Protein Phosphatases Regulate Creb Phosphorylation and Fos Expression in the Developing Striatum

Evidence and a Hypothesis
  • Fu-Chin Liu
  • Ann M. Graybiel
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)


Dopamine is a classical neurotransmitter of multiple functions. Dopamine not only can modulate short-term synaptic activity, but also can regulate long-term changes in gene expression. In the dopamine-containing mesostriatal system, dopamine can modulate plasticity of gene expression, including induction of immediate-early genes and regulation of neuropeptide gene expression (Graybiel et al, 1994; Gerfen, 1992; Graybiel, 1990; Hong et al., 1978). The alterations of gene expression mediated by dopamine may underlie dopamine-mediated neuronal and behavioral plasticity.


Protein Phosphatase Okadaic Acid Striatal Neuron Slice Culture Organotypic Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berretta, S., and Graybiel, A.M., 1993, Rapid phosphorylation of CREB-like proteins in striatimi occurs in response to amphetamine, Soc. Neurosci. Abstr. 19:129.Google Scholar
  2. Cole, D.G., Kobierski, L.A., Konradi, C., and Hyman, S.E., 1994, 6-Hydroxydopamine lesions of rat substantia nigra up-regulate dopamine-induced phosphorylation of the cAMP-response element-binding protein in striatal neurons, Proc. Natl. Acad. Sci., USA 91:9631–9635.PubMedCrossRefGoogle Scholar
  3. da Cruz e Silva, E.F., Fox, C.A., Ouimet, C.C., Gustafson, E.L., Watson, S.J., and Greengard, P., 1995, Differential expression of protein phosphatase 1 isoforms in mammalian brain, J. Neurosci. 15:3375–3389.PubMedGoogle Scholar
  4. Dash, P.K., Karl, K.A., Colicos, M.A., Prywes, R., and Kandel, E.R., 1991, cAMP response element-binding protein is activated by Ca2+/calmodulin-as well as cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. 88:5061–5065.PubMedCrossRefGoogle Scholar
  5. Enslen, H., Sun, P., Brickey, D., Söderling, S.H., Klamo, E., and Söderling, T.R., 1994, Characterization of Ca2+/calmodulin-dependent protein kinase IV: Role in transcriptional regulation, J. Biol. Chem. 269:15520–15527.PubMedGoogle Scholar
  6. Foster, G.A., Schultzberg, M., Hökfelt, T., Goldstein, M., Hemmings, H.C. Jr., Ouimet, C.C., Walaas, S.I., and Greengard, P., 1987, Development of a dopamine-and cyclic adenosine 3′:5′-monophosphate-regulated phosphoprotein (DARPP-32) in the prenatal rat central nervous system, and its relationship to the arrival of presumptive dopaminergic innervation, J. Neurosci. 7:1994–2018.PubMedGoogle Scholar
  7. Gerfen, C.R., 1992, The neostriatal mosaic: multiple levels of compartmental organization, Trends Neurosci. 15:133–139.PubMedCrossRefGoogle Scholar
  8. Ginty, D.D., Kornhauser, J.M., Thompson, M.A., Bading, H., Mayo, K.E., Takahashi, J.S., and Greenberg, M.E., 1993, Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock, Science 260:238–241.PubMedCrossRefGoogle Scholar
  9. Graybiel, A.M., 1990, Neurotransmitters and neuromodulators in the basal ganglia, Trends Neurosci. 13:244–254.PubMedCrossRefGoogle Scholar
  10. Graybiel, A.M., S. Berretta, R. Moratalla, F.-C. Liu, and B. Elibol. 1994, Effects of cocaine on signal transduction in striatal neurons, in: Neurobiology of Cocaine, (R. Hammer, eds.), CRC Press, Boca Raton, Florida, pp. 215–223.Google Scholar
  11. Hagiwara, M., Alberts, A., Brindle, P., Meinkoth, J., Feramisco, J., Deng, T., Karin, M., Shenolikar, S., and Montminy, M., 1992, Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB, Cell 70:105–113.PubMedCrossRefGoogle Scholar
  12. Halpain, S., Girault, J.A., and Greengard, P., 1990, Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices, Nature 343, 369–372.PubMedCrossRefGoogle Scholar
  13. Hemmings, H.C. Jr., Greengard, P., Tung, H.Y.L., and Cohen, P., 1984, DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase, Nature 310:502–505.CrossRefGoogle Scholar
  14. Hemmings, H.C. Jr., Walaas, S.I., Ouimet, C.C., and Greengard, P., 1987, Dopaminergic regulation of protein phosphorylation in the striatum, Trends Neurosci. 10:377–383.CrossRefGoogle Scholar
  15. Hong, J.S., Yang, H.-Y.T., Fratta, W., and Costa, E., 1978, Rat striatal methionine-enkephalin content after chronic treatment with cataleptogenic and noncataleptogenic antischizophrenic drugs, J. Pharmacol. Exp. Therap. 205:141–147.Google Scholar
  16. Konradi, C., Cole, R.L., Heckers, S., and Hyman, S.E., 1994, Amphetamine regulates gene expression in rat striatum via transcription factor CREB, J. Neurosci. 14:5623–5634.PubMedGoogle Scholar
  17. Liu, F.-C. and Graybiel, A.M., 1994, Dopamine receptors and calcium channel activation regulate phosphorylation of CREB in organotypic cultures of striatum, Soc. Neurosci. Abstr. 20:990.Google Scholar
  18. Liu F.-C., Graybiel, A.M., 1995, Differential regulation of CREB phosphorylation by calcineurin in developing striosomes and matrix of organotypic striatal cultures. Soc. Neurosci. Abstr. 21:1424.Google Scholar
  19. Liu, F.-C., Takahashi, H., McKay, R.D.G., and Graybiel, A.M., 1995, Dopaminergic regulation of transcription factor expression in organotypic cultures of developing striatum, J. Neurosci. 15:2367–2384.PubMedGoogle Scholar
  20. Liu, F.-C., and Graybiel, A.M., 1996, Spatiotemporal dynamics of CREB phosphorylation in striatal compartments during development, in preparation.Google Scholar
  21. Liu, J., Farmer, J.D., Jr., Lane, W.S., Friedman, J., Weissman, I., and Schreiber, S.L., 1991, Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes, Cell 66:807–815.PubMedCrossRefGoogle Scholar
  22. Montminy, M.R., Gonzalez, G.A., and Yamamoto, K.K., 1990, Regulation of cAMP-inducible genes by CREB, Trends Neurosci. 13:184–188.PubMedCrossRefGoogle Scholar
  23. Ouimet, C.C., da Cruz e Silva, E.F., and Greengard, P., 1995, The α and γ1 isoforms of protein phosphatase 1 are highly and specifically concentrated in dendritic spines, Proc. Natl. Acad. Sci., USA 92:3396–3400.PubMedCrossRefGoogle Scholar
  24. Sakagami, H., Ebina, K., and Kondo, H., 1994, Localization of phosphatase inhibitor-1 mRNA in the developing and adult rat brain in comparison with that of protein phosphatase-1 mRNAs, Mol. Brain Res. 25:7–18.PubMedCrossRefGoogle Scholar
  25. Sheng, M., and Greenberg, M.E., 1990, The regulation and function of c-fos and other immediate early genes in the nervous system, Neuron 4:477–485.PubMedCrossRefGoogle Scholar
  26. Sheng, M., Thompson, M.A., and Greenberg, M.E., 1991, CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases, Science 252:1427–1430.PubMedCrossRefGoogle Scholar
  27. Stoppini, L., Buchs, P.-A., and Muller, D., 1991, A simple method for organotypic cultures of nervous tissue, J. Neurosci. Meth. 37:173–182.CrossRefGoogle Scholar
  28. Wadzinski, B.E., Wheat, W.H., Jaspers, S., Peruski, L.F., Lickteig, R.L., Johnson, G.L., and Klemm, DJ., 1993, Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation, Mol. Cell. Biol. 13:2822–2834.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Fu-Chin Liu
    • 2
  • Ann M. Graybiel
    • 1
  1. 1.Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institute of NeuroscienceNational Yang-Ming UniversityTaipeiTaiwan, ROC

Personalised recommendations