Speculations on the Molecular Mechanisms Underlying Dopamine Agonist-Induced Dyskinesias in Parkinsonism

  • Susan Duty
  • Brian Henry
  • Alan R. Crossman
  • Jonathan M. Brotchie
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)


Long-term treatment of Parkinson’s disease with dopamine-replacing agents fre-quently results in the appearance of debilitating dyskinetic side-effects. The neural mechanisms underlying these so-called dopamine agonist-induced dyskinesias remain unclear. This chapter summarises some of our recent molecular data, obtained in the 6-hydroxydopaminelesioned rat model of Parkinson’s disease, that suggest a role for both enkephalin and dynorphin in the generation of the symptoms of dopamine agonist-induced dyskinesias.


Globus Pallidus Subthalamic Nucleus Kappa Opioid Receptor Dopamine Replacement Therapy Lesion Striatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albin, R.L., Young, A.B. and Penney J.B., 1989, The functional anatomy of basal ganglia disorders, Trends Neurosci. 12: 366–375.PubMedCrossRefGoogle Scholar
  2. Alexander, G.E., DeLong, M.R. and Strick, P.L., 1986, Parallel organisation of functionally-segregated circuits linking basal ganglia and cortex, Ann. Rev. Neurosci. 9: 357–381.PubMedCrossRefGoogle Scholar
  3. Angulo, J.A., 1992, Involvement of dopamine D1 and D2 receptors in the regulation of preproenkephalin mRNA abundance in the striatum and accumbens of the rat brain, J. Neurochem. 58: 1104–1109.PubMedCrossRefGoogle Scholar
  4. Angulo, J., Davis, L., Burkhart, B. and Christoph, G., 1986, Reduction of striatal neurotransmission elevates striatal proenkephalin mRNA, Eur. J. Pharmacol. 130: 243–341.CrossRefGoogle Scholar
  5. Campbell, K. and Björklund, A., 1994, Prefrontal corticostriatal afferents maintain increased enkephalin gene expression in the dopamine-denervated rat striatum, Eur. J. Neurosci. 6: 1371–1383.PubMedCrossRefGoogle Scholar
  6. Carroll, C.B., Holloway, V., Brotchie, J.M. and Mitchell, I.J., 1995, Neurochemical and behavioural investigations of the NMDA receptor-associated glycine site in the rat striatum: functional implications for the treatment of parkinsonian symptoms, Psychopharmacol. 119: 55–65.CrossRefGoogle Scholar
  7. Crossman, A.R., 1990, A hypothesis on the pathophysiological mechanisms that underlie levodopa-or dopamine agonist-induced dyskinesia in Parkinson’s disease: implications for future strategies in treatment, Mov. Dis. 5: 100–108.CrossRefGoogle Scholar
  8. Del Fiacco, M., Paxinos, G. and Levanti, M.C., 1982, Neostriatal enkephalin immunoreactive neurons project to the globus pallidus, Brain Res. 231: 1–17.PubMedCrossRefGoogle Scholar
  9. Douglass, J., McKinzie, A.A. and Pollock, K.M., 1994, Identification of multiple DNA elements regulating basal and protein kinase A-regulated transcriptional expression of the rat prodynorphin gene, Mol. Endocrinol. 8: 333–344.PubMedCrossRefGoogle Scholar
  10. Engber, T.M., Susel, Z., Kuo, S., Gerfen, C.R. and Chase, T.N., 1991, Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxy-dopamine lesioned rats, Brain Res. 552: 113–118.PubMedCrossRefGoogle Scholar
  11. Gerfen, C.G. and Young III, W.S., 1988, Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridisation histochemistry and fluorescent retrograde tracing study, Brain Res. 460: 161–167.PubMedCrossRefGoogle Scholar
  12. Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma Jr., F.J. and Sibley, D.R., 1990, D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons, Science 250: 1429–1432.PubMedCrossRefGoogle Scholar
  13. Gerfen, C.R., McGinty, J.F. and Young III, W.S., 1991, Dopamine differentially regulates dynorphin, substance P and enkephalin expression in striatal neurons: In situ hybridisation histochemical analysis, J. Neurosci. 11: 1016–1031.PubMedGoogle Scholar
  14. Gomez-Mancilla, B. and Bedard, P.J., 1993, Effect of nondopaminergic drugs on L-DOPA-induced dyskinesias in MPTP-treated monkeys, Clin. Neuropharmacol. 16: 418–427.PubMedCrossRefGoogle Scholar
  15. Graybiel, A.M., 1990, Neurotransmitters and neuromodulators in the basal ganglia, Trends Neurosci. 13: 244–254.PubMedCrossRefGoogle Scholar
  16. Greenamyre, J.T., 1993, Glutamate-dopamine interactions in the basal ganglia: relationship to Parkinson’s disease, J. Neurotransm. 91: 255–269.Google Scholar
  17. Hammond, C., Feger, J., Biolac, B. and Souteyrend, J.P., 1979, Experimental hemiballismus produced by unilateral kainic acid lesion in the corpus Luysii, Brain Res. 171: 577–580.PubMedCrossRefGoogle Scholar
  18. Hervé, D., Trovero, F., Blanc, G., Thierry, A.M., Glowinski, J., Tassin, J.-P., 1989, Nondopaminergic prefrontocortical efferent fibres modulate D1 receptor denervation supersensitivity in specific regions of the rat striatum, J. Neurosci. 9: 3699–3708.PubMedGoogle Scholar
  19. Hossain, M.H. and Weiner, N., 1993, Dopaminergic functional supersensitivity: effects of chronic L-Dopa and carbidopa treatment in an animal model of Parkinson’s disease, J. Pharmacol. Exp. Ther. 267: 1105–1111.PubMedGoogle Scholar
  20. Jiang, H.K., McGinty, J.F. and Hong, J.S., 1990, Differential modulation of strionigral dynorphin and enkephalin by dopamine receptor subtypes, Brain Res. 507: 57–64.PubMedCrossRefGoogle Scholar
  21. Jongen-Rêlo, A.L., Docter, G.J., Jonker, A.J., Vreugdenhil, E., Groenewegen, H.J. and Voorn, P., 1994, Differential effects of dopamine depletion on the binding and mRNA levels of dopamine receptors in the shell and core of the rat nucleus accumbens, Mol. Brain Res. 25: 333–343.PubMedCrossRefGoogle Scholar
  22. Kelley, A.E. and Domesick, V.B., 1982, The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde and retrograde horseradish peroxidase study, Neuroscience 7: 2321–2325.PubMedCrossRefGoogle Scholar
  23. Kowlaski, C. and Giraud, P., 1993, Dopamine decreases striatal enkephalin turnover and proenkephalin messenger RNA abundance via D2 receptor activation in primary cell cultures, Neuroscience 53: 665–672.CrossRefGoogle Scholar
  24. Kunzle, H., 1975, Bilateral projections from the precentrai motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis, Brain Res. 88: 195–209.PubMedCrossRefGoogle Scholar
  25. Kunzle, H., 1977, Projections from the primary somatosensory cortex to the basal ganglia and thalamus in the monkey, Exp. Brain Res. 30: 481–492.PubMedCrossRefGoogle Scholar
  26. Le Moine, C., Normand, E., Guitteny, A.F., Fouque, B., Teoule, R. and Bloch, B., 1990, Dopamine receptor gene expression by enkephalin neurons in rat forebrain, Proc. Natl. Acad. Sci. USA 87: 230–234.PubMedCrossRefGoogle Scholar
  27. Li, S.J., Jiang, H.K., Stachowiak, M.S., Hudson P.M, Owyang V., Nanry K., Tilson, H.A. and Hong, J.S., 1990, Influence of nigrostriatal dopaminergic tone on the biosynthesis of dynorphin and enkephalin in rat striatum, Mol. Brain Res. 8: 219–225.PubMedCrossRefGoogle Scholar
  28. Llorens-Cortes, C., Van Amsterdam, J.G.C., Giros, B., Qauch, T.T. and Schwarz, J.C., 1990, Enkephalin biosynthesis and release in mouse striatum are inhibited by GABA receptor stimulation: compared changes in preproenkephalin mRNA and Tyr-Gly-Gly levels, Mol. Brain Res. 8: 227–233.PubMedCrossRefGoogle Scholar
  29. Maneuf, Y.P., Mitchell, I.J., Crossman, A.R. and Brotchie, J.M., 1994, On the role of enkephalin in the GABAergic striatal efferents to the globus pallidus, Exp. Neurol. 125: 65–71.PubMedCrossRefGoogle Scholar
  30. Maneuf, Y.P., Mitchell, I.J., Crossman, A.R., Woodruff, G.N. and Brotchie, J.M., 1995, Functional implications of kappa opioid receptor-mediated modulation of glutamate transmission in the output regions of the basal ganglia in rodent and primate models of Parkinson’s disease, Brain Res. 683: 102–108.PubMedCrossRefGoogle Scholar
  31. Marsden, C.D. and Parkes, J.D., 1977, Success and problems of long term therapy in Parkinson’s disease, Lancet I: 345–349.CrossRefGoogle Scholar
  32. Martin, J.P., 1927, Hemichorea resulting from a local lesion of the brain (syndrome of body of Luys), Brain 50:637–651.CrossRefGoogle Scholar
  33. Mishra, R.M., Marshall, A.M. and Varmuza, S.L., 1980, Supersensitivity in rat caudate nucleus: effects of 6-hydroxydopamine on the time course of dopamine receptor and cyclic AMP changes, Brain Res. 200: 47–57.PubMedCrossRefGoogle Scholar
  34. Mitchell, I.J., Jackson, A., Sambrook, M.A. and Crossman, A.R., 1985, Common neural mechanisms in experimental chorea and hemiballismus in the monkey. Evidence from 2-deoxyglucose autoradiography, Brain Res. 339: 346–350.PubMedCrossRefGoogle Scholar
  35. Mitchell, I.J., Clarke, C.E., Boyce, S., Robertson, R.G., Peggs, D., Sambrook, M.A. and Crossman, A.R., 1989a, Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Neuroscience 32: 213–226.PubMedCrossRefGoogle Scholar
  36. Mitchell, I.J., Jackson, A., Sambrook, M.A. and Crossman, A.R., 1989b, The role of the subthalamic nucleus in experimental chorea: evidence from 2-deoxyglucose autoradiography, Brain 112: 1533–1548.PubMedCrossRefGoogle Scholar
  37. Mitchell, I.J., Crossman, A.R., Liminga, U., Andren, P. and Gunne, L.M., 1992a, Regional changes in 2-deoxyglucose uptake associated with neuroleptic-induced tardive dyskinesia in the cebus monkey, Movement Dis.7: 32–37.PubMedCrossRefGoogle Scholar
  38. Mitchell, I.J., Boyce, S., Sambrook, M.A. and Crossman, A.R., 1992b, A 2-deoxyglucose study of the effects of dopamine agonists on the parkinsonian primate brain: implications for the neural mechanisms that mediate dopamine agonist-induced dyskinesia, Brain 115: 809–824.PubMedCrossRefGoogle Scholar
  39. Morris, B.J., Höllt, V. and Herz, A., 1988, Dopaminergic regulation of striatal proenkephalin mRNA and prodynorphin mRNA: contrasting effects of D1 and D2 antagonists, Neuroscience 25: 525–532.PubMedCrossRefGoogle Scholar
  40. Normand, E., Popovici, T., Onteniente, B., Fellmann, D., Piatier-Tonneau, D., Auffray, C., and Bloch, B., 1988, Dopaminergic neurons of the substantia nigra modulate preproenkephalin A gene expression in rat striatal neurons, Brain Res. 439: 39–46.PubMedCrossRefGoogle Scholar
  41. Onali, P., Olianas, M.C. and Gessa, G.L., 1985, Characterisation of dopamine receptors mediating inhibition of adenylate cyclase activity in rat striatimi, Mol. Pharmacol. 28: 138–145.PubMedGoogle Scholar
  42. Parent, A. and Hazrati, L.-N., 1995, Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-tha-lamo-cortical loop, Brain Res. Rev. 20: 91–127.PubMedCrossRefGoogle Scholar
  43. Paxinos, G. and Watson, C., 1985, The Rat Brain in Stereotaxic Coordinates, Academic Press, New York.Google Scholar
  44. Pollack, A.E. and Wooten, G.F., 1992, Differential regulation of striatal preproenkephalin mRNA by D1 and D2 dopamine receptors, Mol. Brain Res. 12: 111–119.PubMedCrossRefGoogle Scholar
  45. Penney, J.B. and Young, A.B., 1986, Striatal inhomogeneities and basal ganglia function, Movement Dis. 1: 3–15.PubMedCrossRefGoogle Scholar
  46. Robertson, R.G., Farmery, S.M., Sambrook, M.A. and Crossman, A.R., 1989, Dyskinesia in the primate following injection of an excitatory amino-acid antagonist into the medial pallidal segment of the globus pallidus, Brain Res. 416: 317–322.CrossRefGoogle Scholar
  47. Schiffmann, S.N. and Vanderhaeghen, J.J., 1993, Adenosine A2 receptors regulate the gene expression of striopallidal and strionigral neurons, J. Neurosci. 13: 1080–1087.PubMedGoogle Scholar
  48. Sivam, S.P. and Hong, J.-S., 1986, GABAergic regulation of enkephalin in rat striatum: alterations in met5-enkephalin level, precursor content and preproenkephalin messenger RNA abundance, J. Pharmacol. Exp. Ther. 237: 326–331.PubMedGoogle Scholar
  49. Somers, D.L. and Beckstead, R.M., 1992, N-Methyl-D-Aspartate receptor antagonism alters substance P and met5-enkephalin biosynthesis in neurons of the rat striatum, J. Pharmacol. Exp. Ther. 262: 823–833.PubMedGoogle Scholar
  50. Stoof, J.C. and Kebabian, J.W., 1981, Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum, Nature 294: 366–368.PubMedCrossRefGoogle Scholar
  51. Thomas, K.L., Rose, S., Jenner, P., Marsden, C.D., 1992, Dissociation of the striatal D-2 dopamine receptor from adenylyl cyclase following 6-hydroxydopamine-induced denervation, Biochem. Pharmacol. 44: 73–82.PubMedCrossRefGoogle Scholar
  52. Trabucchi, M., Bassi, S. and Frattola, L., 1982, Effect of naloxone on the’ On-Off syndrome in patients receiving long-term levodopa therapy, Arch. Neurol. 39: 120–121.PubMedCrossRefGoogle Scholar
  53. Uhl, G.R., Navia, B. and Douglass, J., 1988, Differential expression of preproenkephalin and preprodynorphin mRNAs in striatal neurons: High levels of preproenkephalin expression depend on cortical afferents, J. Neurosci. 8: 4755–4764.PubMedGoogle Scholar
  54. Vincent, S.R., Hökfelt, T., Christensson, I. and Terenius, L., 1982, Immunohistochemical evidence for a dynorphin immunoreactive strionigral pathway, Eur. J. Pharmacol. 85: 251–252.PubMedCrossRefGoogle Scholar
  55. Voorn, P., Docter, G.J., Jongen-Rêlo, A.L. and Jonker, A.J., 1994, Rostrocaudal sub-regional differences in the response of enkephalin, dynorphin and substance P synthesis in rat nucleus accumbens to dopamine depletion, Eur. J. Neurosci. 486-496.Google Scholar
  56. Young III, W.S., Bonner, T.I. and Brann, M.R., 1986, Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain, Proc. Natl. Acad. Sci. USA 83: 9827–9831.PubMedCrossRefGoogle Scholar
  57. Zahm, D.S. and Brog, J.S., 1992, On the significance of subterritories in the ‘accumbens’ part of the ventral striatum, Neuroscience 50: 751–767.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Susan Duty
    • 2
  • Brian Henry
    • 1
  • Alan R. Crossman
    • 1
  • Jonathan M. Brotchie
    • 1
  1. 1.Division of Neuroscience, School of Biological SciencesUniversity of ManchesterUK
  2. 2.Pharmacology GroupKing’s College LondonLondonUK

Personalised recommendations