Magnocellular Preoptic Nucleus, the Basal Magnocellular Complex, and the Basal Ganglia

  • John S. McKenzie
  • Antonio G. Paolini
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)


In the set of large neurones extending from the medial septum to the caudal end of the corpus striatum, the basal magnocellular complex (Divac, 1975), a central place is occupied by the basal nucleus of Meynert (nBM). In many animals, the assembly of magnocellular neurons in the same topographic region has been labelled as magnocellular preoptic nucleus (MCPO) by Loo (1931), nucleus of the diagonal band (Johnston, 1923) or of its horizontal limb (DBh) by Price (1969), Zaborsky et al (1986) and others.


Olfactory Bulb Basal Forebrain Piriform Cortex Medial Forebrain Bundle Olfactory Tubercle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alheid, G.F. and Heimer, L., 1988. New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid and corticopetal components of substantia innominata. Neuroscience 27: 1–39.CrossRefPubMedGoogle Scholar
  2. Brashear, H.R., Zaborsky, L. and Heimer, L., 1986. Distribution of GABAergic and cholinergic neurons in the rat diagonal band. Neuroscience 17: 439–451.CrossRefPubMedGoogle Scholar
  3. Brauer, K., Schober, W. Werner, L., Winkelmann, E., Lungwitz, W. and Hajdu, F., 1988. Neurons in the basal forebrain of the rat: a Golgi study. J. Hirnforsch. 29: 43–71.PubMedGoogle Scholar
  4. Carey, R.G. and Rieck, R.W., 1987. Topographic projections to the visual cortex from the basal forebrain in the rat. Brain Res. 93: 205–215.CrossRefGoogle Scholar
  5. Divac, I., 1975. Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb. Review of some functional correlates. Brain Res. 93: 385–398.CrossRefPubMedGoogle Scholar
  6. Doty, R.L., Reyes, P.F., and Gregor, T., 1987. Presence of both odor identification and detection deficits in Alzheimer’s disease. Brain Res. Bull. 18: 597–600.CrossRefPubMedGoogle Scholar
  7. Emmers, R. and Akert, K., 1963. A Stereotaxic Atlas of the Brain of the Squirrel Monkey (Saimuru sciureus). Univ. Wis. Press, Madison.Google Scholar
  8. Fisher, R.S., Buchwald, N.A., Hull, C.D. and Levine, M.S., 1988. GABAergic basal forebrain neurons project to the neocortex: the localization of glutamic acid decarboxylase and choline acetyltransferasé in feline corticipetal neurons. J.Comp. Neurol. 272: 489–502.CrossRefPubMedGoogle Scholar
  9. Freund, T.F. and Gulyas, A.I., 1991. GABAergic interneurons containing calbindin D28K or somatostatin are major targets of GABAergic basal forebrain afferents in rat neocortex. J. Comp. Neurol. 314: 187–199.CrossRefPubMedGoogle Scholar
  10. Freund, T.F. and Meskenaite, V., 1992. γ-aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the cortex. Proc.Natl.Acad.Sci.USA. 89: 738–742.CrossRefPubMedGoogle Scholar
  11. Geeraedts, L.M.G., Nieuwenhuys, R. and Veenig, J.G., 1990. Medial forebrain bundle of the rat: III. Cytoarchitecture of the rostral (telencephalic) part of the medial forebrain bundle bed nucleus. J. Comp. Neurol. 294: 507–536.CrossRefPubMedGoogle Scholar
  12. Gorry, J.D., 1963. Studies on the comparative anatomy of the ganglion basale of Meynert. Acta Anat. 55: 51–104.CrossRefPubMedGoogle Scholar
  13. Haber, S., 1987. Anatomical relationship between the basal ganglia and the basal nucleus of Meynert in human and monkey forebrain. Proc.Natl.Acad.Sci.USA. 84: 1408–1412.CrossRefPubMedGoogle Scholar
  14. Hedreen, J.C., Struble, R.G., Whitehouse, P.J. and Price, D.L., 1984. Topography of the magnocellular basal forebrain system in the human brain. J.Neuropath.Exp.Neurol. 43: 1–21.CrossRefPubMedGoogle Scholar
  15. Irle, I. and Markowitsch, HJ., 1986. Afferent connections of the substantia innominata/basai nucleus of Meynert in carnivores and primates. J.Hirnforsch. 27: 343–367.PubMedGoogle Scholar
  16. Johnston, J.B., 1923. Further contributions to the study of the forebrain. J.Comp.Neurol. 35: 337–481.CrossRefGoogle Scholar
  17. Jones, E.G., Burton, H., Saper, C.B. and Swanson, L.W., 1976. Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J.Comp.Neurol. 167: 385–420.CrossRefPubMedGoogle Scholar
  18. Kunze, W.A.A., Shafton, A.D. Kemm, R.E. and McKenzie, J.S., 1992a. Intracellular responses of olfactory bulb granule cells to stimulating the horizontal diagonal band nucleus. Neurosci. 48: 363–369.CrossRefGoogle Scholar
  19. Kunze, W.A.A., Shafton, A.D., Kemm, R.E. and McKenzie, J.S., 1992b. Olfactory bulb output neurons excited from a basal forebrain magnocellular nucleus. Brain Res. 583: 327–331.CrossRefPubMedGoogle Scholar
  20. Lamour, Y., Dutar, P. and Jobert, A., 1982. Topographic organization of basal forebrain neurons projecting to rat cerebral cortex. Neurosci. Lett. 34: 117–122.CrossRefPubMedGoogle Scholar
  21. Loo, Y.T., 1931. The forebrain of the opossum, Didelphis virginiana: Part II. Histology. J.Comp.Neurol. 52: 1–48.CrossRefGoogle Scholar
  22. Luiten, P.G.M., Gaykema, R.P.A., Traber, J. and Spencer, D.G., 1987. Cortical projection patterns of magno-cellular basal nucleus subdivisions as revealed by anterogradely transported Phaseolus vulgaris leucoagglutinin. Brain Res. 413: 229–250.CrossRefPubMedGoogle Scholar
  23. McKenzie, J.S., Paolini, A.G. and Kunze, W.A.A., 1994. Olfactory bulb influence on neurons of the ventral striatum, in: The Basal Ganglia IV (G. Percheron, J.S. McKenzie and J. Féger, eds.), Plenum Press, New York. pp. 285–296.CrossRefGoogle Scholar
  24. Mesulam, M.-M. and Geula, C, 1988. Nucleus basalis (CH4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and cholinacetyltransferase. J.Comp. Neurol. 275: 216–240.CrossRefPubMedGoogle Scholar
  25. Mesulam, M.-M., Mufson, E.J., Levey, A.I. and Wainer, B.H., 1983. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J.Comp.Neurol. 2114: 170–197.CrossRefGoogle Scholar
  26. Mesulam,.-M., Mufson, E.J., Levey, A.I. and Wainer, B.H., 1984. Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohisto-chemistry and acetylcholinesterase histochemistry. Neuroscience 12: 669–686.CrossRefPubMedGoogle Scholar
  27. Mesulam, M.-M., Mufson, E.J. and Wainer, B.H., 1986. Three-dimensional representation and cortical projection topography of the nucleus basalis (CH4) in the macaque: concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilized tetramethylbenzidine method for horseradish peroxidase. Brain Res. 367: 301–308.CrossRefPubMedGoogle Scholar
  28. Mulhouse, O.E. and Heimer, L., 1984. Cell configurations in the olfactory tubercle of the rat. J.Comp.Neurol. 228: 571–597.CrossRefGoogle Scholar
  29. Paolini, A.G. and McKenzie, J.S., 1993. Effects of lesions in the horizontal diagonal band nucleus on olfactory habituation in the rat. Neuroscience 57: 717–724.CrossRefPubMedGoogle Scholar
  30. Papez, J.W. and Aronson, L.R., 1934. Thalamic nuclei of pithecus (macacus) rhesus. I. Ventral thalamus. Arch.Nenrol.Psychiat. 32: 1–44.CrossRefGoogle Scholar
  31. Pearson, R.C.A., Gatta, K.C., Brodai, P. and Powell, T.PS, 1983. The projection of the basal nucleus of Meynert upon the neocortex in the monkey. Brain Res. 259: 132–136.CrossRefPubMedGoogle Scholar
  32. Price, J.L., 1969. The origin of the centrifugal fibres to the olfactory bulb. Brain Res. 14: 542–545.CrossRefPubMedGoogle Scholar
  33. Price, J.L. and Powell, T.P.S., 1970. The afferent connections of the nucleus of the horizontal limb of the diagonal band. J. Anat.(Lond.) 107: 239–256.Google Scholar
  34. Rye, D.B., Wainer, B.H., Mesulam, M.-M., Mufson, EJ. and Saper, C.B., 1984. Cortical projections arising from the basal forebrain: A study of cholinergic and non-cholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 13: 627–643.CrossRefPubMedGoogle Scholar
  35. Saper, C.B., 1984. Organization of cerebral cortical afferent systems in the rat, II. Magnocellular basal nucleus. J.Comp.Neurol. 222: 313–342.CrossRefPubMedGoogle Scholar
  36. Saper, C.B. and Chelimsky, T.C., 1984. A cytoarchitectonic and histochemical study of nucleus basalis and associated cell groups in the normal human brain. Neuroscience 13: 1023–1037.CrossRefPubMedGoogle Scholar
  37. Semba, K., Reiner, P.B., McGeer, E.G. and Fibiger, H.C., 1988. Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J.Comp.Neurol. 267: 433–453.CrossRefPubMedGoogle Scholar
  38. Shepherd, G.M., 1994. Neurobiology, 3rd ed., Oxford University Press, New York, pp. 667–669.Google Scholar
  39. Swanson, L.W., 1976. An autoradiographic study of the efferent connections of the preoptic region in the rat. J.Comp.Neurol. 167: 227–256.CrossRefPubMedGoogle Scholar
  40. Swanson, L.W., 1992. Brain Maps. Structure of the Rat Brain. Elsevier, Amsterdam, p. 199.Google Scholar
  41. Ulfig, N., 1989. Configuration of the magnocellular nuclei in the basal forebrain of the human adult. Acta Anat. 134: 100–105.CrossRefPubMedGoogle Scholar
  42. Vertes, R.P., 1988. Brainstem afferents to the basal forebrain in the rat. Neuroscience 24: 907–935.CrossRefPubMedGoogle Scholar
  43. Zaborsky, L., Carlsen, J., Brashear, H.R. and Heimer, L., 1986. Cholinergic and GABAergic aferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band, J.Comp.Neurol. 243: 488–509.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • John S. McKenzie
    • 1
  • Antonio G. Paolini
    • 1
  1. 1.Department of PhysiologyUniversity of MelbourneAustralia

Personalised recommendations