Functional Connectivity and Information Processing in the Basal Ganglia of Normal and Parkinsonian Monkeys

  • Ariela Feingold
  • Asaph Nini
  • Aeyal Raz
  • Valentina Zelenskaya
  • Hagai Bergman
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)


The mode of information processing (e. g., parallel or integrative processing) in the basal ganglia circuitry is determined by the level of system coupling, namely by the functional connections (fully segregated or fully overlapping) between the input and output structures of the circuit. To test the degree of functional coupling and possible models of information processing in the basal ganglia, we studied the cross-correlation histograms of simultaneously recorded neurons in the globus pallidus of rhesus and vervet (African green) monkeys before and after MPTP treatment.

In dramatic contrast to similar studies of other neuronal systems, almost all pairs of pallidal neurons fired independently in the normal monkey. Following MPTP treatment and the development of tremor and other parkinsonian symptoms, significant oscillations (around 5–7 and 10–14 Hz) were found in the auto- and cross-correlation histograms of many pallidal neurons.

The results support the view that the basal ganglia circuits are built as a mixed coupled system that is un- or weakly-coupled in the normal state and strongly coupled in the Parkinsonian state. Synchronized oscillatory neural activity in the basal ganglia probably plays a major role in the tremor phenomena of Parkinson’s disease.


Basal Ganglion Functional Connectivity Globus Pallidus Subthalamic Nucleus Vervet Monkey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, M. Corticonics-Neural Circuits of the Cerebral Cortex. Cambridge: Cambridge University Press, 1991.CrossRefGoogle Scholar
  2. Bergman, H., Wichmann, T., Karmon, B., and DeLong, M. R. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J. Neurophysiol. 72:507–520, 1994.PubMedGoogle Scholar
  3. DeLong, M. R., Crutcher, M. D., and Georgopoulos, A. P. Primate globus pallidus and subthalamic nucleus: functional organization. J. Neurophysiol. 53:530–543, 1985.PubMedGoogle Scholar
  4. Fetz, E., Toyama, K., and Smith, W. Synaptic interactions between cortical neurons. In: Cerebral cortex, Vol. 9, (A. Peters, ed.). New York: Plenum Press, 1991, p. 1–47.Google Scholar
  5. Filion, M., Tremblay, L., and Bedard, P. J. Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res. 444:165–176, 1988.PubMedCrossRefGoogle Scholar
  6. Filion, M. and Tremblay, L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 547:142–151, 1991.PubMedGoogle Scholar
  7. Georgopoulos, A. P., DeLong, M. R., and Crutcher, M. D. Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J. Neurosci. 3:1586–1598, 1983.PubMedGoogle Scholar
  8. Hammond, C. and Yelnik, J. Intracellular labelling of rat subthalamic neurones with horseradish peroxidase: computer analysis of dendrites and characterization of axon arborization. Neuroscience 8:781–790, 1983.PubMedCrossRefGoogle Scholar
  9. Kita, H. and Kitai, S. T. The morphology of globus pallidus projection neurons in the rat: an intracellular, staining study. Brain Res. 636:308–319, 1994.PubMedCrossRefGoogle Scholar
  10. Lenz, F. A., Tasker, R. R., Kwan, H. C., Dostrovsky, J. O., and Murphy, J. T. Single unit analysis of the human thalamic ventral nuclear group: Correlation of thalamic “tremor cells” with the 3–6 Hz component of parkinsonian tremor. J. Neurosci. 8:754–764, 1988.PubMedGoogle Scholar
  11. Lenz, F. A., Kwan, H. C., Martin, R. L., Tasker, R. R., Dostrovsky, J. O., and Lenz, Y. E. Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 117:531–543, 1994.PubMedCrossRefGoogle Scholar
  12. Miller, W. C. and DeLong, M. R. Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism. In: The Basal Ganglia II, (M. B. Carpenter and A. Jayaraman, eds.). New York: Plenum Press, 1987, p. 415–427.CrossRefGoogle Scholar
  13. Miller, W. C. and DeLong, M. R. Parkinsonian symptomatology: an anatomical and physiological analysis. Ann.N.Y.Acad.Sci. 515:287–302, 1988.PubMedCrossRefGoogle Scholar
  14. Nini, A., Feingold, A., Slovin, H., and Bergman, H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of Parkinsonism. J. Neurophysiol. 1995.(in press)Google Scholar
  15. Ohye, C., Saito, Y., Fukamachi, A., and Narabayashi, H. An analysis of the spontaneous rhythmic and non-rhythmic burst discharges in the human thalamus. J. Neurol. Sci. 22:245–259, 1974.PubMedCrossRefGoogle Scholar
  16. Parent, A. and Hazrati, L. N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Brain Res. Rev. 20:91–127, 1995.PubMedCrossRefGoogle Scholar
  17. Park, M. R., Falls, W. M., and Kitai, S. T. An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopy analysis. J. Comp. Neurol. 211:284–294, 1982.PubMedCrossRefGoogle Scholar
  18. Percheron, G., Francois, C., Yelnik, J., Fenelon, G., and Talbi, B. The basal ganglia related system of primates: Defintion, description and informational analysis. In: The basal ganglia IV, edited by G. Percheron, J. S. McKenzie and J. Feger. New York: Plenum Press, 1994, p. 3–20.CrossRefGoogle Scholar
  19. Percheron, G. and Filion, M. Parallel processing in the basal ganglia: up to a point. Trends Neurosci. 14:55–56, 1991.PubMedCrossRefGoogle Scholar
  20. Ryan, L. J., Sanders, D. J., and Clark, K. B. Auto-and cross-correlation analysis of subthalamic nucleus neuronal activity in neostriatal-and globus pallidal-lesioned rats. Brain Res. 583:253–261, 1992.PubMedCrossRefGoogle Scholar
  21. Smith, Y., Wichmann, T., and DeLong, M. R. Synaptic innervation of neurones in the internal pallidal segment by the subthalamic nucleus and the external pallidum in monkeys. J. Comp. Neurol. 343:297–318, 1994.PubMedCrossRefGoogle Scholar
  22. Tremblay, L., Filion, M., and Bedard, P. J. Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain Res. 498:17–33, 1989.PubMedCrossRefGoogle Scholar
  23. Tremblay, L. and Filion, M. Responses of pallidal neurons to striatal stimulation in intact waking monkeys. Brain Res. 498:1–16, 1989.PubMedCrossRefGoogle Scholar
  24. Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., and Aertsen, A. Dynamics of neuronal interactions in monkey cortex in relation to behavioral events. Nature 373:515–518, 1995.PubMedCrossRefGoogle Scholar
  25. Wichmann, T., Bergman, H., and DeLong, M. R. The primate subthalamic nucleus. I. Functional properties in intact animals. J. Neurophysiol. 72:494–506, 1994.PubMedGoogle Scholar
  26. Wilson, C. J. The generation of natural firing patterns in neostriatal neurons. Prog.Brain Res. 1993; 97–99, 1993.Google Scholar
  27. Woodward, D. J., Kirillov, A. B., Myre, C. D., and Sawyer, S. F. Neostriatal Circuitry as a Scalar Memory: Modeling and Ensemble Neuron Recording. In: Models of Information Processing in the Basal Ganglia, (J. C. Houk, J. L. Davis and D. G. Beiser, eds.). Cambridge, London: The MIT Press, 1995, p. 315–336.Google Scholar
  28. Yelnik, J., Percheron, G., and Francois, C. A golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic aborizations. J. Comp. Neurol. 227:200–213, 1984.PubMedCrossRefGoogle Scholar
  29. Yelnik, J., Francois, C., Percheron, G., and Tande, D. Morphological taxonomy of the neurons of the primate striatum. J. Comp. Neurol. 313:273–294, 1991.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ariela Feingold
    • 1
  • Asaph Nini
    • 1
  • Aeyal Raz
    • 1
  • Valentina Zelenskaya
    • 1
  • Hagai Bergman
    • 1
  1. 1.Department of Physiology and the Center for Neural ComputationThe Hebrew UniversityJerusalemIsrael

Personalised recommendations