Huntington’s Disease and Neural Transplantation

  • R. L. M. Faull
  • H. J. Waldvogel
  • L. F. B. Nicholson
  • M. N. Williams
  • M. Dragunow
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)


In recent years neural grafting in neurodegenerative diseases has emerged from the realm of the theoretical to that of the practical. In Parkinson’s disease, autografts of adrenal medulla cells to the caudate nucleus of the brain have been shown to produce improvements in the clinical signs of the disease (Madrazo et al., 1987) and patients with idiopathic and MPTP induced Parkinson’s disease have shown improvements following human fetal neural transplants (Freed et al., 1992; Spencer et al., 1992; Widner et al., 1992). Also, neural grafts of embryonic striatal neurons have been shown to partially restore some neurochemical deficits and to ameliorate behavioural and locomotor impairment in animal models of Huntington’s disease (Isacson et al., 1984, 1985, 1986;Hantraye et al., 1992). These findings and others have led to the suggestion that neural transplantation may offer the prospect of a viable strategy for structural repair in Huntington’s disease (Dunnett and Svendsen, 1993).


Basal Ganglion Huntington Disease Globus Pallidus Quinolinic Acid Receptor Immunoreactivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J., and Martin, J.B., 1986, Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid, Nature 321:168–171.PubMedCrossRefGoogle Scholar
  2. Beal, M.F., Kowall, N.W., Swartz, K.J., Ferrante, R.J., and Martin, J.B., 1989, Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions, Synapse 3:38–47.PubMedCrossRefGoogle Scholar
  3. Boegman, R.J., Smith, Y., and Parent, A., 1987, Quinolinic acid does not spare striatal neuropeptide Y-im-munoreactive neurons, Brain Res. 415:178–182.PubMedCrossRefGoogle Scholar
  4. Davies, S.W., and Roberts, P.J., 1987, No evidence for preservation of somatostatin-containing neurons after intrastriatal injections of quinolinic acid, Nature 327:326–329.PubMedCrossRefGoogle Scholar
  5. Dawbarn, D., De Quidt, M.E., and Emson, P.C., 1985, Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s disease, Brain Res. 340:251–260.PubMedCrossRefGoogle Scholar
  6. DiFiglia, M., 1990, Excitotoxic injury of the neostriatum: a model for Huntington’s disease, Trends Neurosci. 13:286–289.PubMedCrossRefGoogle Scholar
  7. Dragunow, M., Faull, R.L.M., Waldvogel, H.J., Williams, M.N., and Leah, J., 1991, Elevated expression of jun and fos-related proteins in transplanted striatal neurons. Brain Res. 558:321–324.CrossRefGoogle Scholar
  8. Dragunow, M., Williams, M., and Faull, R.L.M., 1990, Haloperidol induces Fos and related molecules in intrastriatal grafts derived from fetal striatal primordia, Brain Res. 530:309–311.PubMedCrossRefGoogle Scholar
  9. Dunnett, S.B., and Svendsen, C.N., 1993, Huntington’s disease: animal models and transplantation repair, Current Opinion in Neurobiology 3:790–796.PubMedCrossRefGoogle Scholar
  10. Ellison, D.W., Beal, M.F., Mazurek, M.F., Malloy, J.R., Bird, E.D., and Martin, J.B., 1987, Amino acid neurotransmitter abnormalities in Huntington’s disease and the quinolinic acid animal model of Huntington’s disease, Brain 110:1657–1673.PubMedCrossRefGoogle Scholar
  11. Faull, R.L.M., Waldvogel, HJ., Nicholson, L.F.B., and Synek, B.J.L., 1993, The distribution of GABAA-benzodiazepine receptors in the basal ganglia in Huntington’s disease and in the quinolinic acid-lesioned rat, Prog. Brain Res. 99:105–123.PubMedCrossRefGoogle Scholar
  12. Faull, R.L.M., Waldvogel, H.J., Nicholson, L.F.B., Williams, M.N. and Dragunow, M. (1995). Huntington’s disease and neural transplantation: GABAA receptor changes in the basal ganglia in Huntington’s disease in the human brain and in the quinolinic acid lesioned rat model of the disease following fetal neuron transplants. In: Neurotransmitters in the Human Brain. (D Tracey, J. Stone and G. Paxinos, Eds.) Plenum Press, pp 173-198.Google Scholar
  13. Ferrante, R.J., Kowall, N.W., Beal, M.F., Richardson, E.P., Bird, E.D., and Martin, J.B., 1985, Selective sparing of a class of striatal neurons in Huntington’s disease, Science 230:561–563.PubMedCrossRefGoogle Scholar
  14. Ferrante, R.J., Kowall, N.W., Beal, M.F., Martin, J.B., Bird, E.D., and Richardson E.P., 1987, Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease, J. Neuropath, exp. Neurol. 46:12–27.CrossRefGoogle Scholar
  15. Freed, C.R., Breeze, R.E., Rosenberg, N.L., Schneck, S.A., Kriek, E., Qi, J.-X., Lone, T., Zhang, Y.-B., Snyder, J.A., Wells, T.H., Ramig, L.O., Thompson, L., Mazziotta, J.C., Huang, S.C., Grafton, S. T., Brooks, D., Sawle, G., Schröter, G., and Ansari, A.A., 1992, Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease, N. Eng. J. Med. 327:1549–1555.CrossRefGoogle Scholar
  16. Fritschy, J.-M., Benke, D., Mertens, S., Oertel, W.H., Bachi, T., and Möhler, H., 1992, Five subtypes of type Aγ-aminobutyric acid receptors identified in neurons by double and triple imunofluorescence staining with subunit-specific antibodies, Proc. Natl. Acad. Sci. U.S.A. 89:6726–6730.PubMedCrossRefGoogle Scholar
  17. Graveland, G.A., Williams, R.S., and DiFiglia, M., 1985, Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease, Science 227:770–773.PubMedCrossRefGoogle Scholar
  18. Hantraye, P., Riche, D., Maziere, M., and Isacson, O., 1992, Intrastriatal transplantation of cross-species fetal striatal cells reduces abnormal movements in a primate model of Huntington disease, Proc. Natl. Acad. Sci. U.S.A. 89:4187–4191.PubMedCrossRefGoogle Scholar
  19. Häring, P., Stähli, C., Schoch, P., Takács, B., Staehelin, T., and Möhler, H., 1985, Monoclonal antibodies reveal structural homogeneity of y-aminobutyric acid/benzodiazepine receptors in different brain areas, Proc. Natl. Acad. Sci. U.S.A. 82:4837–4841.PubMedCrossRefGoogle Scholar
  20. Hayden, M.R., 1981, Huntingtons Chorea, Springer-Verlag, New York, 192pp.CrossRefGoogle Scholar
  21. Houser, C.R., Olsen, R.W., Richards, J.G., and Möhler, H., 1988, Immunohistochemical localization of benzodiazepine/GABAA receptors in the human hippocampal formation, J. Neurosci. 8:1370–1383.PubMedGoogle Scholar
  22. Isacson, O., Brundin, P., Gaye, F.H., and Bjorklund, A., 1985, Neural grafting in a rat model of Huntington’s Disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting, Neuroscience 16:799–817.PubMedCrossRefGoogle Scholar
  23. Isacson, O., Brundin, P., Kelly, P.A.T., Gage, F.H., and Bjorklund, A., 1984, Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum, Nature 311: 458–460.PubMedCrossRefGoogle Scholar
  24. Isacson, O., Dunnett, S.B., and Bjorklund, A., 1986, Graft-induced behavioral recovery in an animal model of Huntington disease, Proc. Natl. Acad. Sci. U.S.A. 83:2728–2732.PubMedCrossRefGoogle Scholar
  25. Kowall, N.W., Ferrante, R.J., and Martin, J.B., 1987, Patterns of cell loss in Huntington’s disease, Trends Neurosci. 10:24–29.CrossRefGoogle Scholar
  26. Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C., and Becerril, J.J., 1987, Open microsurgical autografi of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s Disease, N. Eng. J. Med. 316:831–834.CrossRefGoogle Scholar
  27. Martin, J.B., and Gusella, J.F., 1986, Huntington’s disease, Pathogenesis and management. New Eng. J. Med. 315:1267–1276.Google Scholar
  28. Penney, J.B., and Young, A.B., 1982, Quantitative autoradiography of neurotransmitter receptors in Huntington disease, Neurology 32:1391–1395.PubMedCrossRefGoogle Scholar
  29. Penney. J.B., and Pan, H.S., 1986, Quantitative autoradiography of GABA and benzodiazepine binding in studies of mammalian and human basal ganglia function, in: Quantitative Receptor Autoradiography, (C.A. Boast, E.W. Snowhill and C.A. Altar, eds.), Alan R. Liss, New York, pp. 29–52.Google Scholar
  30. Reisine, T.D., Wastek, G.J., Speth, R.C., Bird, E.D., and Yamamura, H.I., 1979, Alterations in the benzodiazepine receptor of Huntington’s diseased human brain, Brain Res. 165:183–187.PubMedCrossRefGoogle Scholar
  31. Reisine, T.D., Overstreet, D., Gale, K., Rossor, M., Iversen, L., and Yamamura, H.I., 1980, Benzodiazepine receptors: the effect of GABA on their characteristics in human brain and their alteration in Huntington’s disease, Brain Res. 199:79–88.PubMedCrossRefGoogle Scholar
  32. Richards, J.G., Möhler, H., and Haefely, W., 1986, Mapping benzodiazepine receptors in the CNS by radiohistochemistry and immunohistochemistry, in: “Neurohistochemistry: Modern Methods and Applications,” P. Panula, H. Paivarinta and S. Soinila, eds., Alan R. Liss, New York, pp. 629–677.Google Scholar
  33. Richards, J.G., Schoch, P., Häring, P., Takacs, B., and Möhler, H., 1987b, Resolving 6 GABAA/benzodiazepine receptors: cellular and subcellular localization in the C.N.S. with monoclonal antibodies, J. Neurosci. 7:1866–1886.PubMedGoogle Scholar
  34. Schoch, P., Richards, J.G., Häring, P., Takacs, B., Stähli, C., Staehelin, T., Haefely, W., and Möhler, H., 1985, Co-localization of GABAA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies, Nature 314:168–171.PubMedCrossRefGoogle Scholar
  35. Schwarcz, R., Whetsell, W.O., and Mangano, R.M., 1983, Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain, Science 219:316–318.PubMedCrossRefGoogle Scholar
  36. Spencer, D.D., Robbins, R.J., Naftolin, F., Phil, D., Marek, K.L., Vollmer, T., Leranth, C., Roth, R.H., Price, L.H., Gjedde, A., Bunney, B.S., Sass, K.J., Elsworth, J.D., Kier, E.L., Makuch, R., Hoffer, P.B., and Redmond, D.E., 1992, Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease, N. Eng. J. Med. 327:1541–1548.CrossRefGoogle Scholar
  37. Walker, F.O., Young, A.B., Penney, J.B., Dovorini-Zis, K., and Shoulson, I., 1984, Benzodiazepine and GABA receptors in early Huntington’s disease, Neurology 34:1237–1240.PubMedCrossRefGoogle Scholar
  38. Whitehouse, P.J., Trifiletti, R.R., Jones, B.E., Folstein, S., Price, D.L., Snyder, S.H., and Kuhar, M.J., 1985, Neurotransmitter receptor alterations in Huntington’s disease: autoradiographic and homogenate studies with special reference to benzodiazepine receptor complexes, Ann. Neurol. 18:202–210.PubMedCrossRefGoogle Scholar
  39. Wictorin, K., 1992, Anatomy and connectivity of intrastriatal striatal transplants, Prog. Neurobiol. 38:611–639.PubMedCrossRefGoogle Scholar
  40. Widner, H., Tetrud, J., Rehncrona, S., Snow, B., Brundin, P., Gustavii, B., Björklund, A., Lindvall, O., and Langston, J.W., 1992, Bilateral fetal mesencephalic grafting in two patients with Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), N. Eng. J. Med. 327:1556–1563.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • R. L. M. Faull
    • 1
  • H. J. Waldvogel
    • 1
  • L. F. B. Nicholson
    • 1
  • M. N. Williams
    • 1
  • M. Dragunow
    • 2
  1. 1.Department of AnatomyUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Pharmacology, Faculty of Medicine and Health ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations