of neuroleptics is more complicated. Thus, the purpose of this chapter is to touch briefly on the role of some therapeutic approaches to tardive dyskinesia and to elaborate on the idea that oxidative stress plays a role in the manifestations of this neurologic syndrome.


Amyotrophic Lateral Sclerosis Tardive Dyskinesia Neuropathological Finding Oral Dyskinesia Akathisia Tardive 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, L. A., Preselow, E., Rotrosen, J., Duncan, E., Lee, M., Rosenthal, M., and Angrist, B., 1993, Vitamin E treatment of tardive dyskinesia, Am. J. Psych. 150:1405–1407.Google Scholar
  2. Aksel, J. S., 1956, Etude clinique et experimentale del’hibernotherapie, Encephale 45:566.PubMedGoogle Scholar
  3. Alpert, M., Friedhoff, A. J., and Diamond, F., 1983, Use of dopamine receptor number as treatment for tardive dyskinesia, in: Advances in Neurology: Experimental Therapeutics of Movement Disorders. Vol. 37 (S. Fahn, D. B. Calne, and I. Shoulson, eds.) Raven Press, New York, pp. 253–258.Google Scholar
  4. Altrocchi, P. H., 1972, Spontaneous oral-facial dyskinesia, Arch. Neurol. 26:506–512.PubMedCrossRefGoogle Scholar
  5. Barnes, T. R. E., Rossor, M., and Trauer, T., 1983, A comparison of purposeless movements in psychiatric patients treated with antipsychotic drugs, and normal individuals, J. Neurol. Neurosurg. Psych. 46:540–546.CrossRefGoogle Scholar
  6. Bell, D. S., 1965, Comparison of amphetamine psychosis and schizophrenia, Br. J. Psych. 111:701–707.CrossRefGoogle Scholar
  7. Benes, F. M., Paskevich, P. A., and Domesick, V B., 1983, Haloperidol-induced plasticity of axon terminals in rat substantia nigra, Science 221:969–971.PubMedCrossRefGoogle Scholar
  8. Benes, F. M., Paskevich, P. A., Davidson, J., and Domesick, V. B., 1985, The effects of haloperidol on synaptic patterns in the rat striatum, Brain Res. 329:265–274.PubMedCrossRefGoogle Scholar
  9. Bird, E. D., Collins, G. H., Dodson, M. H., and Grant, L. G., 1967, The effect of phenothiazine on the manganese concentration in the basal ganglia of subhuman primates, in: Progress in Neurogenetics (A. Barbeau and J. R. Burnette, eds.), Excerpta Medica, Montreal, pp. 600–605.Google Scholar
  10. Bourgeois, M., Bouilh, P., Tignol, J., and Yesavage, J., 1980, Spontaneous dyskinesia vs. neuroleptic-induced dyskinesia in 270 elderly subjects, J. Nerv. Ment. Dis. 168:177–178.PubMedCrossRefGoogle Scholar
  11. Brandon, S., McClellan, H. A., and Protheroe, C., 1971, A study of facial dyskinesia in a mental population, Br. J. Psych. 118:171–184.CrossRefGoogle Scholar
  12. Bredt, D. S., and Snyder, S. H., 1990, Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme, Proc. Natl. Acad. Sci. USA 87:682–685.PubMedCrossRefGoogle Scholar
  13. Cadet, J. L., 1988, A unifying hypothesis of movement and madness; involvement of free radical in disorders of the isodenderitic core, Med. Hypoth. 27:5963.CrossRefGoogle Scholar
  14. Cadet, J. L., 1993, Movement disorders: therapeutic role of vitamin E, Toxicol. Ind. Health 9:337–347.PubMedGoogle Scholar
  15. Cadet, J. L., and Lohr, I. B., 1989, Possible involvement of free radicals in neurolepticinduced movement disorders: Evidence from treatment of tardive dyskinesia with vitamin E, Ann. N.Y. Acad. Sci. 570:176–185.PubMedCrossRefGoogle Scholar
  16. Cadet, J. L., and Perumal, A. S., 1990, Chronic treatment with prolixin causes oxidative stress in the rat brain, Biol. Psych. 28:738–740.CrossRefGoogle Scholar
  17. Campbell, W. G., Raskind, M. A., Gordon, T., and Shaw, C. M., 1985, Iron pigment in the brain of a man with tardive dyskinesia, Am. J. Psych. 142:364–365.Google Scholar
  18. Chouinard, G., Annable, L., Mercier, P., and Ross-Chouinard, A., 1986, A five-year followup study of tardive dyskinesia, Psychopharm. Bull. 22:259–263.Google Scholar
  19. Christensen, E., Moller, J. D., and Faurbye, A., 1970, Neuropathological investigation of 28 brains from patients with dyskinesia, Acta Psychiatr. Scand. 46:14–23.PubMedCrossRefGoogle Scholar
  20. Clow, A., Theordorou, A., Jenner, P., and Marsden, C. D., 1980, Cerebral dopamine function in rats following withdrawal from one year of continuous neuroleptic administration, Eur. J. Pharmacol. 63:135–144.PubMedCrossRefGoogle Scholar
  21. Cohen, B. M., and Zubenko, G. S., 1985, In vivo effects of psychotropic agents on the physical pertest of cell membranes in the rat brain, Psychopharmacology 86:365–368.PubMedCrossRefGoogle Scholar
  22. Cohen, G., 1984, Oxyradical toxicity in catecholamine neurons, Neurotoxicology 5:7782.Google Scholar
  23. Crane, G. E., 1971, Persistence of neurological symptoms due to neuroleptic drugs, Am. J. Psych. 127:1407–1410.Google Scholar
  24. Crane, G. E., 1972, Pseudoparkinsonism and tardive dyskinesia, Arch. Neurol. 27:426–430.PubMedCrossRefGoogle Scholar
  25. Crow, T. J., Bloom, S. R., Cross, A. J., Ferrier, I. N., Johnstone, E. C., Woen, F., Owens, D. G. C., and Roberts, G. W., 1984, Abnormal involuntary movements schizophrenia: Neuro-chemical correlates and relation to the disease process, in: Catecholamines: Neuropharmacology and Central Nervous System I. Therapeutic Aspects (E. Usdin, A. Carlsson, A. Dahlstrom, and J. Engel, eds.), Alan R. Liss, New York, pp. 61–67.Google Scholar
  26. Dawson, V. L., Dawson, T. D., London, E. D., Bredt, D. S., and Snyder, S. H., 1991, Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures, Proc. Natl. Acad. Sci. USA 88:6368–6371.PubMedCrossRefGoogle Scholar
  27. Dom, S., 1967, Local glial reaction in the CNS of albino-rats in response to the administration of a neuroleptic drug (butyrophenone), Acta Neurol. Belg. 67:755–762.Google Scholar
  28. Dynes, J. B., 1970, Oral dyskinesia—occurrence and treatment, Dis. Nerv. Syst. 31:854–950.PubMedGoogle Scholar
  29. Edwards, H., 1980, The significance of brain damage in persistent oral dyskinesia, Br. J. Psych. 116:271–275.CrossRefGoogle Scholar
  30. Egan, M-F, Hyde, T. M., Albers, G. W., Elkashef, A., Alexander, R., Reeve, A., Blum, A., Saenz, R. E., and Wyatt, R. J., 1992, Treatment of tardive dyskinesia with vitamin E, Am. J. Psych. 149:773–777.Google Scholar
  31. Elkashef, A. M., Ruskin, P. E., Bacher, N., and Barrett, D., 1990, Vitamin E in the treatment of tardive dyskinesia, Am. J. Psych. 147:505–506.Google Scholar
  32. Fahn, S., 1978, Treatment of tardive dyskinesia with combined reserpine and alpha-methyltyrosine, Trans. Am. Neurol. Assoc. 103:100–103.PubMedGoogle Scholar
  33. Fibiger, H. C., and Lloyd, K. G., 1984, Neurobiological substrates of tardive dyskinesia: the GABA hypothesis, Trends Neurosci. 7:462–464.CrossRefGoogle Scholar
  34. Gattaz, W. F., Emrich, A., and Behrens, S., 1993, Vitamin E attenuates the development of haloperidol-induced dopaminergic hypersensitivity in rats: Possible implications for tardive dyskinesia, J. Neural Transm. (GenSect) 92:197–201.CrossRefGoogle Scholar
  35. Gerlach, J., 1975, Long-term effect of perphenazine on the substantia nigra in rats, Psychopharmacologia (Berlin) 45:51–54.CrossRefGoogle Scholar
  36. Gross, H., and Kaltenbach, E., 1969, Neuropathological findings in persistent hyperkinesia after neuroleptic long-term therapy, in: The Present Status of Psychotropic Drugs (A. Cerletti and F J. Bove, eds.), Excerpta Medica, Amsterdam, pp. 474–480.Google Scholar
  37. Gunne, L. M., and Haggstrom, J. E., 1983, Reduction of nigral glutamic acid decarboxylase in rats with neuroleptic-induced oral dyskinesia, Psychopharmacology 81:191–194.PubMedCrossRefGoogle Scholar
  38. Gunne, L. M., Haggstrom, J. E., and Sjoquist, G., 1984, Association with persistent neuroleptic-induced dyskinesia of regional changes in brain GABA synthesis, Nature 309:347–349.PubMedCrossRefGoogle Scholar
  39. Huie, R. E., and Padmaja, S., 1992, The reaction of NO with superoxide, Free Radical Res. Commun. 18:195–199.CrossRefGoogle Scholar
  40. Hunter, R., Blackwood, E., Smith, M. C., and Cumings, J. N., 1968, Neuropathological findings in three cases of persistent dyskinesia following phenothiazines, J. Neurol. Sci. 7:263–273.PubMedCrossRefGoogle Scholar
  41. Jellinger, K., 1977, Neuropathological findings after neuroleptic long-term therapy, in: Neurotoxicology (L. Roizin, H. Shiraki, and N. Greevic, eds.), Raven Press, New York, pp. 25–42.Google Scholar
  42. Jeste, D. V, and Wyatt, R. J., 1981, Dogma disputed: Is tardive dyskinesia due to postsynaptic dopamine receptor supersensitivity?, J. Clin. Psych. 42:455–457.Google Scholar
  43. Jeste, D. V, and Wyatt, R. J., 1982, Understanding and Treating Tardive Dyskinesia, Guildford Press, New York.Google Scholar
  44. Kane, J., Woerner, M., Weinhold, P., Wegner, J., Kinon, B., and Borenstein, M., 1984, Incidence of tardive dyskinesia: five-year data from a perspective study, Psychopharm. Bull. 20:387–389.Google Scholar
  45. King, R., Barchas, J. D., and Huberman, B. A., 1984, Chaotic behavior in dopamine neurodynamics, Proc. Natl. Acad. Sci. USA 81:1244–1247.PubMedCrossRefGoogle Scholar
  46. Koizumi, J., and Shiraishi, H., 1970, Glycogen accumulation in astrocytes of the striatum and palladium of the rabbit following administration of psychotropic drugs, J. Electron Microsc. 19:182–187.Google Scholar
  47. Koizumi, J., and Shiraishi, H., 1973a, Synaptic changes in the rabbit palladium following long-term haloperidol administration, Folia Psychiatr. Neurol. Jap. 27:51–57.Google Scholar
  48. Koizumi, J., and Shiraishi, H., 1973b, Synaptic alteration in the hypothalamus of the rabbit following long-term chlorpromazine administration, Folia Psychiatr. Neurol. Jap. 27:59–67.Google Scholar
  49. Lieberman, J., Kane, J. M., Woerner, M., Weinhold, P., Basavaraju, N., Kurucz, J., and Bergmann, K., 1984, Prevalence of tardive dyskinesia in elderly samples, Psychopharm. Bull. 20:382–386.Google Scholar
  50. Lohr, J. B., Kuczenski, R., Bracha, H. S., Moir, M., and Jeste, D. V., 1990, Increased indices of free radical activity in the cerebrospinal fluid of patients with tardive dyskinesia, Biol. Psychiatry 28:535–539.PubMedCrossRefGoogle Scholar
  51. Mackiewicz, J., and Gershon, S., 1964, An experimental study of the neuropathological and toxicological effects of chlorpromazine and reserpine, J. Neuropsych. 5:159–169.Google Scholar
  52. Melhorn, R. J., and Cole, G., 1985, The free radical theory of aging: A critical review, Adv. Free Rad. Biol. Med. 1:165–223.CrossRefGoogle Scholar
  53. Myslobodsky, M. S., 1986, Anosognosia in tardive dyskinesia: “tardive dysmentia” or “tardive dementia”?, Schizophr. Bull. 12:1–6.PubMedCrossRefGoogle Scholar
  54. Myslobodky, M. S., Tomer, R., Holden, T., Kempler, S., and Sigal, M., 1985, Cognitive impairment in patients with tardive dyskinesia, J. Nerv. Ment. Dis. 173:156–160.CrossRefGoogle Scholar
  55. Nielsen, E. B., and Lyon, M., 1978, Evidence for cell loss in corpus striatum after long-term treatment with a neuroleptic drug (flupenthixol in rats), Psychopharmacology 59:85–87.PubMedCrossRefGoogle Scholar
  56. Oury, T. D., Ho, Y-S., Piantadosi, C. A., and Crapo, J. D., 1992, Extra-cellular superoxide dismutase, nitric oxide, and central nervous system of O2 toxicity, Proc. Natl. Acad. Sci. USA 89:9715–9719.PubMedCrossRefGoogle Scholar
  57. Owens, D. G. C., Johnstone, E. C., and Frith, C. D., 1982, Spontaneous involuntary disorders of movement in neuroleptic treated and untreated chronic schizophrenics: prevalence, severity and distribution, Arch. Gen. Psych. 39:452–461.CrossRefGoogle Scholar
  58. Pakkenberg, H., and Fog, R., 1974, Short-term effect of perphenazine enanthate on the rat brain, Psychopharmacologia (Berlin) 40:165–169.CrossRefGoogle Scholar
  59. Pakkenberg, H., Fog, R., and Nilakantan, B., 1973, The long-term effect of perphenazine enanthate on the rat brain. Some metabolic and anatomical observations, Psychopharmacologia (Berlin) 29:329–336.PubMedCrossRefGoogle Scholar
  60. Peet, M., Laugharne, J., Rangarajan, N., and Reynolds, G. P., 1993, Tardive dyskinesia, lipid peroxidation, and sustained amelioration with vitamin E treatment, Int. Clin. Psychopharmacol. 8:151–153.PubMedCrossRefGoogle Scholar
  61. Richardson, M. A., and Craig, T. J., 1982, The coexistence of parkinsonism-like symptoms and tardive dyskinesia, Am. J. Psych. 139:341–343.Google Scholar
  62. Richardson, M. A., Haughland, G., Pass, R., and Craig, T. J., 1986, The prevalence of tardive dyskinesia in a mentally retarded population, Psychopharmacol. Bull. 22:243–249.PubMedGoogle Scholar
  63. Roisin, L., True, C., and Knight, M., 1959, Structural effects of tranquilizers, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 37:285–324.Google Scholar
  64. Shriqui, C. L., Bradwejn, J., Annable, L., and Jones, B. D., 1992, Vitamin E in the treatment of tardive dyskinesia: A double-blind placebo-controlled study, Am. J. Psych. 149:391–393.Google Scholar
  65. Sigwald, J., Bouttier, D., Raymondeaud, C., and Piot, C., 1959, Quatre cas de dyskinesie facio-buccio-lingui-masticatrice a revolution prolongee secondaire a un traitement par les neuroleptiques, Rec. Neurol. 100:751–755.Google Scholar
  66. Spivak, B., Schwartz, B., Radwan, M., and Weizman, A., 1992, a-Tocopherol treatment of tardive dyskinesia, J. Nerv. Ment. Dis. 180:400–401.PubMedCrossRefGoogle Scholar
  67. Struve, F. A., and Wilner, W. E., 1983, Cognitive dysfunction and tardive dyskinesia, Br. J. Psych. 143:597–600.CrossRefGoogle Scholar
  68. Tamminga, C. A., Crayton, J. W., and Chase, T. N., 1980, Improvement in tardive dyskinesia after muscimol therapy, Arch. Gen. Psych. 37:1376–1379.CrossRefGoogle Scholar
  69. Waddington, J. L., and Gamble, S. J., 1980a, Neuroleptic treatment for a substantial proportion of adult life: Behavioral sequelae of 9 months haloperidol administration, Eur. J. Pharmacol. 67:363–369.PubMedCrossRefGoogle Scholar
  70. Waddington, J. L., and Gamble, S. J., 1980b, Spontaneous activity and apomorphine stereotypy during and after withdrawal from 3½ months continuous administration of haloperidol, Psychopharmacology 71:75–77.PubMedCrossRefGoogle Scholar
  71. Waddington, J. L., and Gamble, S. J., 1980, Emergence of apomorphine-induced “vacuous chewing” during 6 months continuous treatment with fluphenazine decanoate, Eur. J. Pharmacol. 68:387–388.PubMedCrossRefGoogle Scholar
  72. Waddington, J. L., Gamble, S. J., and Blourne, R. C., 1981, Sequelae of 6 months continuous administration of cis (Z)- and trans(E)-flupenthixol in the rat, Eur. J. Pharmacol. 69:511–513.PubMedCrossRefGoogle Scholar
  73. Weiner, W. J., Nausieda, P. A., and Klawans, H. L., 1980, Regional brain manganese in an animal model of tardive dyskinesia, in: Tardive Dyskinesia: Research and SP (W. E. Fann, R. C. Smith, J. M. Davis, and E. F. Domino, eds.), Medical and Scientific Books, New York, pp. 159–163.CrossRefGoogle Scholar
  74. Wilson, I. C., Garbutt, J. C., Lanier, C. F., Moylan, J., Nelsoln, W., and Prange, Jr., A. J., 1983, Is there a tardive dysmentia?, Schizopkr. Bull. 9:187–192.CrossRefGoogle Scholar
  75. Zubenko, G. S., and Cohen, B. M., 1984, In vitro effects of psychotropic agents on the microviscosisty of platelet membranes, Psychopharmacology 84:289–292.PubMedCrossRefGoogle Scholar
  76. Zubenko, G. S., and Cohen, B. M., 1985, Effects of phenothiazine treatment on the physical properties of platelet membranes from psychiatric patients, Biol. Psych. 20:384–396.CrossRefGoogle Scholar
  77. Zubenko, G. S., and Cohen, B. M., 1986, A cell membrane correlate of tardive dyskinesia in patients treated with phenothiazines, Psychopharmacology 88:230–236.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jean Lud Cadet
    • 1
  1. 1.Molecular Neuropsychiatry Section, NIH/NIDAIntramural Research ProgramBaltimoreUSA

Personalised recommendations