Modulation of Glutamate Transmission in the Rodent and Primate Basal Ganglia by the Selective Kappa-Opioid Receptor Agonist, Enadoline

  • M. P. Hill
  • C. J. Hille
  • Y. P. Maneuf
  • J. M. Brotchie
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)


Glutamate is utilised as a transmitter in many pathways playing a key role in basal ganglia function i. e. the corticostriatal connections (Herrling, 1985) and the subthalamic nucleus efferents (Brotchie and Crossman, 1991a) to both pallidal segments and the substantia nigra pars reticulata.


Glutamate Release Excitatory Amino Acid Globus Pallidus Internal Globus Pallidus Glutamate Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albin, R.L., Young, A.B. and Penney, J.B., 1989, The functional anatomy of basal ganglia disorders, Trends Neurosci. 12: 366–375.PubMedCrossRefGoogle Scholar
  2. Bergman, H., Wichmann, T., Karmon, B. and DeLong, M.R., 1994, The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism, J Neurophysiol 72(2): 507–520.PubMedGoogle Scholar
  3. Brotchie, J.M. and Crossman, A.R., 1991a, D-[3H]aspartate and [14C] GABA uptake in the basal ganglia of rats following lesions in the subthalamic region suggest a role for excitatory amino acid-but not GABA-mediated transmission in the subthalamic nucleus efferents, Exp. Neurol. 113: 171–181.PubMedCrossRefGoogle Scholar
  4. Brotchie, J.M., Mitchell, I.J., Sambrook, M.A. and Crossman, A.R., 1991b, Alleviation of parkinsonism by antagonism of excitatory amino acid transmission in the medial segment of the globus pallidus in rat and primate, Movement Disorders 6: 133–138.PubMedCrossRefGoogle Scholar
  5. Calabresi, P., Pisani, A., Mercuri, N.B. and Bernadi, G., 1996, The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia, Trends Neurosci. 19: 19–24.PubMedCrossRefGoogle Scholar
  6. Campbell, K. and Bjorklund, A., 1994, Prefrontal corticostriatal afferents maintain increased enkephalin gene expression in dopamine-denervated rat striatum, Eur. J. Neurosci. 6: 1371–1383.PubMedCrossRefGoogle Scholar
  7. Carroll, C.B., Holloway, V., Brotchie, J.M. and Mitchell, I.J., 1995, Neurochemical and behavioral investigations of the NMDA receptor-associated glycine site in the rat striatum: functional implications for treatment of parkinsonian symptoms, Psychopharmacology 119(1): 55–65.PubMedCrossRefGoogle Scholar
  8. Chavkin, C., James, I.F. and Goldstein, A., 1982, Dynorphin is a specific endogenous ligand of the kappa opioid receptor, Science 215: 413–415.PubMedCrossRefGoogle Scholar
  9. Engber,.M., Susel, Z., Kuo, S., Gerfen, C.R. and Chase, T.N., 1991, Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxy-dopamine lesioned rats, Brain Res. 552: 113–118.PubMedCrossRefGoogle Scholar
  10. Gerfen, C.G. and Young III, W.S., 1988, Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridisation histochemistry and fluorescent retrograde tracing study, Brain Res. 460: 161–167PubMedCrossRefGoogle Scholar
  11. Girault, J-A., Horiuchi, A., Gustafson, E.L., Rosen, N.L. and Greengard, P., 1990, Differential expression of cAMP-regulated phosphoproteins, one of which is specifically associated with dopamine-innervated brain regions, J. Neurosci. 10(4): 1124–1133.PubMedGoogle Scholar
  12. Haber, S.N., and Watson, S.J., 1983, The comparison between enkephalin-like and dynorphin-like immunore-activity in both monkey and human globus pallidus, Life Sci. Suppl. 33: 162–165.Google Scholar
  13. Hazrati, L.N., Parent, A., Mitchell, S. and Haber, S.N., 1990, Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study, Brain Res. 533(1): 171–175.PubMedCrossRefGoogle Scholar
  14. Hemmings, H.C., Jr., Walaas, S.I., Ouimet, C.C. and Greengard, P., 1987, Dopaminergic regulation of protein phosphorylation in the striatum: DARPP-32, Trends Neurosci. 10: 377–383.CrossRefGoogle Scholar
  15. Herrling, P.L., 1985, Pharmacology of the corticocaudate excitatory postsynaptic potential in the cat: evidence for its mediation by quisqualate-or kainate-receptors, Neuroscience 14: 417–426.PubMedCrossRefGoogle Scholar
  16. Hill, M.P. and Brotchie, J.B., 1995, Modulation of glutamate release by a K-opioid receptor agonist in rodent and primate striatum, Eur. J. Pharmacol. 281: R1–R2PubMedCrossRefGoogle Scholar
  17. Hughes, N.R., McKnight, A., Woodruff, G.N., Crossman, A.R. and Brotchie, J.M., Anti-parkinsonian effects of K-opioid receptor agonists in the reserpine-treated rat, Movement Disorders: in press.Google Scholar
  18. Jiang, H.K., McGinty, J.F. and Hong, J.S., 1990, Differential modulation of striatonigral dynorphin and enkephalin by dopamine receptor subtypes, Brain Res. 507: 57–64.PubMedCrossRefGoogle Scholar
  19. Kincaid, A.E., Penney Jr., J.B. and Young, A.B., and Newman, S.W., 1991, Evidence for a projection from the globus pallidus to the entopeduncular nucleus in the rat, Neurosci. Lett. 128: 121–125.PubMedCrossRefGoogle Scholar
  20. Klockgether, T. and Turski, L., 1990, NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats, Ann. Neurol. 28(4): 539–546.PubMedCrossRefGoogle Scholar
  21. Lambert, P.D., Woodruff, G.N., Hughes, J. and Hunter, J.C., 1991, Inhibition of L-glutamate release: a possible mechanism of action for the neuroprotective effects of the kappa-selective agonist CI-977, Mol. Neuropharm. 1: 77–82.Google Scholar
  22. Maneuf, Y.P., Mitchell, I.J., Crossman, A.R., Woodruff, G.N., and Brotchie, J.M., 1995, Functional implications of kappa opioid receptor-mediated modulation of glutamate transmission in the output regions of the basal ganglia in rodent and primate models of Parkinson’s disease, Brain Res. 683: 102–108.PubMedCrossRefGoogle Scholar
  23. Mansour, A., Fox, C. A., Akil, H., and Watson, S. J., 1995, Opioid receptor mRNA expression in the rat CNS: anatomical and functional implications, Trends Neurosci. 18: 22–29.PubMedCrossRefGoogle Scholar
  24. Miller, W.C., and DeLong, M.R., 1987, Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism, in: The Basal Ganglia, Volume II (M.A. Carpenter and A. Jarayaman, eds.), Plenum Press, New York, pp. 395–413.Google Scholar
  25. Mitchell, I. J., Clark, C. E., Boyce, S., Robertson, S. G., Peggs, D., Sambrook, M. A., and Crossman, A. R., 1989, Neural mechanisms underlying Parkinsonian symptoms based upon regional uptake of 2-deoxy glucose in monkeys exposed to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine, Neuroscience 32: 213–226.PubMedCrossRefGoogle Scholar
  26. Mitchell, I.J., Hughes, N. Carroll, C.B., and Brotchie, J.M., 1995, Reversal of parkinsonian symptoms by intrastriatal and systemic manipulations of excitatory amino acid and dopamine transmission in the bilateral 6-OHDA lesioned marmoset, Behavioural Pharamacol. 6: 492–507.Google Scholar
  27. Robertson, R.G., Farmery, S.M., Sambrook, M.A. and Crossman, A.R., 1989. Dyskinesia in the primate following injection of an excitatory amino acid antagonist into the medial segment of the globus pallidus, Brain Res. 476: 317–322.PubMedCrossRefGoogle Scholar
  28. Turski, L., Klockgether, T., Turski, W. A., Schwarz, M., and Sontag, K. H., 1990, Blockade of excitatory neurotransmission in the globus pallidus induces rigidity and akinesia in the rat: implications for excitatory neurotransmission in pathogenesis of Parkinson’s disease, Brain Res. 512(1): 125–131.PubMedCrossRefGoogle Scholar
  29. Vincent, S.R., Hokfelt, T., Christensson, I., and Terenius, L., 1982, Immunohistochemical evidence or a dynorphin immunoreactive striatonigral pathway, Eur. J. Pharmacol. 85: 251–252.PubMedCrossRefGoogle Scholar
  30. Wagner, J.J., Terman, G.W., and Chavkin, C. 1993, Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus, Nature 363: 451–454.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • M. P. Hill
    • 1
  • C. J. Hille
    • 1
  • Y. P. Maneuf
    • 1
  • J. M. Brotchie
    • 1
  1. 1.Division of Neuroscience, Room 1.124, School of Biological SciencesManchester UniversityManchesterUK

Personalised recommendations