The Role of Oxidative Processes and Metal Ions in Aging and Alzheimer’s Disease

  • Leslie A. Shinobu
  • M. Flint Beal


Normal aging is associated with the slow progressive development of physiologic deficits accompanied by a subtle degree of cognitive involvement. A host of reviews summarizing the major biochemical changes associated with aging have been published over the last few years (Kehrer and Lund, 1994; Shigenaga and Ames, 1994; Ames et al., 1993; Beal, 1993; Stadtman, 1992; Mooradian and Wong, 1991). Comprehensive lists of the panoply of age-related changes seen in man may be found in the CRC Handbook of Biochemistry in Aging (Florini, 1981) and the CRC Handbook of Physiology in Aging (Masoro, 1981).


Alzheimer Disease Cytochrome Oxidase Amyloid Precursor Protein Neurofibrillary Tangle Senile Plaque 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Ghany, M., El-Sabae, A. K., and Shalloway, D., 1993, Aluminum-induced nonenzymic phospho-incorporation into human tau and other proteins, J. Biol. Chem. 268:11976–11981.PubMedGoogle Scholar
  2. Adams, J. D., Jr., Kaidman, L. K., Odunze, I. N., Shen, H. C., and Miller, C. A., 1991, Alzheimer’s and Parkinson’s disease. Brain levels of glutathione, glutathione disulfide, and vitamin E, Mol. Chem. Neuropathol. 14:213–226.PubMedCrossRefGoogle Scholar
  3. Agnoli, A., Fabbrini, G., Fioravanti, M., and Marucci, N., 1992, CBF and cognitive evaluation of Alzheimer type patients before and after IMAO-B treatment: A pilot study, Eur. Neuropsychopharmacol. 2:31–35.PubMedCrossRefGoogle Scholar
  4. Ahlskog, J. E., Uitti, R. J., Low, P. A., Tyce, G. M., Nickander, K. K., Petersen, R. C., and Kokmen, E., 1995, No evidence for systemic oxidant stress in Parkinson’s or Alzheimer’s disease, Mov. Dis. 10:566–573.CrossRefGoogle Scholar
  5. Alberts, M. J., Ioannu, P., Deucher, R., Gilbert, J., Lee, J., Middleton, L., Roses, A. D., 1992, Isolation of a cytochrome oxidase gene overexpressed secretase cleavage of amyloid precursor protein, J. Neurochem. 64:307–315.Google Scholar
  6. Ames, B. N., Shigenaga, M. K., and Hagen, T. M., 1993, Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl Acad. Sci. USA 90:7915–7922.PubMedCrossRefGoogle Scholar
  7. Anderson, A. J., Cummings, B. J., and Cotman, C. W., 1994, Increased immunoreactivity for jun- and fos-related proteins in Alzheimer’s disease: Association with pathology, Exp. Neurol 125:286–295.PubMedCrossRefGoogle Scholar
  8. Andorn, A. C., Britton, R. S., and Bacon, B. R., 1990, Evidence that lipid peroxidation and total iron are increased in Alzheimer’s brain, Neurobiol. Aging 1:316.Google Scholar
  9. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P., 1995, Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function, Neuron 15:961–973.PubMedCrossRefGoogle Scholar
  10. Anneren, G., Gardner, A., and Lundin, T., 1986, Increased glutathione peroxidase activity in erythrocytes in patients with Alzheimer’s disease/senile dementia of Alzheimer’s type, Acta. Neurol. Scand. 73:586–589.PubMedCrossRefGoogle Scholar
  11. Arispe, N., Rojas, E., and Pollard, H. B., 1993, Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: Blockade by tomethamine and aluminum, Proc. Natl. Acad. Sci. USA 90:567–571.PubMedCrossRefGoogle Scholar
  12. Arnheim, N., and Cortopassi, G., 1992, Deleterious mitochondrial DNA mutations accumulate in aging human tissues, Mutat. Res. 275:157–167.PubMedCrossRefGoogle Scholar
  13. Asano, K., Amagase, S., Matsura, E. T., and Yamagishi, H., 1991, Changes in the rat liver mitochondrial DNA upon aging, Mech. Ageing Dev. 60:275–284.PubMedCrossRefGoogle Scholar
  14. Balzacs, L., and Leon, M., 1994, Evidence of an oxidative challenge in the Alzheimer’s brain, Neurochem. Res. 19:1131–1137.CrossRefGoogle Scholar
  15. Beal, M. F., 1993, Neurochemical aspects of aging in primates, Neurobiol Aging 14:707–709.PubMedCrossRefGoogle Scholar
  16. Beal, M. F., 1994, Energy, oxidative damage, and Alzheimer’s disease: Clues to the underlying puzzle, Neurobiol. Aging 15:171–174.CrossRefGoogle Scholar
  17. Beal, M. F., 1995, Aging, energy, and oxidative stress in neurodegenerative diseases, Ann. Neurol. 38:357–366.PubMedCrossRefGoogle Scholar
  18. Behl, C., Davis, J. B., Klier, F. G., and Schubert, D., 1994a, Amyloid beta peptide induces necrosis rather than apoptosis, Brain Res. 645:253–264.PubMedCrossRefGoogle Scholar
  19. Behl, C., Davis, J. B., Lesley, R., and Schubert, D., 1994b, Hydrogen peroxide mediates amyloid beta protein toxicity, Cell 77:817–827.PubMedCrossRefGoogle Scholar
  20. Bennett, M. C., Diamond, D. M., Stryker, S. L., Parks, J. K., and Parker, W. D. Jr., 1992, Cytocyhrome oxidase inhibition: A novel animal model of Alzheimer’s disease, J. Geriatr. Psych. Neurol. 5:93–101.Google Scholar
  21. Bittles, A. H., 1992, Evidence for and against the causal involvement of mitochondrial DNA mutation in mammalian ageing, Mutat. Res. 275:217–225.PubMedCrossRefGoogle Scholar
  22. Bodovitz, S., Dalduto, M. T., Frail, D. E., and Klein, W. L., 1995, Iron levels modulate alpha-secretase cleavage of amyloid precursor protein, J. Neurochem. 64:307–315.PubMedCrossRefGoogle Scholar
  23. Boffoli, D., Scacco, S. C., Vergari, R., Solaruno, G., Santancroce, G., Papa, S., 1994, Decline with age of the respiratory chain activity in human skeletal muscle, Biochim. Biophys. Acta 1226:73–82.PubMedCrossRefGoogle Scholar
  24. Bonfoco, E., Drainic, D., Ankarcrona, M., Nicotera, P., and Lipton, S. A., 1995, Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures, Proc. Natl Acad. Sci. USA 92:7162–7166.PubMedCrossRefGoogle Scholar
  25. Bourgeron, T., Rustin, P., Chretien, D., Birch-machin, M., Bourgeois, M., Viegas-Pequignot, E., Munnich, A., and Rotig, A., 1995, Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency, Nature Genet. 11:144–149.PubMedCrossRefGoogle Scholar
  26. Bowling, A. C., and Beal, M. F., 1994, Aging, energy and Alzheimer’s disease, in: Amyloid Protein Precursor in Development, Aging and Alzheimer’s Disease (C. L. Masters, K. Beyreuther, M. Trillet, and Y. Christen, eds.), Springer-Verlag, Berlin, pp. 216–227.Google Scholar
  27. Bowling, A. C., and Beal, M. F., 1995, Bioenergetic and oxidative stress in neurodegenerative diseases, Life Sci. 56:1151–1171.PubMedCrossRefGoogle Scholar
  28. Bowling, A. C., Mutisya, E., Walker, L. C., Price, D. L., Cork, L. C., and Beal, M. F., 1993, Age-dependent impairment of mitochondrial function in primate brain, J. Neurochem. 60:1964–1967.PubMedCrossRefGoogle Scholar
  29. Bray, T. M., and Bettger, W. J., 1990, The physiological role of zinc as an antioxidant, Free Rad. Biol. Med. 8:281–291.PubMedCrossRefGoogle Scholar
  30. Brookes, A. J., and St. Clair, D., 1994, Synuclein proteins and Alzheimer’s disease, Trends Neurosci. 17:404–405.PubMedCrossRefGoogle Scholar
  31. Brown, G. G., Levine, S. R., Gorell, J. M., Pettegrew, J. W., Gdowski, J. W., Bueri, J. A., Helpern, J. A., and Welch, K. M., 1989, In vivo 3 IP NMR profiles of Alzheimer’s disease and multiple subcortical infarct dementia, Neurology 39:1423–1427.PubMedCrossRefGoogle Scholar
  32. Brown, M. D., Shoffner, J. M., Kim, Y. L., Jun, A. S., Graham, B. H., Cabell, M. F., Buley, D. S., and Wallace, D. C., 1996, Mitochondrial DNA sequence analysis of four Alzheimer’s and Parkinson’s disease patients, Am. J. Med. Genet. 61:283–289.PubMedCrossRefGoogle Scholar
  33. Busciglio, J., and Yankner, B. A., 1995, Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro, Nature 378:776–779.PubMedCrossRefGoogle Scholar
  34. Burnet, F. M., 1981, A possible role of zinc in the pathology of dementia, Lancet i: 186–188.CrossRefGoogle Scholar
  35. Bush, A. I., Multhaup, G., Moir, R. D., Williamson, T. G., Small, D. H., Rumble, B., Pollwein, P., Beyreuther, K., and Masters, C. L., 1993, A novel zinc(II) binding site modulates the function of the ßA4 amyloid protein precursor of Alzheimer’s disease, J. Biol. Chem. 268:16109–16112.PubMedGoogle Scholar
  36. Bush, A. I., Pettingell, W. H., Multhaup, G., Paradis, M., Vonsattel, J.-P, Gusella, J. F., Beyreuther, K., Masters, C. L., and Tanzi, R. E., 1994a, Rapid induction of Alzheimer Aß formation by zinc, Science 265:1464–1467.PubMedCrossRefGoogle Scholar
  37. Bush, A. I., Pettingell, W. H., Paradis, M. D., and Tanzi, R. E., 1994b, Modulation of Aß adhesiveness and secretase site cleavage by zinc, J. Biol. Chem. 269:12152–12158.PubMedGoogle Scholar
  38. Bush, A. I., Moir, R. D., Rosenkranz, K. M., and Ranzi, R. E., 1995, Zinc and Alzheimer’s disease, Science 268:1921–1922.PubMedCrossRefGoogle Scholar
  39. Butterfield, D. A., Hensley, K., Harris, M., Mattson, M., and Carney, J., 1994, β-amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: Implications to Alzheimer’s disease, Biochem. Biophys. Res. Comm. 200:710–715.PubMedCrossRefGoogle Scholar
  40. Butterworth, R. F., and Besnard, A. M., 1990, Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer’s disease, Metab. Brain Dis. 5:179–184.PubMedCrossRefGoogle Scholar
  41. Candy, J. M., Oakley, A. E., Klinowski, J., Carpenter, R. A., Perry, R. H., Atack, J. R., Perry, E. K., Blessed, G., Fairbairn, A., and Edwardson, J. A., 1986, Aluminosilicates and senile plaque formation in Alzheimer’s disease, Lancet i:354–357.CrossRefGoogle Scholar
  42. Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Landum, R. W., Cheng, J. M., Wu, J. F., and Floyed, R. A., 1991, Reversal of age-related increase in brain-protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-α-phenylnitrone, Proc. Natl. Acad. Sci. USA 88:3833–3636.CrossRefGoogle Scholar
  43. Carney, J. M., and Carney, A. M., 1994, Role of protein oxidation in aging and in age-associated neurodegenerative diseases, Life Sci. 55:2097–2103.PubMedCrossRefGoogle Scholar
  44. Ceballos-Picot, I., Merad-Boudia, M., Nicole, A., Thevenin, M., Hellier, G., Legrain, S., and Berr, C., 1996, Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer’s type-place of the extracellular glutathione peroxidase, Free Radic. Biol. Med. 20:579–587.PubMedCrossRefGoogle Scholar
  45. Cerammi, A., 1985, Hypothesis: Glucose as a mediator of aging, J. Am. Geri. Soc. 33:626–634.Google Scholar
  46. Chafi, A. H., Haw, J.-J., Rancurel, G., Berry, J.-P, and Galle, C., 1991, Absence of aluminum in Alzheimer’s disease brain tissue: Electron probe and ion microprobe studies, Neuroscience Lett. 123:61–64.CrossRefGoogle Scholar
  47. Chan, S., and Gerson, B., 1990, Technical aspects of quantification of aluminum, Clin. Lab. Med. 10:423–433.PubMedGoogle Scholar
  48. Chandrasekaran, K., Stoll, J., Rapoport, S. I., and Brady, D. R., 1992, Localization of cytochrome oxidase (COX) activity and COX mRNA in the hippocampus and entorhinal cortex of the monkey brain: correlation with specific neuronal pathway, Brain Res. 579:333–336.PubMedCrossRefGoogle Scholar
  49. Chandrasekaran, K., Giordano, R., Brady, D. R., Stoll, J., Martin, L. J., and Rapoport, S. I., 1994, Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease, Mol. Br. Res. 24:336–340.CrossRefGoogle Scholar
  50. Chazot, G., and Broussolle, E., 1993, Alterations in trace elements during brain aging and in Alzheimer’s dementia, Prog. Clin. Biol. Res. 380:269–281.PubMedGoogle Scholar
  51. Chen, L., Richardson, J. S., Caldwell, J. E., and Ang, L. C., 1994, Regional brain activity of free radical defense enzymes in autopsy samples from patients with Alzheimer’s disease and from nondemented controls, Intern. J. Neuroscience 75:83–90.CrossRefGoogle Scholar
  52. Connor, J. R., Menzies, S. L., St. Marin, S. M., and Mufson, E. J., 1992a, A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains, J. Neurosci. Res. 31:75–83.PubMedCrossRefGoogle Scholar
  53. Connor, J. R., Snyder, B. S., Beard, J. L., Fine, R. E., and Mufson, E. J., 1992b, The regional distribution of iron in aging and Alzheimer’s disease, J. Neurosci. Res. 31:327.PubMedCrossRefGoogle Scholar
  54. Connor, J. R., Tucker, P., Johnson, M., and Snyder, B., 1993, Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer’s disease, Neuroscience Lett. 159:88–90.CrossRefGoogle Scholar
  55. Connor, J. R., and Menzies, S. L., 1995, Cellular management of iron in the brain, J. Neurol. Sci. 134S:33–44.PubMedCrossRefGoogle Scholar
  56. Constaninidis, J and Tissot, R., 1981, Role of glutamate and zinc in the hippocampal lesions of Picks disease, in: Glutamate as a Neurotransmitter (G. Dichiara and L. Gessa, eds.), Raven Press, New York. p. 413.Google Scholar
  57. Constantinidis, J., 1990, Alzheimer’s disease and the zinc theory, Encephale 16:231–2399.PubMedGoogle Scholar
  58. Cooper, J. M., Mann, V. M., and Schapira, A. H. V., 1992, Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: Effect of ageing, J. Neurol. Sci. 113:91–98.PubMedCrossRefGoogle Scholar
  59. Corral-Debrinski, M., Stepien, G., Shoffner, J. M., Lott, M. T., Kanter, K., and Wallace, D., 1991, Hypoxemia is associated with mitochondrial DNA damage and gene induction: Implications for cardiac disease, JAMA 266:1812–1816.PubMedCrossRefGoogle Scholar
  60. Corral-Debrinski, M., Horton, R., Lott, M. T., Shoffner, J. M., Beal, M. F., and Wallace, D. C., 1992, Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age, Nature Genet. 2:324–329.PubMedCrossRefGoogle Scholar
  61. Corrigan, F. M., Van Rhijn, A., and Horrobin, D. F., 1993, Essential fatty acids in Alzheimer’s disease, Ann. New York Acad. Sci. 640:250–252.Google Scholar
  62. Cortopassi, G. A., and Arnheim, N., 1990, Detection of a specific mitochondrial DNA deletion in tissues of older humans, Nucleic Acids Res. 18:6927–6933.PubMedCrossRefGoogle Scholar
  63. Cortopassi, G. A., Shibata, D., Soong, N. W, and Arnheim, N. A., 1992, A pattern of accumulation of a somatic deletion in mitochondrial DNA of various tissues in ageing in human tissue, Proc. Natl. Acad. Sci. USA 89:7370–7374.PubMedCrossRefGoogle Scholar
  64. Cotman, C. W, and Anderson, A. J., 1995, A potential role for apoptosis in neurodegeneration and Alzheimer’s disease, Mol. Neurobiol. 10:19–45.PubMedCrossRefGoogle Scholar
  65. Cotton, P., 1994, Constellation of risks and processes seen in the search for Alzheimer’s clues, JAMA 271:89–91.PubMedCrossRefGoogle Scholar
  66. Crapper, D. R., Kirshnan, S. S., and Dalton, A. J., 1973, Aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration, Science 180:511–513.PubMedCrossRefGoogle Scholar
  67. Crapper-McLachlan, D. R., Dalton, A. J., Kruck, T. P. A., Bell, M. Y., Smith, W L., Kalow, W, and Andrews, D. R., 1991, Intramuscular desferoxamine in patients with Alzheimer’s disease, Lancet 337:1304–1308.PubMedCrossRefGoogle Scholar
  68. Davis, R. E., Miller, S., Herrnstadt, C., Ghosh, S. S., Fahy, E., Shinobu, L. A., Galasko, D., Thal, L. J., Beal, M. F., Howell, N., and Parker, W. D., 1997, Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease, Proc. Natl. Acad. Sci. USA 94:4526–4531.PubMedCrossRefGoogle Scholar
  69. Dedman, D. J., Trefry, M., Candy, J. M., Taylor, G. A. A., Morris, C. M., Bloxham, C. A., Perry, R. H., Edwardson, J. A., and Harrison, P. M., 1992, Iron and aluminum in relation to brain ferritin in normal individuals and Alzheimer’s disease and chronic renal-dialysis patients, Biochem. J. 287:509–514.PubMedGoogle Scholar
  70. Delaney, J. R., 1979, Spinal fluid aluminum levels in patients with Alzheimer’s disease, Ann. Neurol. 5:580–581.PubMedCrossRefGoogle Scholar
  71. de Lustig, E., Serra, J. A., Kohan, S., Canziani, G. A., Famulari, A. L., and Dominguez, R. O., 1993, Copper-zinc superoxide dismutase activity in red blood cells and serum in demented patients and in aging, J. Neurol Sci. 115:18–25.PubMedCrossRefGoogle Scholar
  72. De Stefano, N., Mathews, P. M., Ford, B., Genge, A., Karpati, G., and Arnold, D. L., 1995, Short-term dicholoroacetate treatment improves indices of cerebral metabolism in patients with mitochondrial disorders, Neurology 45:1193–1198.PubMedCrossRefGoogle Scholar
  73. Dexter, D. T., Sian, J., Jenner, P., and Marsden, C. D., 1993, Implications of alterations in trace element levels in brain in Parkinson’s disease and other neurological disorders affecting the basal ganglia, Adv. Neurol. 60:273–281.PubMedGoogle Scholar
  74. Dowson, J. H., Mountjoy, C. Q., Cairns, M. R., and Wilton-Cox, H., 1992, Changes in intraneuronal lipopigment in Alzheimer’s disease, Neurobiol. Aging 13:493–500.PubMedCrossRefGoogle Scholar
  75. Duara, R., Grady, C., Haxby, J., Sundaram, M., Cutler, N. R., Heston, L., Moore, A., Schlageter, N., Larson, S., and Rapoport, S. I., 1986, Positron emission tomography in Alzheimer’s disease, Neurology 36:879–887.PubMedCrossRefGoogle Scholar
  76. Dyrks, T., Dyrks, E., Hartmann, T., Masters, C., and Beyreuther, K., 1992, Amyloidogeneicity of ßA4 and ßA4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation, J. Biol. Chem. 267:18210–18217.PubMedGoogle Scholar
  77. Dyrks, T., Dyrks, E., Masters, C. L., and Beyreuther, K., 1993, Amyloidogeneicity of rodent and human ßA4 sequences, FEBS 324:231–236.CrossRefGoogle Scholar
  78. Eckert, A., Hartmann, H., Forstl, H., and Muller, W. E., 1994, Alterations in intracellular calcium regulation during aging and Alzheimer’s disease in nonneuronal cells, Life Sci. 55:2019–2029.PubMedCrossRefGoogle Scholar
  79. Edamatsu, R., Mori, A., and Packer, L., 1995, The spin-trap N-tert-α-phenyl-butylnitrone prolongs the life span of the senscence accelerated mouse, Biochem. Biophys. Res. Comm. 211:847–849.PubMedCrossRefGoogle Scholar
  80. Ehmann, W. D., Markesbery, W. R., Alauddin, M., Hossain, T. I. M., and Brubaker, E. H., 1986, Brain trace elements in Alzheimer’s disease, Neurotoxicology 7:197–206.Google Scholar
  81. Emard, J.-E, Thouez, J.-P, and Gauvreau, D., 1995, Neurodegenerative diseases and risk factors: A literature review, Soc. Sci. Med. 40:847–858.PubMedCrossRefGoogle Scholar
  82. Erickson, J. C., Sewall, A. K., Jensen, L. T., Winge, D. R., and Palmiter, R. D., 1994, Enhanced neurotrophic activity in Alzheimer’s disease cortex is not associated with down-regulation of metallothionein-III (GIF), Brain Res. 649:297–304.PubMedCrossRefGoogle Scholar
  83. Finali, G., Piccirilli, M., Oliani, C., and Piccinin, G. L., 1991, L-deprenyl therapy improves verbal memory in amnesic Alzheimer patients, Clin. Neuropharmacol. 14:523–36.PubMedCrossRefGoogle Scholar
  84. Fitzgerald, D. J., 1995, Zinc and Alzheimer’s disease, Science 268:1920.PubMedCrossRefGoogle Scholar
  85. Fleming, J. E., Miquel, J., and Bensh, K. G., 1985, Age-dependent changes in mitochondria, Basic Life Sciences, 35:143–156.PubMedGoogle Scholar
  86. Florini, J. R., ed., 1981, CRC Handbook in Biochemistry of Aging, CRC Press, Boca Raton, Florida.Google Scholar
  87. Frackowiak, R. S. J., Pozzilli, C., Legg, N. G., Du Boulay, G. Y. H., Marshal, J., Lenzi, G. L., and Jones, T., 1981, Regional cerebral oxygen supply and utilization in dementia: A clinical and physiological study with oxygen-15 and positron tomography, Brain 104:753–778.PubMedCrossRefGoogle Scholar
  88. Franceschi, M., Comola, M., Piattoni, R., Gualandri, W., and Canal, N., 1990, Prevalence of dementia in adult patients with trisomy 21, Am. J. Med. Genet. 7:306–308.Google Scholar
  89. Frederickson, C. J., Howell, G. A., and Kasarskis, E. J., 1984, The Neurobiology of Zinc, Volumes IIA and IIB, Alan R. Liss, New York.Google Scholar
  90. Friedlich, A. L., and Butcher, L. L., 1994, Involvement of free oxygen radicals in β-amyloidosis: An hypothesis, Neurobiol. Aging 15:443–455.PubMedCrossRefGoogle Scholar
  91. Friedman, B., and Price, J. L., 1984, Fiber systems in the olfactory bulb and cortex: A study in adult and developing rats, using the Timms method with the light and electron microscope, J. Comp. Neurol. 223:88–109.PubMedCrossRefGoogle Scholar
  92. Fukuyama, H., Ogawa, M., Yamaguchi, H., Yamaguchi, S., Kimura, J., Yonekawa, Y, and Konishi, J. H., 1995, Altered cerebral energy metabolism in Alzheimer’s disease: a PET study, J. Nucl. Med. 35:1–6.Google Scholar
  93. Furuta, A., Price, D. L., Pardo, C. A., Troncoso, J. C., Xu, Z.-S., Taniguchi, N., and Martin, L. J., 1995, Localization of superoxide dismutases in Alzheimer’s disease and Down’s syndrome neocortex and hippocampus, Am. J. Pathol. 146:357–367.PubMedGoogle Scholar
  94. Gabuzda, D., Busciglio, J., Chen, L. B., Matsudaira, P., and Yankner, B. A., 1994, Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative, J. Biol. Chem. 6:13623–13628.Google Scholar
  95. Gadaleta, M. N., Rainaldi, G., Lezza, A. M., Milella, F., Fracasso, F., and Cantatore, P., 1992, Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rats, Mutat. Res. 275:181–193.PubMedCrossRefGoogle Scholar
  96. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, R., Hagoplan, S., Johnson-Wood, D., Khan, K., Lee, M., Leibowitz, P, Leiberburg, I., Little, S., Masliah, E., McConiogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., Schenk, K., Seubert, P., Snyder, B., Soriano, F., Tan, H., Vitale, J., Wadsworth, S., Wolozin, B., and Zhao, J., 1995, Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein, Nature 373:523–527.PubMedCrossRefGoogle Scholar
  97. Gerlach, M., Ben-Schachter, D., Riederer, P., and Youdim, M. B. H., 1994, Altered brain metabolism of iron as a cause of neurodegenerative diseases?, J. Neurochem. 63:793–807.PubMedCrossRefGoogle Scholar
  98. Glasco, S., Miller, S. W., Thai, L. J., and Davis, R. E., 1995, Alzheimer’s disease cybrids manifest a cytochrome oxidase defect, Soc. Neuroscience 21:979.Google Scholar
  99. Goldstein, S., 1971, The biology of aging, New Engl J. Med. 285:1120–1129.PubMedCrossRefGoogle Scholar
  100. Gomez-Isla, T., West, H. L., Rebeck, G. W, Harr, S. D., Growdon, J. H., Locasio, J. J., Perls, T. T., Lipsitz, L. A., and Hyman, B. T, 1996, Clinical and pathological correlates of apoplipoprotien E e4 in Alzheimer’s disease, Ann. Neurol. 39:62–70.PubMedCrossRefGoogle Scholar
  101. Good, P. F., Perl, D. P., Bierer, L. M., and Schmeidler, J., 1992, Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study, Ann. Neurol. 31:286–292.PubMedCrossRefGoogle Scholar
  102. Goodman, L., 1953, Alzheimer’s disease: A clinicopathologic analysis of twenty-three cases with a theory on pathogenesis, J. Nerv. Ment. Dis. 118:97–130.PubMedCrossRefGoogle Scholar
  103. Grundke-Iqbal, I., Fleming, J., Tung, Y.-C, Lassmann, H., Iqbal, K., and Joshi, J. G., 1990, Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia, Acta Neuropathol. 81:105–110.PubMedCrossRefGoogle Scholar
  104. Gsell, W, Conrad, R., Hickethier, M., Sofie, E., Frolich, L., Wichart, I., Jellinger, K., Moll, G., Ransmayr, Beckmann, H., and Riederer, P., 1995, Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type, J. Neurochem. 64:1216–1223.PubMedCrossRefGoogle Scholar
  105. Guttman, R. P., Erickson, A. C., and Johnson, G. V. W, 1995, t Self-association: stabilization with a chemical cross-linker and modulation by phosphorylation and oxidation state, J. Neurochem. 64:1209–1215.Google Scholar
  106. Hajimohammadreza, I., and Brammer, M., 1990, Brain membrane fluidity and lipid peroxidation in Alzheimer’s disease, Neuroscience Lett. 112:333–337.CrossRefGoogle Scholar
  107. Harman, D., 1956, Role of free radical and radiation chemistry, J. Gerontol. 11:298–300.PubMedCrossRefGoogle Scholar
  108. Harman, D., 1993, Free radical theory of aging: A hypothesis on pathogenesis of senile dementia of the Alzheimer’s type, Age 16:23–30.CrossRefGoogle Scholar
  109. Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, R. A., and Carney, J. M., 1995, Direct evidence of oxidative injury produced by the Alzheimer’s β-amyloid peptide (1–40) in cultured hippocampal neurons, Exp. Neurol. 131:193–202.PubMedCrossRefGoogle Scholar
  110. Hartmann, H., Eckert, A., and Muller, W. E., 1994, Disturbances of the neuronal calcium homeostasis in the aging nervous system, Life Sci. 55:2011–2018.PubMedCrossRefGoogle Scholar
  111. Haxby, J. V., Grady, C. L., and Duara, R., 1986, Neocortical metabolic abnormalities precede nonmemory cognitive deficits in early Alzheimer-type dementia, Arch. Neurol. 43:882–885.PubMedCrossRefGoogle Scholar
  112. Hayakawa, M., Torii, K., Sugiyama, S., Tanaka, M., and Ozawa, T., 1991, Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm, Biochem. Biophys. Res. Comm. 179:1023–1029.PubMedCrossRefGoogle Scholar
  113. Hayflick, L., 1985, Theories of biological aging, Exp. Geront. 20:145–159.CrossRefGoogle Scholar
  114. Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., Floyd, R. A., and Butterfield, D. A., 1994, A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease, Proc. Natl. Acad. Sci. USA 91:3270–3274.PubMedCrossRefGoogle Scholar
  115. Hensley, K., Hall, N., Subramanian, R., Cole, P., Harris, M., Aksenov, M., Aksenova, M., Gabbita, S. P., Wu, J. F., Carney, J. M., Lovell, M., Markesbery, W. R., and Butterfield, D. A., 1995, Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation, J. Neurochem. 65:2146–2156.PubMedCrossRefGoogle Scholar
  116. Herholtz, K., Heindel, W, Rackl, A., Neubauer, I., Steinbrich, W, Peitrzyk, U., Erasmi-Korber, H., and Heiss, W. D., 1990, Regional cerebral blood flow in patients with leuko-ariosis and atherosclerotic carotid artery disease, Arch. Neurol. 47:392–296.CrossRefGoogle Scholar
  117. Hershey, C. O., Hershey, L. A., Varnes, A., Vibhakar, S. D., Lavin, P., and Strain, W. H., 1983, Cerebrospinal fluid trace element content in dementia: clinical, radiologic, and pathologic correlations, Neurology 33:1350–1353.PubMedCrossRefGoogle Scholar
  118. Hess, K., and Straub, P. W., 1974, Chronic lead poisoning, Schweizerische Rundschau fur Medizin Praxis 63:177–183.PubMedGoogle Scholar
  119. Hevner, R. F., and Wong-Riley, M. T. T., 1993, Entorhinal cortex of the human, monkey, and rat: Metabolic map as revealed by cytochrome oxidase, J. Comp. Neurol. 326:451–469.CrossRefGoogle Scholar
  120. Hewitt, C. D., Savory, J., and Wills, M. R., 1990, Aspects of aluminum toxicity, Clin. Lab. Med. 10:403–422.PubMedGoogle Scholar
  121. Hock, A., Demmel, U., Schicka, H., Kasperek, K., and Feinendegen, L. E., 1975, Trace element concentration in human brain: Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium, Brain 98:44–64.CrossRefGoogle Scholar
  122. Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L., and Korsmeyer, S. J., 1993, Bcl-2 functions in an antioxidant pathway to prevent apoptosis, Cell 75:241–251.PubMedCrossRefGoogle Scholar
  123. Hollosi, M., Urge, L., Perczel, A., Kajtar, J., Teplan, I., Otvos, L. Jr., and Fasman, G. D., 1992, Metal ion-induced conformational changes of phosphorylated fragments of human neurofilament (NF-M) protein, J. Mol. Biol. 223:673–682.PubMedCrossRefGoogle Scholar
  124. Holt, I. J., Harding, A. E., and Morgan-Hughes, J. A., 1988, Deletions of mitochondrial DNA in patients with mitochondrial myopathies, Nature 331:717–719.PubMedCrossRefGoogle Scholar
  125. Hovda, D. A., Yoshino, A., Kawamata, T., Katayama, Y, and Becker, D. P., 1991, Diffuse prolonged depression of cerebral oxidative metabolism following concussive brain injury in the rat: a cytochrome oxidase histochemistry study, Brain Res. 567:1–10.PubMedCrossRefGoogle Scholar
  126. Hoyer, S., Oestereich, K., and Wagner, O., 1988, Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type, J. Neurol. 235:143–148.PubMedCrossRefGoogle Scholar
  127. Hruszkewycz, A. M., 1992, Lipid peroxidation and mtDNA degeneration: A hypothesis, Mutat. Res. 275:243–248.PubMedCrossRefGoogle Scholar
  128. Hutchin, T., and Cortopassi, G., 1995, A mitochondrial DNA clone is associated with increased risk for Alzheimer disease, Proc. Natl. Acad. Sci. USA 92:6892–6895.PubMedCrossRefGoogle Scholar
  129. Hyman, B. T., and Tanzi, R., 1995, Molecular epidemiology of Alzheimer’s disease, New Eng. J. Med. 333:1283–1284.PubMedCrossRefGoogle Scholar
  130. Hyman, B. T., Van Hoesen, G. W, and Damasiao, A. R., 1990, Memory-related neuronal systems in Alzheimer’s disease: an anatomic study, Neurology 40:1721–1730.PubMedCrossRefGoogle Scholar
  131. Ibata, Y, and Otsuka, N., 1969, Electron microscopic demonstration of zinc in the hippocampal formation using Timms’ sulfide silver technique, J. Histochem. Cytochem. 17:171–175.PubMedCrossRefGoogle Scholar
  132. Imagawa, M., Naruse, S., Tsuji, S., Fujioka, A., and Yamaguchi, H., 1992, Coenzyme Q10, iron, and vitamin B6 in genetically-confirmed Alzheimer’s disease, Lancet 340:671.PubMedCrossRefGoogle Scholar
  133. Ishitani, R., Sunaga, K., Hirano, A., Saunders, P., Katsube, N., and Chuang, D.-M., 1996, Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture, J. Neurochem. 66:929–935.Google Scholar
  134. Iyengar, V., Kumpulainen, J., Okamoto, K., Morita, M., Hirai, S., and Nomoto, S., 1993, Recent trends in analytical approaches for trace element determinations in biomedical investigations, Prog. Clin. Biol. Res. 380:329–354.PubMedGoogle Scholar
  135. Jeandel, C., Nicolas, M. B., Dubois, F., Nabet-Belleville, F., Penin, R., and Cuny, G., 1989, Lipid peroxidation and free radical scavengers in Alzheimer’s disease, Gerontology 35:275–282.PubMedCrossRefGoogle Scholar
  136. Johns, D. R., 1995, Seminars in medicine of the Beth Israel Hospital, Boston, mitochondrial DNA and disease, New Engl. J. Med. 333:638–644.PubMedCrossRefGoogle Scholar
  137. Kaiser, J., 1994, Alzheimer’s: Could there be a zinc link?, Science 265:1365.PubMedCrossRefGoogle Scholar
  138. Kalaria, R. N., Sromek, S. M., Grahovac, I., and Harik, S. I., 1992, Transferrin receptors of rat and human brain and cerebral microvessels and their status in Alzheimer’s disease, Brain Res. 585:87–93.PubMedCrossRefGoogle Scholar
  139. Kaiman, J., Dey, L, Ilona, S. V., Markovics, B., Brown, D., Janka, Z., Farkas, T., and Joos, E, 1994, Platelet membrane fluidity and plasma malondialdehyde levels in Alzheimer’s demented patients with and without family history of dementia, Soc. Biol. Psychiatry 35:190–194.CrossRefGoogle Scholar
  140. Kaplan, E., Bigelow, D., Vatassery, G., and Ansari, K., 1982, Glutathione peroxidase in human cerebrospinal fluid, Brain Res. 252:391–393.PubMedCrossRefGoogle Scholar
  141. Kaneko, Y., Kitamoto, R., Tateisha, J., and Yamaguchi, K., 1989, Ferritin immunohistochemistry as a marker for microglia, Acta Neuropathol. 79:129–136.PubMedCrossRefGoogle Scholar
  142. Katzman, R., 1989, The dementias, in: Merritts Textbook of Neurology (L. P., Rowland, ed.), 8th edition, Lea and Febiger, Philadelphia, pp. 637–644.Google Scholar
  143. Katzman, R., 1993, Clinical and epidemiological aspects of Alzheimer’s disease, Clin. Neuroscience 1:165–170.Google Scholar
  144. Kehrer, J. P., and Lund, L. G., 1994, Cellular reducing equivalents and oxidative stress, Free Rad. Biol. Med. 17:65–75.PubMedCrossRefGoogle Scholar
  145. Kirkwood, T. B.1991, , Genetic basis of limited cell proliferation, Mutat. Res. 256:323–328, 1991.PubMedCrossRefGoogle Scholar
  146. Kish, S. J., Morito, C. L. H., and Hornykiewicz, O., 1986, Brain glutathione peroxidase in neurodegenerative disorders, Neurochem. Path. 4:23–38.Google Scholar
  147. Kish, S. J., Bergeron, C., Rajput, A., Dozic, S., Mastrogiacomo, F., Chang, L. J., Wilson, J. M., DiStefano, L. M., and Nobrega, J. N., 1992, Brain cytochrome oxidase in Alzheimer’s disease, J. Neurochem. 59:776–779.PubMedCrossRefGoogle Scholar
  148. Knoll, J., 1992, (-)Deprenyl-medication: a strategy to modulate the age-related decline of the striatal dopaminergic system, J. Am. Ger. Soc. 40:839–847.Google Scholar
  149. Konig, G., Masters, C. L., and Beyreuther, K., 1990, Retinoic acid induced differentiated neuroblastoma cells show increased expression of the ßA4 amyloid gene of Alzheimer’s disease and an altered splicing pattern, FEBS 269:305–310.CrossRefGoogle Scholar
  150. Korsmeyer, S. J., 1995, Regulators of cell death, Trends in Genetics 11:101–105.PubMedCrossRefGoogle Scholar
  151. Kroemer, G., Petit, P., Zamzami, N., Vayssiere, J.-J., and Mignotte, B., 1995, The biochemistry of programmed cell death, FASEB J. 9:1277–1287.PubMedGoogle Scholar
  152. Krsek-Staples, J. A., and Webster, R. O., 1993, Ceruloplasmin inhibits carbonyl formation in endogenous cell proteins, Free Rad. Biol. Med. 14:115–125.PubMedCrossRefGoogle Scholar
  153. Ku, H. H., Brunk, U. T, and Sohal, R. S., 1993, Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species, Free Rad. Biol. Med. 15:621–627.PubMedCrossRefGoogle Scholar
  154. Kumar, U., Dunlop, D. M., and Richardson, J. S., 1994, Mitochondria from Alzheimer’s fibroblasts show decreased uptake of calcium and increased sensitivity to free radicals, Life Sciences 24:1855–1860.CrossRefGoogle Scholar
  155. Kunimoto, M., 1994, Methylmercury induces apoptosis of rat cerebellar neurons in primary culture, Biochem. Biophys. Res. Comm. 204:310–317.PubMedCrossRefGoogle Scholar
  156. LaFerla, F. M., Tinkle, B. T., Bieberich, C. J., Haudenschild, C. C., and Jay, G., 1995, The Alzheimer’s Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mice, Nature Genet. 9:21–30.PubMedCrossRefGoogle Scholar
  157. Lakis, J., Galasco, S., Miller, S. W, Thai, L. J., and Davis, R. E., 1995, Production of reactive oxygen species correlates with decreased cytochrome oxidase activity in Alzheimer’s disease cybrids, Soc. Neuroscience 21:979.Google Scholar
  158. Landsberg, J., McDonald, B., Grime, G., and Watt, F., 1992, Microanalysis of senile plaques using nuclear microscopy, J. Geriatric Psych. Neurol. 6:97–104.Google Scholar
  159. Lamb, B. T., 1995, Making models for Alzheimer’s disease, Nature Genet. 9:4–6.PubMedCrossRefGoogle Scholar
  160. Larsen, P. L., 1993, Aging and resistance to oxidative damage in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 90:8905–8909.PubMedCrossRefGoogle Scholar
  161. Lennon, S. V., Martin, S. J., and Cotter, T. G., 1991, Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli, Cell Prolif. 24:203–214.PubMedCrossRefGoogle Scholar
  162. Li, J. J., Surini, M., Carsicas, S., Kawashima, E., and Bouras, C., 1995, Age-dependent accumulation of advanced glycosylation end products in human neurons, Neurobiol. Aging 16:69–76.PubMedCrossRefGoogle Scholar
  163. Liu, Y, Hernandez, A. M., Shibata, D., and Cortopassi, G. A., 1994, BCL2 translocation frequency rises with age in humans, Proc. Natl. Acad. Sci. USA 91:89810–8914.Google Scholar
  164. Linnane, A. W, Zhang, C., Baumer, A., and Nagley, P., 1992, Mitochondrial DNA mutation and the ageing process: bioenergy and pharmacological intervention, Mutat. Res. 275:195–208.PubMedCrossRefGoogle Scholar
  165. Lippa, C. R., Smith, R. W., Smith, J. M., Swearer, D. A., Drachman, B., Ghetti, L., Nee, D., Pulaski-salo, D., Dickson, D., Robitaille, Y., Bergeron, C., Crain, B., Benson, M. D., Farlow, M., Hyman, B. T., St. George-Hyslop, P., Roses, A. D., and Pollen, D. A., 1996, Familial and sporadic Alzheimer’s disease: Neuropathology cannot exclude a final common pathway, Neurology 46:406–412.PubMedCrossRefGoogle Scholar
  166. Loeffler, D. A., Connor, J. R., Juneaue, P. L., Snyder, B. S., Kanaley, L., DeMaggio, A. J., Nguyen, H., Brickman, C. M., and LeWitt, P. A., 1995, Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions, J. Neurochem. 65:710–716.PubMedCrossRefGoogle Scholar
  167. Loo, D. R., Copani, A. G., Pike, C. J., Whittemore, E. R., Walencewicz, A. J., and Cotman, C. W., 1993, Apoptosis is induced by beta-amyloid in cultured central nervous system neurons, Proc. Natl. Acad. Sci. USA 90:7951–7955.PubMedCrossRefGoogle Scholar
  168. Lovell, M. A., Ehmann, W. E., and Markesbery, W. R., 1993, Laser microprobe analysis of brain aluminum in Alzheimer’s disease, Ann. Neurol. 33:36–42.PubMedCrossRefGoogle Scholar
  169. Lovell, M. A., Ehmann, W. D., Butler, S. M., and Markesbery, W. R., 1995, Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease, Neurology 45:1594–1601.PubMedCrossRefGoogle Scholar
  170. Lowe, S. L., Francis, P. T., Procter, A. W., Palmer, A. M., Davison, A. N., and Bowen, D. M., 1988, Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease, Brain 111:785–799.PubMedCrossRefGoogle Scholar
  171. Lui, E., Fisman, M., Wong, C., and Diaz, F., 1990, Metals and the liver in Alzheimer’s disease, an investigation of hepatic zinc, copper, cadmium, and metallothionein, J. Am. Ger. Soc. 38:633–639.Google Scholar
  172. Maggio, J. E., Esler, W. P., Stimson, E. R., Jennings, J. M., Ghilari, J. R., and Mantyh, P. W., 1995, Zinc and Alzheimer’s disease, Science 268:1920–1921.PubMedCrossRefGoogle Scholar
  173. Mantyh, P. W., Ghilardi, J. R., Rogers, S., DeMaster, E., Allen, C. J., Stimson, E. R., and Maggio, J. E., 1993, Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide, J. Neurochem. 61:1171–1174.PubMedCrossRefGoogle Scholar
  174. Markesbery, W. R., and Ehmann, W. D., 1993, Aluminum and Alzheimer’s disease, Clin. Neuroscience 1:212–218.Google Scholar
  175. Markesbery, W. R., and Ehmann, W. D., 1994, Brain trace elements in Alzheimer disease, in: Alzheimer Disease (R. D. Terry, R. Katzman, and K. L. Bick, eds.), Raven Press, New York, pp. 353–367.Google Scholar
  176. Marklund, S. L., Adolfsson, R., Gottfries, C. G., And Winglad, B., 1985, Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type, J. Neurol. Sci. 67:319–325.PubMedCrossRefGoogle Scholar
  177. Martins, R. N., Harper, C. G., Stokes, G. B., and Masters, C. L., 1986, Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer’s disease may reflect oxidative stress, J. Neurochem. 46:1042–1045.PubMedCrossRefGoogle Scholar
  178. Masoro, E. J., ed., 1981, CRC Handbook of Physiology in Aging, CRC Press, Boca Raton, Florida. Mastrogiacomo, F., Bergeron, C., and Kish, S. J., 1993, Brain a-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease in Alzheimer’s brain, Mol. Cell Neurosci. 3:461–470.Google Scholar
  179. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Leiberburg, I., and Rydd, R. E., 1992, β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity, J. Neurosci. 12:376–389.PubMedGoogle Scholar
  180. McLachlan, D. R. C., Bergeron, C., Smith, J. E., Boome, D., and Rifat, S. L., 1996, Risk for neuropathologically confirmed Alzheimer’s disease and residual aluminum in municipal drinking water employing weighted residential histories, Neurology 46:401–405.PubMedCrossRefGoogle Scholar
  181. Mecocci, P., MacGarvey, U., Kaufman, A. E., Koontz, D., Shoffner, J. M., Wallace, D. C., and Beal, M. F, 1993, Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain, Ann. Neurol. 34:609–616.PubMedCrossRefGoogle Scholar
  182. Mecocci, P., MacGarvey, U., and Beal, M. F., 1994, Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease, Ann. Neurol. 36:747–751.PubMedCrossRefGoogle Scholar
  183. Miller, B. L., Moats, R. A., Shonk, T, Ernst, T., Woolley, S., and Ross, B. D., 1993, Alzheimer disease: Depiction of increased cerebral myo-inositol with proton MR spectroscopy, Radiology 187:433–437.PubMedGoogle Scholar
  184. Miller, S. W, Herrnstadt, C., Parker, W. D., Jr., and Davis, R. E., 1995, Creation of mitochondrial DNA deficient neuroblastoma cell lines: Rescue of aerobic phenotype by human mitochondrial transfer, Soc. Neuroscience 21:21.Google Scholar
  185. Miquel, J., 1992, An update on the mitochondrial-DNA mutation hypothesis of cell aging, Mutat. Res. 275:209–216.PubMedCrossRefGoogle Scholar
  186. Montine, T. J., Amarnath, V., Martin, M. E., Strittmatter, W. J., and Graham, D. G., 1996a, E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures, Am. J. Pathol. 148:89–93.PubMedGoogle Scholar
  187. Montine, T. J., Huang, D. Y., Valentine, W. M., Amarnath, V., Saunders, A., Weisgraber, K. H., Graham, D. G., and Strittmatter, W. J., 1996b, Crosslinking of apolipoprotein E by products of lipid peroxidation, J. Neuropathol Exp. Neurol. 55:202–210.PubMedCrossRefGoogle Scholar
  188. Mooradian, A. D., and Wong, N., 1991, Molecular biology of aging Part II: a synopsis of current research, J. Am. Ger. Soc. 39:717–723.Google Scholar
  189. Motter, R., Vigo-Pelfrey, C., Kholodenko, D., Barbour, R., Johnson-Wood, K., Galasko, D., Chang, L., Miller, B., Clark, C., Green, R., Olson, D., Southwick, P., Wolfen, R., Munrœ, B., Lieberburg, I., Seubert, P., and Schenk, D., 1995, Reduction of β-amyloid peptide 42 in the cerebrospinal fluid of patients with Alzheimer’s disease, Ann. Neurol. 38:643–648.PubMedCrossRefGoogle Scholar
  190. Muller, D. P. R., Metcalf, R., and Baren, D. M., 1986, Vitamin E in brains of patients with Alzheimer’s disease and Down’s syndrome, Lancet i: 1093–1094.CrossRefGoogle Scholar
  191. Muller-Hocker, J., 1990, Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: an age-related alteration, J. Neurol. Sci. 100:14–21.PubMedCrossRefGoogle Scholar
  192. Multhaup, G., Bush, A., Pollwein, P., and Masters, C. L., 1994, Interaction between the zinc(II) and the heparin binding site of the Alzheimer’s disease βA4 amyloid precursor protein (APP), FEBS Letters 355:151–154.PubMedCrossRefGoogle Scholar
  193. Multhaup, G., Schlicksupp, A., Hesse, L., Beher, D., Ruppert, T., Masters, C. L., and Beyreuther, K., 1996, The amyloid precursor protein of Alzheimer’s disease in the reduction of copper (II) to copper (I), Science 271:1406–1409.PubMedCrossRefGoogle Scholar
  194. Munro, H. N., 1969, Evolution of protein metabolism in mammals, in: Mammalian Protein Metabolism, Volume3 (H. N. Munro and J. B. Allison, eds.), Academic Press, New York, pp. 133–182.Google Scholar
  195. Munscher, C., Muller-Hocker, J., and Kadenback, B., 1993, Human aging is associated with various point mutations in tRNA genes of mitochondrial DNA, Biol. Chem. Hoppe-Seyler 374:1099–2003.PubMedCrossRefGoogle Scholar
  196. 312.
    Murray, A. M., W F. Marshall, J. R. Hurtig, H. L Gottleib, G. L. and Joyce, J. N., 1995, Damage to dopamine systems differs between Parkinson’s disease and Alzheimer’s disease with Parkinsonism, Ann. Neurol. 37:300–.PubMedCrossRefGoogle Scholar
  197. Mutisya, E. M., Bowling, A. C., and Beal, M. F., 1994, Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease, J. Neurochem. 63:2179–2184.PubMedCrossRefGoogle Scholar
  198. Nikaido, T., Austin, J., Trueb, L., and Rinehart, T. R., 1972, Studies in ageing of the brain. II. Microchemical analyses of the nervous system in Alzheimer patients, Arch. Neurol. 27:549–554.PubMedCrossRefGoogle Scholar
  199. Orr, W. C., and Sohal, R. S., 1994, Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster, Science 263:1128–1130.PubMedCrossRefGoogle Scholar
  200. Oteiza, P. I., Oline, K. L., Fraga, C. G., and Keen, C. L., 1995, Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes, J. Nutr. 125:823–829.PubMedGoogle Scholar
  201. Ozawa, T., Tanaka, M., Sugiyama, S., Hattori, K., Ito, T., Ohno, K., Takahashi, A., Sato, W, Takada, G., Mayumi, B., Yamamoto, K., Adachi, K., Koga, Y, and Toshima, H., 1990, Multiple mitochondrial DNA deletions exist in cardiomyocytes of patients with hypertrophic or dilated cardiomyopathy, Biochem. Biophys. Res. Commun. 170:830–836.PubMedCrossRefGoogle Scholar
  202. Palmer, A. M., and Burns, M., 1990, Selective increase in lipid perioxidation in the inferior temporal cortex in Alzheimer’s disease, Brain Res. 645:338–342.CrossRefGoogle Scholar
  203. Palmiter, R. D., Findley, S. D., Whitmore, T. E., and Durnam, D. M., MT-III, a brain-specific member of the metallothionein gene family, Proc. Natl. Acad. Sci. USA 89:6333–6337.PubMedCrossRefGoogle Scholar
  204. Pappolla, M. A., Omar, R. A., Kim, K. S., and Robakis, N. K., 1992, Immunohistochemical evidence of antioxidant stress in Alzheimer’s disease, Am. J. Pathol. 140:621–628.PubMedGoogle Scholar
  205. Parker, W. D. Jr., Filley, C. M., and Parks, J. K., 1990, Cytochrome oxidase deficiency in Alzheimer’s disease, Neurology 40:1302–1303.PubMedCrossRefGoogle Scholar
  206. Parker, W. D., Parks, J., and Filley, C. M., 1994, Electron transport chain defects in Alzheimer’s disease brain, Neurology 44:1090–1096.PubMedCrossRefGoogle Scholar
  207. Partridge, R. S., Monroe, S. M., Parks, J. K., Johnson, K., Parker, W. D. Jr., Eaton, G. R., and Eaton, S. S., 1994, Spin trapping of azidyl and hydroxyl radicals in azide-inhibited rat brain submitochondrial particles, Arch. Biochem. Biophys. 310:210–217.PubMedCrossRefGoogle Scholar
  208. Perez-Clausell, J., and Danscher, G., 1985, Intravesicular localization of zinc in rat telencephalic boutons: a histochemical study, Brain Res. 337:91–98.PubMedCrossRefGoogle Scholar
  209. Perl, D. P., and Pendlebury, W. W., 1986, Aluminum neurotoxicity: potential role in the pathogenesis of neurofibrillary tangle formation, Can. J. Neurol. Sci. 13:441–445.PubMedGoogle Scholar
  210. Perry, G., and Smith, M. A., 1993, Senile plaques and neurofibrillary tangles: What role do they play in Alzheimer’s disease? Clin. Neurosci. 1:199–203.Google Scholar
  211. Perry, T. L., Yong, V. W., Bergeron, C., Hansen, S., and Jones, K., 1987, Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer’s disease, Ann. Neurol. 21:331–336.PubMedCrossRefGoogle Scholar
  212. Pettigrew, J. W., Klunk, W. E., Panchalingam, K., Kanfer, J. N., and Mclure, R. J., 1995, Clinical and neurochemical effects of acetyl-L-carnitine in Alzheimer’s disease, Neurobiol. Aging 16:1–4.CrossRefGoogle Scholar
  213. Pike, C. J., and Cotman, C. W., 1993, Cultured GABA-immunoreactive neurons are resistant to toxicity induced by β-amyloid, Neuroscience 56:269–274.PubMedCrossRefGoogle Scholar
  214. Polvikoski, T., Sulvaka, R., Haltia, M., Kainulainen, K., Vuorio, A., Verkkoniemi, Niinisto, L., Halonen, P., and Kontula, K., 1995, Apolipoprotein E, dementia, and cortical deposition of β-amyloid protein, New Engl. J. Med. 333:1242–1247.PubMedCrossRefGoogle Scholar
  215. Poirier, J., 1994, Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease, Trends Neurosci. 17:525–530.PubMedCrossRefGoogle Scholar
  216. Poulton, J., and Holtz, I. J., 1995, Mitochondrial DNA: Does more lead to less?, Nature Genet. 8:313–315.Google Scholar
  217. Pountney, D. L., Fundel, S. M., Faller, P., Birchler, N. E., Hunziker, P., and Vasak, M., 1994, Isolation, primary structures and metal binding properties of neuronal growth inhibitory factor (GIF) from bovine and equine brain, FEBS Lett. 345:193–197.PubMedCrossRefGoogle Scholar
  218. Prohaska, J. R., 1987, Functions of trace elements in brain metabolism, Physiol. Rev. 67:858–901.PubMedGoogle Scholar
  219. Pullen, R. G. L., Candy, J. M., Morris, C. M., Taylor, G., Keith, A. B., and Edwardson, J. A., 1990, Gallium-67 as a potential marker for aluminum transport in rat brain: implications for Alzheimer’s disease, J. Neurochem. 55:251–259.PubMedCrossRefGoogle Scholar
  220. Randerath, K., Putnam, K. L., Osterburg, H. H., Johnson, S. A., Morgan, D. G., and Finch, C. E., 1992, Age-dependent increases of DNA adducts (I-compounds) in human and rat brain DNA, Mutât. Res. 295:11–18.CrossRefGoogle Scholar
  221. Reichman, H., Florke, S., Hebenstreit, G., Schrubar, H., and Riederer, P., 1993, Analyses of energy metabolism and mitochondrial genome in post-mortem brain from patients with Alzheimer’s disease, J. Neurol. 240:377–380.CrossRefGoogle Scholar
  222. Richardson, J. S., Subbarao, K. V., and Ang, L. C., 1992, On the possible role of iron-induced free radical peroxidation in neural degeneration in Alzheimer’s disease, Ann. New York Acad. Sci. 648:326–327.CrossRefGoogle Scholar
  223. Richter, C., 1992, Reactive oxygen and DNA damage in mitochondria, Mutat. Res. 275:249–255.PubMedCrossRefGoogle Scholar
  224. Richter, C., Park, J. W., and Ames, B. N., 1988, Normal oxidative damage to mitochondrial and nuclear DNA is extensive, Proc. Natl. Acad. Sci. USA 85:6465–6467.PubMedCrossRefGoogle Scholar
  225. Roder, H. M., Eden, P. A., and Ingram, V. M., 1993, Brain protein kinase PK40erk converts Tau into a PHF-like form as found in Alzheimer’s disease, Biochem. Biophys. Res. Comm. 193:639–647.PubMedCrossRefGoogle Scholar
  226. Roses, A., 1995, Apolipoprotein E genotyping in the differential diagnosis, not prediction of Alzheimer’s disease, Ann. Neurol. 38:6–14.PubMedCrossRefGoogle Scholar
  227. Ross, M., 1995, Many questions but no clear answers on link between aluminum, Alzheimer’s disease, Can. Med. Assoc. J. 150:68–69.Google Scholar
  228. Rothstein, J. D., Bristol, L. A., Hosier, B., Brown, R. H. Jr., and Kuncl, R. W., 1994, Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons, Proc. Natl. Acad. Sci. USA 91:4155–4159.PubMedCrossRefGoogle Scholar
  229. Roy, N., Mahadevan, M. S., McLean, M., Shutler, G., Yaraghi, A., Farahani, R., Baird, S., Besner-Johnston, A., Lefebvre, C., Kang, X., Salih, M., Aubry, H., Tamai, K., Guan, X., Ioannou, P., Crawford, T. O., de Jong, P. J., Surh, L., Ikeda, J.-E., Korneluk, R. G., and MacKenzie, A., 1995, The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy, Cell 80:167–178.PubMedCrossRefGoogle Scholar
  230. Rumble, B., Retallack, R., Hilbich, D., Simms, G., Multhaup, G., Marins, R., Hockey, A., Montogomery, P., Beyreuther, K., and Masters, C. L., 1989, Amyloid ß4 protein and its precursor in Down’s syndrome and Alzheimer’s disease, New Engl. J. Med. 320:1446–1452.PubMedCrossRefGoogle Scholar
  231. Saraiva, A. A., Borges, M. M., Madeira, M. D., Tavares, M. A., and Paula-Barbosa, M. M., 1985, Mitochondrial abnormalities in cortical dendrites from patients with Alzheimer’s disease, J. Submicrosc. Cytol. 17:459–464.PubMedGoogle Scholar
  232. Sato, M., and Bremner, I., 1993, Oxygen free radicals and metallothionein, Free Rad. Biol. Med. 14:325–337.PubMedCrossRefGoogle Scholar
  233. Schapira, A. H. V., and Cooper, J. M., 1992, Mitochondrial function in neurodegeneration and ageing, Mutat. Res. 275:133–143.PubMedCrossRefGoogle Scholar
  234. Schipper, H. M., Cisse, S., and Stopa, E. G., 1995, Expression of heme oxygenase-1 in the sensecent and Alzheimer-diseased brain, Ann. Neurol. 37:758–768.PubMedCrossRefGoogle Scholar
  235. Schubert, D., Behl, C., Lesley, R., Brack, A., Dargusch, R., Sagara, Y., and Kimura, H., 1995, Amyloid peptides are toxic via a common oxidative mechanism, Proc. Natl. Acad. Sci. USA 92:1989–1993.PubMedCrossRefGoogle Scholar
  236. Schwartz, B. L., Hashtroudi, S., Herting, R. L., Schwartz, P., and Deutsch, S. I., 1996, d-Cycloserine enhances implicit memory in Alzheimer patients, Neurology 46:420–424.PubMedCrossRefGoogle Scholar
  237. Schweers, O., Mandelkow, E.-M., Biernat, J., and Mandelkow, E., 1995, Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein t controls the in vitro assembly of paired helical filaments, Proc. Natl. Acad. Sci. USA 92:8463–8467.PubMedCrossRefGoogle Scholar
  238. Selkoe, D. J., 1994, Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease, Ann. Rev. Cell Biol. 10:373–403.PubMedCrossRefGoogle Scholar
  239. Serra, J. A., Famulari, A. L., Kohan, S., Marschoff, E. R., Dominguez, R. O., and de Lustig, E. S., 1994, Copper-zinc superoxide dismutase activity in red blood cells in probable Alzheimer’s patients and their first-degree relatives, J. Neurol. Sci. 122:179–188.PubMedCrossRefGoogle Scholar
  240. Sewell, A. K., Jensen, L. T., Erickson, J. C., Palmiter, R. D., and Winge, D. R., 1995, Bioactivity of metallothionein-3 correlates with its novel beta domain sequence rather than metal binding properties, Biochem. 34:4740–4747.CrossRefGoogle Scholar
  241. Sheu, K. F., Cooper, A. J., Koike, K., Koike, M., Lindsay, J. G., and Blass, J. P., 1994, Abnormality of the α-ketoglutarate dehydrogenase complex in fibroblasts from familial Alzheimer’s disease, Ann. Neurol. 35:312–318.PubMedCrossRefGoogle Scholar
  242. Sheu, S.-S., and Jou, M.-J., 1994, Mitochondrial free Ca2+ concentration in living cells, J. Bioenerget. Biomem. 26:487–493.CrossRefGoogle Scholar
  243. Shigenaga, M. K., and Ames, B., 1994, Oxidants and mitochondrial decay in aging, in: Natural Antioxidants in Human Health and Disease (B. Frei, ed), Academic Press, New York, pp. 63–106.Google Scholar
  244. Shigenaga, M. K., Parks, J.-W., Cundy, K. C., Gimeno, C. J., and Ames, B. N., 1990, In vivo oxidative DNA damage: Measurement of 8-hydroxy-2’-deoxyguanosine in DNA and urine by High-performance liquid chromatography with electrochemical detection, Methods in Enzymology 186:521–530.PubMedCrossRefGoogle Scholar
  245. Shoffner, J. M., Brown, M. D., Torroni, A., Lott, M. T., Cabell, P. Mirra, S. S. Beal, M. F. Yang, C.-C Gearing, M. Salvo, R. Watts, R. L. Juncos, J. L. Hanson, L. A. Crain, B. J. Fayad, M., and Wallace, D. C., 1993, Mitochondrial DNA mutations associated with Alzheimer’s and Parkinson’s disease, Genomics 17:171–184.PubMedCrossRefGoogle Scholar
  246. Shore, D., and Wyatt, R. J., 1983, Aluminum and Alzheimer’s disease, J. Nerv. Mental Dis. 171:553–558.CrossRefGoogle Scholar
  247. Simonetti, S., Chen, X., DiMauro, S., and Schon, E. A., 1992, Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR, Biochem. Biophys. Acta 1180:113— 122.PubMedCrossRefGoogle Scholar
  248. Simonian, N. A., and Hyman, B. T., 1993, Functional alterations in Alzheimer’s disease: Diminution of cytochrome oxidase in hippocampal formation, J. Neuropathol. Exp. Neurol. 52:580–585.PubMedCrossRefGoogle Scholar
  249. Sims, N. R., Finegan, M. M., Blass, J. P., Bowe, D. M., and Neray, D., 1987, Mitochondrial function in brain tissue in primary degenerative dementia, Brain Res. 436:30–38.PubMedCrossRefGoogle Scholar
  250. Sisodia, S. S., and Price, D. L., 1993, Amyloidogenesis in Alzheimer’s disease, Cllin. Neuroscience 1:176–183.Google Scholar
  251. Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., and Markesbery, W R., 1991, Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease, Proc. Natl. Acad. Sci. USA 88:10540–10543.PubMedCrossRefGoogle Scholar
  252. Smith, C. D., Carney, J. M., Tatsumo, T., Stadtman, E. R., Floyd, R. A., and Markesbery, W. R., 1992, Protein oxidation in aging brain, Ann. New York Acad. Sci. 663:110–119.CrossRefGoogle Scholar
  253. Smith, C. D., Pettigrew, L. C., Avison, M. L., Kirsch, J. E., Tinkhtman, A. J., Schmitt, F. A., Wemerling, D. P., Wekstein, D. R., and Markesbery, W. R., 1995, Frontal lobe phosphorus metabolism and neuropsychological function in aging and in Alzheimer’s disease, Ann. Neurol. 38:194–201.PubMedCrossRefGoogle Scholar
  254. Smith, M. A., Kutty, K., Richey, P. L., Yan, S.-D., Stern, D., Chader, G. J., Wiggert, B., Petersen, R. B., and Perry, G., 1994a, Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease, Am. J. Pathol. 145:42–47.PubMedGoogle Scholar
  255. Smith, M. A., Taneda, S., Richey, P. L., Miyata, S., Yan, S.-D., Stern, D., Sayre, L. M., Monnier, V. M., and Perry, G., 1994b, Advanced maillard reaction end products are associated with Alzheimer disease pathology, Proc. Natl. Acad. Sci. USA 91:5710–5714.PubMedCrossRefGoogle Scholar
  256. Smith, M. A., Richey, P. L., Kutty, R. K., Wiggert, B., and Perry, G., 1995a, Ultrastructural localization of heme oxygenase-1 to the neurofibrillary pathology of Alzheimer disease, Mol. Chem. Neuro. 24:227–230.CrossRefGoogle Scholar
  257. Smith, M. A., Rudnicka-Nawrot, M., Richey, P. L., Praprotnik, D., Mulvihill, P., Miller, C. A., Sayre, L. M., and Perry, G., 1995b, Carbonyl-related postranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer disease, J. Neurochem. 64:1–7.PubMedCrossRefGoogle Scholar
  258. Smith, M. A., Sayre, L. M., Monnier, V. M., and Perry, G., 1995c, Radical ageing in Alzheimer’s disease, Trends Neurosci. 18:1–7.CrossRefGoogle Scholar
  259. Sohal, R., 1993, Aging, cytochrome oxidase activity, and hydrogen peroxide release by mitochondria, Free Rad. Biol. Med. 14:583–588.PubMedCrossRefGoogle Scholar
  260. Sohal, R. S., and Sohal, B. H., 1991, Hydrogen peroxide release by mitochondria increases during aging, Mech. Ageing Dev. 57:187–202.PubMedCrossRefGoogle Scholar
  261. Sohal, R. S., and Brunk, U. T., 1992, Mitochondrial production of pro-oxidants and cellular senescence, Mutat. Res. 275:295–304.PubMedCrossRefGoogle Scholar
  262. Sohal, R. S., and Dubey, A., 1994, Mitochondrial oxidative damage, hydrogen peroxide release, and aging, Free Rad. Biol. Med. 16:621–626.PubMedCrossRefGoogle Scholar
  263. Soumalainen, A., Kaukonen, J., Amati, P., Timonen, R., Haltia, M., Weissenback, J., Zeriani, M., Somer, H., and Pettonen, L., 1995, An autosomal locus predisposing to deletions of mitochondrial DNA, Nature Genet. 9:146–151.CrossRefGoogle Scholar
  264. Soong, N. W., Hinton, D. R., Cortopassi, G., and Arnheim, N., 1992, Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain, Nature Genet. 2:318–323.PubMedCrossRefGoogle Scholar
  265. Sorbi, S., Bird, E. D., and Blass, J. P., 1983, Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain, Ann. Neurol. 13:72–78.PubMedCrossRefGoogle Scholar
  266. Sparks, D. L., Huaichen, L., Scheff, S. W., Coyne, C. M., and Hunsaker, J. C., 1993, Temporal sequence of plaque formation in the cerebral cortex of non-demented individuals, J. Neuropath. Exper. Neurol. 52:135–142.CrossRefGoogle Scholar
  267. Stadtman, E. R., 1992, Protein oxidation and aging, Science 257:1220–1224.PubMedCrossRefGoogle Scholar
  268. Stadtman, E. R., 1995, Role of oxidized amino acids in protein breakdown and stability, Methods in Enzymology 258:379–393.PubMedCrossRefGoogle Scholar
  269. Stohs, S. J., and Bagchi, D., 1995, Oxidative mechanisms in the toxicity of metal ions, Free Rad. Biol. Med. 18:321–336.PubMedCrossRefGoogle Scholar
  270. Strittmatter, W. J., Weisgraber, K. H., Huang, D. Y, Dong, L. M., Salvesen, G. S., Pericak-Vance, M., Schemechel, D., Saunders, A. M., Godgaber, D., and Roses, A. D., 1993, Binding of human apolipoprotien E to synthetic amyloid b peptide: isoform-specific effects and implications for late-onset Alzheimer disease, Proc. Natl. Acad. Sci. USA 91:8098–8102.CrossRefGoogle Scholar
  271. Subbarao, D. V., Richardson, J. S., and Ang, L. C., 1990, Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro, J. Neurochem. 55:342–345.PubMedCrossRefGoogle Scholar
  272. Sugiyama, S., Hattori, K., Hayakawa, M., and Ozawa, T., 1991, Quantitative analysis of age-associated accumulation of mitochondrial DNA with deletion in human hearts, Biochem. Biophys. Res. Comm. 180:894–899.PubMedCrossRefGoogle Scholar
  273. Sulkova, R., Nordberg, U.-R., Erkinjuntti, T., and Westermarck, T., 1986, Erythrocyte glutathione peroxidase and superoxide dismutase in Alzheimer’s disease and other dementias, Acta. Neurol. Scand. 73:487–489.CrossRefGoogle Scholar
  274. Szerdahelyi, P., and Kasa, P., 1984, Histochemistry of zinc and copper, Int. Rev. of Cytology 89:1–33.CrossRefGoogle Scholar
  275. Tappel, A. L., 1973, Lipid peroxidation damage to cell components, Fed. Proc. 32:1870–1874.PubMedGoogle Scholar
  276. Terry, R. D., and Davies, P., 1980, Dementia of the Alzheimer type, Ann. Rev. Neuroscience 3:77–95.CrossRefGoogle Scholar
  277. Thompson, C. B., 1995, Apoptosis in the pathogenesis and treatment of disease, Science 267:1456–1462.PubMedCrossRefGoogle Scholar
  278. Thorsness, P. E., 1992, Structural dynamics of the mitochondrial compartment, Mutat. Res. 275:237–241.PubMedCrossRefGoogle Scholar
  279. Tokutake, S., Nagase, H., Morisaki, S., and Oyanagi, S., 1995, Aluminium detected in senile plaques and neurofibrillary tangles is contained in lipofusin granules with silicon, probably as aluminosilicate, Neuroscience Lett. 185:99–102.CrossRefGoogle Scholar
  280. Trojanowski, J. Q., Schmidt, M. L., Shin, R.-W., Bramble«, G. T., Goedert, M., and Lee, V. M.-Y, 1993, PHFt(A68): From pathological marker to potential mediator of neuronal dysfunction and degeneration in Alzheimer’s disease, Clin. Neuroscience 1:184–191.Google Scholar
  281. Troncoso, J. C., Costello, A., Watson, A. L. Jr., and Johnson, G. V. W., 1993, In vitro polymerization of oxidized tau into filament, Brain Res. 613:313–316.PubMedCrossRefGoogle Scholar
  282. Trounce, I., Byrne, E., and Marzuki, S., 1989, Decline in skeletal muscle mitochondrial respiratory chain function: Possible factor in ageing, Lancet 1:637–739.PubMedCrossRefGoogle Scholar
  283. Tsuji, S., Kobayashi, H., Uchida, Y., Ihara, Y, and Miyatake, T, 1992, Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer’s disease, EMBO J. 11:4843–4850.PubMedGoogle Scholar
  284. Uchida, Y, Takio, K., Titani, K., Ihara, Y, and Tomonaga, M., 1991, The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein, Neuron 7:337–347.PubMedCrossRefGoogle Scholar
  285. Ueda, K., Cole, G., Sundsmo, M., Katzman, R., and Saitoh, T., 1989, Decreased adhesiveness of Alzheimer’s disease fibroblasts: Is amyloid beta-protein precursor involved?, Ann. Neurol. 25:246–251.PubMedCrossRefGoogle Scholar
  286. Van Zuylen, A. J., Bosman, G. J., Ruitenbeek, W., Van Kalmthout, P. J., and DeGrip, W. J., 1992, No evidence for reduced thrombocyte oxidase activity in Alzheimer’s disease, Neurology 42:1246–1247.PubMedCrossRefGoogle Scholar
  287. Vener, A. V, Aksenova, M., and Burbaeva, G. S., 1993, Drastic reduction of the zinc- and magnesium-stimulated protein tyrosine kinase activities in Alzheimer’s disease hippocampus, FEBS Lett. 328:6–8.PubMedCrossRefGoogle Scholar
  288. Vitek, M. P., Ghattacharya, K., Glendening, J. M., Stopa, E., Vlassara, H., Bucala, R., Maogue, K., and Cerami, A., 1994, Advanced glycation end products contribute to amyloidosis in Alzheimer disease, Proc. Natl. Acad. Sci. USA 91:4766–4770.PubMedCrossRefGoogle Scholar
  289. Vblicer, L., and Crino, P. B., 1990, Involvement of free radicals in dementia of the Alzheimer type: a hypothesis, Neurobiol. Aging 11:567–571.CrossRefGoogle Scholar
  290. Walford, R. L., 1974, Immunologic theory of aging: current status, Fed. Proc. 33:2020–2027.PubMedGoogle Scholar
  291. Wallace, D. C., 1992, Mitochondrial genetics: A paradigm for aging and degenerative diseases?, Science 256:628–632.PubMedCrossRefGoogle Scholar
  292. Wallace, D. C., Ye, J. H., Neckelmann, S. N., Singh, G., Webster, K. A., and Greenberg, B. D., 1987, Sequence analysis of cDNAs for the human and bovine ATP synthase beta subunit: Mitochondrial DNA genes sustain seventeen times more mutations, Curr. Genet. 12:81–90.PubMedCrossRefGoogle Scholar
  293. Wallace, D. C., Shoffner, J. M., Trounce, I., Brown, M. D., Ballinger, S. W, Corral-Debrinksi, M., Horton, T., Jun, A. S., and Lott, M. T., 1995, Mitochondrial DNA mutations in human degenerative diseases and aging, Biochim. Biophys. Acta. 1271:141–151.PubMedCrossRefGoogle Scholar
  294. Warner, H. R., 1994, Superoxide dismutases, aging and degenerative disease, Free Rad. Biol. Med. 17:249–256.PubMedCrossRefGoogle Scholar
  295. Watt, J., Pike, C. J., Walencewicz, A. J., and Cotman, C. W, 1994, Ultrastructural analysis of beta-amyloid-induced apoptosis in cultured hippocampal neurons, Brain Res. 661:147–156.PubMedCrossRefGoogle Scholar
  296. Wei, Y.-H., 1992, Mitochondrial DNA alterations as ageing-associated molecular events, Mutat. Res. 275:145–155.PubMedCrossRefGoogle Scholar
  297. Wensink, J., Molnaar, A. J., Woroniecka, U. D., and Van den Hamer, D. J., 1988, Zinc uptake into synaptosomes, J. Neurochem. 50:782–789.PubMedCrossRefGoogle Scholar
  298. Wenstrup, D., Ehmann, W. D., and Markesbery, W. R., 1990, Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains, Brain Res. 533:125–131.PubMedCrossRefGoogle Scholar
  299. Westbrook, G. L. and Mayer, M. L., 1987, Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons, Nature 328:640–643.PubMedCrossRefGoogle Scholar
  300. Wisniewski, H. M., 1994, Aluminum, tau protein, and Alzheimer’s disease, Lancet 344:203–205.CrossRefGoogle Scholar
  301. Wisniewski, H. M., Wegiel, J., Wang, K. C., Kujawa, M., and Lack, B., 1989, Ultrastructural studies of the cells forming amyloid fibers in classical plaques, Can. J. Neurol. Sci. 16:535–542.PubMedGoogle Scholar
  302. Wong-Riley, M. T. T., 1989, Cytochrome oxidase: an endogeneous metabolic marker for neuronal activity, Trends Neurosci. 12:94–101.PubMedCrossRefGoogle Scholar
  303. Wragg, M. A., Talbot, C. J., Morris, J. C., Lendon, C. L., and Goate, A. M., 1995, No association found between Alzheimer’s disease and a mitochondrial tRNA glutamine gene variant, Neuroscience Lett. 201:107–110.CrossRefGoogle Scholar
  304. Xu, N., Majidi, V., Markesbery, W. R., and Ehmann, W. D., 1992, Brain aluminum in Alzheimer’s disease using an improved GFAAS method, Neurotoxicol. 13:735–744.Google Scholar
  305. Yan, S.-D., Chen, X., Schmidt, A.-M, Brett, J., Godman, G., Zou, Y.-S., Scott, C. W., Caputo, C., Frappier, T., Smith, M. A., Perry, G., Yen, S.-H., Stern, D., 1994a, Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress, Proc. Natl. Acad. Sci. USA 91:7787–7791.PubMedCrossRefGoogle Scholar
  306. Yan, S.-D., Schmidt, A. M., Anderson, G. M., Shang, J., Brett, J., Zou, Y. S., Pinsky, D., and Stern, D., 1994b, Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptor binding proteins, J. Biol. Chem. 269:9889–9897.PubMedGoogle Scholar
  307. Yan, S.-D., Chen, X., Fu, J., Chen, M., Godman, G., Gern, D., and Schmidt, A.-M., 1996, RAGE: a receptor upregulated in Alzheimer’s disease on neurons, microglia, and cerebrovascular endothelium that binds amyloid-β-peptide and mediates induction of oxidant stress, Neurology 46A:A276.CrossRefGoogle Scholar
  308. Yen, T.-C, Chen, Y.-S., and King, K.-L., 1989, Liver mitochondrial respiratory functions decline with age, Biochem. Biophys. Res. Comm. 165:994–1003.CrossRefGoogle Scholar
  309. Yen, T.-C, Su, J. H., King, K. L., and Wei, Y. H., 1991, Ageing-associated 5kb deletion in human liver mitochondrial DNA, Biochem. Biophys. Res. Commun. 178:124–131.PubMedCrossRefGoogle Scholar
  310. Yen, T.-C, King, K. L., Lee, H. C., Yeh, S. H., and Wei, Y H., 1994, Age-dependent increase of mitochondrial DNA deletions together with lipid peroxides and superoxide dismutase in human liver mitochondria, Free Rad. Biol. Med. 16:207–214.PubMedCrossRefGoogle Scholar
  311. Youdim, M. B., and Lavie, L., 1994, Selective MAO-A and B inhibitors, radical scavengers and nitric oxide synthase inhibitors in Parkinson’s disease, Life. Sci. 55:2077–2082.PubMedCrossRefGoogle Scholar
  312. Younkin, S. G., 1995, Evidence that Aß42 is the real culprit in Alzheimer’s disease, Ann. Neurol. 37:287–288.PubMedCrossRefGoogle Scholar
  313. Zaman, Z., Roche, S., Fielden, P., Frost, P. G., Niriella, D. C., and Cayley, A. C., 1992, Plasma concentrations of vitamins A and E and carotenoids in Alzheimer’s disease, Age Ageing 21:91–94.PubMedCrossRefGoogle Scholar
  314. Zemlan, F. P., Thienhaus, O. J., and Bosmann, H. B., 1989, Superoxide dismutase activity in Alzheimer’s disease: Possible mechanism for paired helical filament formation, Brain Res. 476:160–162.PubMedCrossRefGoogle Scholar
  315. Zhang, C., Baumer, A., Maxwell, R. J., Linnane, A. W., and Nagley, P., 1992, Multiple mitochondrial deletions in an elderly human individual, FEBS Letters 297:34–38.PubMedCrossRefGoogle Scholar
  316. Zhang, C., Linnanne, A. W., and Nagley, P., 1993, Basic FGF, NGF, and IGFs protect hippocampal and cortical neurons against iron-induced degeneration, J. Cereb. Blood Flow Metab. 13:378–388.PubMedCrossRefGoogle Scholar
  317. Zubenko, G. S., Fair, J., Stiffler, J. S., Hughes, H. B., and Kaplan, B. B., 1992, Clinically-silent mutation in the putative iron-responsive element in exon 17 of the beta-amyloid precursor protein gene, J. Neuropathol. Exper. Neurol 51:459–463.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Leslie A. Shinobu
    • 1
  • M. Flint Beal
    • 1
  1. 1.Neurology ServiceMassachusetts General HospitalBostonUSA

Personalised recommendations