Skip to main content

Biological Activities of HIV-Specific Peptides

  • Chapter
Immunology of HIV Infection

Abstract

Infection with different viruses may produce immunologic dysfunctions in the host ranging from immunodeficiency states to autoimmune disorders. Generally it was assumed that these actions were related to the direct effects, including infection, of whole virions on target cells. These concepts became more sharply focused with the identification of the human immunodeficiency virus type 1 (HIV-1) and the recognition that it can infect a critical cell involved in the regulation of the immune response of humans, namely, the CD4+ T lymphocyte. Earlier studies focused on the direct infection of CD4+ cells by HIV-1 as the primary mechanism underlying the pathogenesis of the acquired immunodeficiency syndrome (AIDS). With the isolation and purification of HIV-1, it was shown that whole virions and crude extracts therefrom could induce in vitro some of the immunologic phenomena that were observed in clinical disease. It has been well documented that AIDS patients manifest a variety of immune dysfunctions including decreased lymphocyte proliferative responses to mitogens and antigens, decreased cellular cytotoxic activities and polyclonal B-lymphocyte activation (for a review see de Martini and Parker, 1989). However, the earlier observation that there was a poor correlation of peripheral virus load with extent of disease suggested that other, extrainfectious mechanisms may be contributing to disease progression. This led to our hypothesis that soluble factors such as proteins encoded by the HIV genome and shed by infected cells may also be involved in the pathogenesis of AIDS. Through the important observations of Fauci and his colleagues, we now know that the major repository of HIV in the infected host is the lymph nodes (Pantaleo et al., 1991, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albini, A., Fontanini, G., Masiello, L., Tacchetti, C., Bigini, D., Luzzi, P., Noonan, D. M., and Stetler-Stevenson, W. G., 1994, Angiogenic potential in vivo by Kaposi’s sarcoma cell-free supernatants and HIV-1 tat product: Inhibition of KS-like lesions by tissue inhibitor of metalloproteinase, AIDS 8:1237–1244.

    PubMed  CAS  Google Scholar 

  • Albini, A., Barillari, G., Benelli, R., Gallo, R. C., and Ensoli, B., 1995a, Angiogenic properties of human immunodeficiency virus type 1 Tat protein, Proc. Natl. Acad. Sci. USA 92:4838–4842.

    PubMed  CAS  Google Scholar 

  • Albini, A., Benelli, R., Masiello, L., Rusnati, M., Giunciuglio, D., Rubartelli, A., Ziche, M., Soldi, R., Bussolino, F., Presta, M., and Noonan, D., 1995b, HIV-1 Tat mimics heparin-binding angiogenic growth factors, AIDS Res. Hum. Retrovir. 11:S115.

    Google Scholar 

  • Allen, J. B., Wong, H. L., Guyre, P. M., Simon, G. L., and Wahl, S. M., 1991, Association of circulating receptor Fc7RIII-positive monocytes in AIDS patients with elevated levels of transforming growth factor-β, J. Clin. Invest. 87:1773–1779.

    PubMed  CAS  Google Scholar 

  • Apostolski, S., McAlarney, T., Hays, A. P., and Latov, N., 1994, complement dependent cytotoxicity of sensory ganglion neurons mediated by gp120 glycoprotein of HIV-1, Immunol. Invest. 23:47–52.

    PubMed  CAS  Google Scholar 

  • Arya, S. D., Guo, C., Josephs, S. F., and Wong-Staal, F., 1985, Trans-activator gene of human T-lymphotrophic virus type III (HTLV-III), Science 229:69–73.

    PubMed  CAS  Google Scholar 

  • Barillari, G., Buonaguro, L., Fiorelli, V., Hoffman, J., Michaels, F., Gallo, R. C., and Ensoli, B., 1992, Effects of cytokines from activated immune cells on vascular cell growth and HIV-1 gene expression; implications for AIDS-Kaposi’s sarcoma pathogenesis, J. Immunol. 149:3727–3734.

    PubMed  CAS  Google Scholar 

  • Barillari, G., Gendelman, R., Gallo, R. C., and Ensoli, B., 1993, The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence, Proc. Natl. Acad. Sci. USA 90:7941–7945.

    PubMed  CAS  Google Scholar 

  • Barks, J. D., Nair, M. P. N., Schwartz, S. A., and Silverstein, F. S., 1993, Potentiation of N-methyl-D-aspartate mediated brain injury by a human immunodeficiency virus-1-derived peptide in perinatal rodents, Pediatr. Res. 34:192–198.

    PubMed  CAS  Google Scholar 

  • Berger, J., Aepinus, C., Dobrovnik, M., Fleckenstein, B., Hauber, J., and Bohnlein, E., 1991, Mutational analysis of functional domains in the HIV-1 Rev trans-regulatory protein, Virology 183:630–635.

    PubMed  CAS  Google Scholar 

  • Berkhout, B., and Jeang, K. T., 1989, Trans-activation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting-responsive hairpin: A quantitative analysis, J. Virol. 63:5501–5504.

    PubMed  CAS  Google Scholar 

  • Bernton, E. W., Bryant, H. U., Decoster, M. A., Orenstein, J. M., Ribas, J. L., Meltzer, M. S., and Gendeman, H. E., 1992, No direct neuronotoxicity by HIV-1 virions or culture fluids from HIV-1-infected T cells or monocytes, AIDS Res. Hum. Retrovir. 8:495–503.

    PubMed  CAS  Google Scholar 

  • Braddock, M., Chambers, A., Wilson, W., Esnouf, M. P., Adam, S. E., Kingsman, A. J., and Kingsman, S. M., 1989, HIV-1 TAT “activates” presynthesized RNA in the nucleus, Cell 58:269–279.

    PubMed  CAS  Google Scholar 

  • Brake, D. A., Debouch, C., and Biesecke, C., 1990, Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat, J. Cell Biol. 111:1275–1281.

    PubMed  CAS  Google Scholar 

  • Branda, R. F., Moore, A. L., Mathews, L., McCormack, J. J., and Zon, G., 1993, Immune stimulation by an antisense oligomer complementary to the rev gene of HIV-1, Biochem. Pharmacol. 45:2037–2043.

    PubMed  CAS  Google Scholar 

  • Brenneman, D. E., McCune, S. K., Mervis, R. E., and Hill, J. M., 1994, gp120 as an etiologic agent for neuroAIDS: Neurotoxicity and model systems, Adv. Neuroimmunol. 4:157–165.

    PubMed  CAS  Google Scholar 

  • Brenner, B. G., Dascal, A., Margolese, R. G., and Wainberg, M. A., 1989, Natural killer cell function in patients with acquired immunodeficiency syndrome and related diseases, J. Leuk. Biol. 46:75–83.

    CAS  Google Scholar 

  • Buonaguro, L., Barillari, G., Chang, H. K., Bohan, C. A., Kao, V., Morgan, R., Gallo, R. C., and Ensoli, B., 1992, Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines, J. Virol. 66:7159–7167.

    PubMed  CAS  Google Scholar 

  • Buonaguro, L., Buonaguro, F. M., Giraldo, G., and Ensoli, B., 1994, The human immunodeficiency virus type 1 tat protein transactivates tumor necrosis factor β gene expression through a TAR-like structure, J. Virol. 68:2667–2682.

    Google Scholar 

  • Certa, U., Bannwarth, W., Stuber, D., Gentz, B., Lanzer, M., LeGrice, B., Guillot, F., Wendler, L., Hunsmann, G., Bujard, H., and Mous, J., 1986, Subregions of a conserved part of the HIV gp41 transmembrane protein are differentially recognized by antibodies of infected individuals, EMBO J. 5:3051–3056.

    PubMed  CAS  Google Scholar 

  • Chang, D. D., and Sharp, P. A., 1989, Regulation by HIV Rev depends upon recognition of splice sites, Cell 59:789–795.

    PubMed  CAS  Google Scholar 

  • Chirmule, N., Kalyanaraman, V., Oyaizu, N., and Pahwa, S., 1988, Inhibitory influences of envelope glycoproteins of HIV-1 on normal immune responses, J. Acq. Immune Defic. Syndr. 1:425–430.

    CAS  Google Scholar 

  • Chirmule, N., Oyaizu, N., Saxinger, C., and Pahwa, S., 1994, Nef protein of HIV-1 has B-cell stimulatory activity, AIDS 8:733–734.

    PubMed  CAS  Google Scholar 

  • Chirmule, N., Than, S., Khan, S.A., and Pahwa, S., 1995, Human immunodeficiency virus Tat induces functional unresponsiveness in T cells, J. Virol. 69:492–498.

    PubMed  CAS  Google Scholar 

  • Cochrane, A. W., Chen, C. H., and Rosen, C., 1990a, Specific interaction of the HIV Rev transactivator protein with a structured region in the env mRNA, Proc. Natl. Acad. Sci. USA 87:1198–1201.

    PubMed  CAS  Google Scholar 

  • Cochrane, A. W., Perkins, A., and Rosen, C. A., 1990b, Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: Relevance of nucleolar localization to function, J. Virol. 64:881–885.

    PubMed  CAS  Google Scholar 

  • Crowl, R., Ganguly, K., Gordon, M., Conroy, R., Schaber, R., Corney, R., Schaber, M., Kramer, R., Shaw, G., Wong-Staal, R., and Reddy, R. P., 1985, HTLV-III env gene products synthesized in E. coli are recognized by antibodies present in the drts of AIDS patients, Cell 41:979–986.

    PubMed  CAS  Google Scholar 

  • Cullen, B. R., 1986, Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism, Cell 46:973–982.

    PubMed  CAS  Google Scholar 

  • Cullen, B. R., 1990, The HIV-1 Tat protein: An RNA sequence-specific processivity factor, Cell 63:655–657.

    PubMed  CAS  Google Scholar 

  • Cullen, B. R., 1992, Mechanism of action of regulatory proteins encoded by complex retroviruses, Microbiol Rev. 56:375–394.

    PubMed  CAS  Google Scholar 

  • Daly, T., Cook, K., Gray, G., Maione, T., and Rusche, J., 1989, Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro, Nature 342:816–819.

    PubMed  CAS  Google Scholar 

  • Dawson, T. M., and Dawson, V L., 1994, gp120 neurotoxicity in primary cortical cultures, Adv. Neuroimmunol. 4:167–173.

    PubMed  CAS  Google Scholar 

  • Dayton, A. L., Sodroski, J. G., Rosen, C. A., Goh, W. C., and Haseltine, W. A., 1986, The trans-activator gene of the human T cell lymphotropic virus type III is required for replication, Cell 44:941–947.

    PubMed  CAS  Google Scholar 

  • de Martini, R. M., and Parker, J. W., 1989, Immunologic alterations in human immunodeficiency virus infection: A review, J. Clin. Lab. Anal. 3:56–70.

    PubMed  Google Scholar 

  • Dingwall, C., Ernberg, I., Gait, M. J., Green, S. M., Heaphy, S., Karn, J., Lowe, A. D., Singh, M., and Skinner, M. A., 1990, HIV-1 Tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure, EMBO J. 9:4145–4153.

    PubMed  CAS  Google Scholar 

  • Embretson, J., Zupancic, M., Ribas, J. L., Burke, A., Tenner-Racz, J., and Haase, A. T., 1993, Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS, Nature 362:359–362.

    PubMed  CAS  Google Scholar 

  • Emerman, M., Vazeux, R., and Peden, K., 1989, The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization, Cell 57:1155–1165.

    PubMed  CAS  Google Scholar 

  • Endo, S., Kubota, S., Siomi, H., Adachi, A., Oroszlan, S., Maki, M., and Hatanaka, M., 1989, A region of basic amino-acid cluster in HIV-1 Tat protein is essential for transacting activity and nuclear localization, Virus Genes 3:99–110.

    PubMed  CAS  Google Scholar 

  • Ensoli, B., Barillari, G., Zaki Salahuddin, S. Z., Gallo, R. C., and Wong-Staal, R., 1990, Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients, Nature 345:84–86.

    PubMed  CAS  Google Scholar 

  • Ensoli, B., Barillari, G., and Gallo, R. C., 1991, Pathogenesis of AIDS associated Kaposi’s sarcoma, Hematol. Oncol Clin. North Am. 5:281–295.

    PubMed  CAS  Google Scholar 

  • Ensoli, B., Buonaguro, L., Barillari, G., Fiorelli, V., Gendelman, R., Morgan, R. A., Wingfield, P., and Gallo, R. C., 1993, Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation, J. Virol. 67:277–287.

    PubMed  CAS  Google Scholar 

  • Ensoli, B., Gendelman, R., Markham, P., Fiorelli, V., Colombini, S., Raffeld, M., Cafaro, A., Chang, H.-K., Brady, J. N., and Gallo, R. C., 1994, Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma, Nature 371:674–680.

    PubMed  CAS  Google Scholar 

  • Feinberg, M. B., Jarrett, R. R., Aldovini, A., Gallo, R. C., and Wong-Staal, R., 1986, HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA, Cell 46:807–817.

    PubMed  CAS  Google Scholar 

  • Feinberg, M. B., Baltimore, D., and Frankel, A. D., 1991, The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation, Proc. Natl. Acad. Sci. USA 88:4045–4049.

    PubMed  CAS  Google Scholar 

  • Felber, B. K., Hadzopoulou-Cladaras, M., Cladaras, C., Copeland, T., and Pavlakis, G. N., 1989, Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA, Proc. Natl. Acad. Sci. USA 86:1495–1499.

    PubMed  CAS  Google Scholar 

  • Feng, S., and Holland, E. C., 1988, HIV-1 tat trans-activation requires the loop sequence within tar, Nature 334:165–167.

    PubMed  CAS  Google Scholar 

  • Fiorelli, V., Gendelman, R., Samaniego, R., Markham, P. D., and Ensoli, B., 1995, Cytokines from activated T cells induce normal endothelial cells to acquire the phenotypic and functional features of AIDS-Kaposi’s sarcoma spindle cells, J. Clin. Invest. 95:1723–1734.

    PubMed  CAS  Google Scholar 

  • Fisher, A. G., Feinberg, M. B., Josephs, S. R., Harper, M. E., Marselle, L. M., Reyes, G., Gonda, M. A., Aldovini, A., Debouk, C., Gallo, R. C., and Wong-Staal, R., 1986, The trans-activator gene of HTLV-III is essential for virus replication, Nature 320:367–371.

    PubMed  CAS  Google Scholar 

  • Flores, S. C., Marecki, J. C., Harper, K. P., Bose, S. K., Nelson, S. K., and McCord, J. M., 1993, Tat protein of human immunodeficiency virus type 1 represses expression of magnanese Superoxide dismutase in HeLa cells, Proc. Natl. Acad. Sci. USA 90:7632–7636.

    PubMed  CAS  Google Scholar 

  • Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors, Science 235:442–447.

    PubMed  CAS  Google Scholar 

  • Frankel, A. D., and Pabo, C. O., 1988, Cellular uptake of the Tat protein from human immunodeficiency virus, Cell 55:1189–1193.

    PubMed  CAS  Google Scholar 

  • Frankel, A. D., Bredt, D. S., and Pabo, C. O., 1988, Tat protein from human immunodeficiency virus forms a metal-linked dimer, Science 240:70–73.

    PubMed  CAS  Google Scholar 

  • Garcia, J. V., and Miller, A. D., 1991, Serine phosphorylation-independent downregulation of cell-surface CD4 by nef, Nature 350:508–511.

    PubMed  CAS  Google Scholar 

  • Garcia, J. A., Wu, R K., Mitsuyasu, R., and Gaynor, R. B., 1987, Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus, EMBO J. 6:3761–3770.

    PubMed  CAS  Google Scholar 

  • Gatignol, K. A., Kumar, A., Rabson, A., and Jeang, K. T., 1989, Identification of cellular proteins that bind to the human immunodeficiency virus type 1 trans-activation-response TAR element RNA, Proc. Natl. Acad. Sci. USA 86:7828–7832.

    PubMed  CAS  Google Scholar 

  • Giulian, D., Wendt, E., Vaea, K., and Noonan, C. A., 1993, The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotropins from monocytes, Proc. Natl. Acad. Sci. USA 90:2769–2773.

    PubMed  CAS  Google Scholar 

  • Greenblatt, J., Nodwell, J. R., and Mason, S. W., 1993, Transcriptional antitermination, Nature 364:401.

    PubMed  CAS  Google Scholar 

  • Greenway, A. L., McPhee, D. A., Grgacic, E., Hewish, D., Lucantoni, A., Macreadie, I., and Azad, A., 1994, Nef 27, but not the Nef 25 isoform of human immunodeficiency virus-type 1 pNL4.3 down-regulates surface CD4 and IL-2R expression in peripheral blood mononuclear cells and transformed T cells, Virology 198:245–256.

    PubMed  CAS  Google Scholar 

  • Guy, B., Kieny, M. P., Riviere, Y., Peuch, C. L., Dott, K., Girard, M., Montagnier, L., and Lecocq, J. P., 1987, HIV F/3’orf encodes a phosphorylated GTP-binding protein resembling an oncogene product, Nature 330:266–269.

    PubMed  CAS  Google Scholar 

  • Hammarskjold, J. L., Heimer, J., Hammarskjold, B., Sangwan, I., Albert, L., and Rekosh, D., 1989, Regulation of human immunodeficiency virus env expression by the rev gene product, J. Virol. 63:1959–1966.

    PubMed  CAS  Google Scholar 

  • Hammes, S. R., Dixon, E. P., Malim, M. H., Cullen, B. R., and Greene, W. C., 1989, Nef protein in human immunodeficiency virus type 1: Evidence against its role as a transcriptional inhibitor, Proc. Natl. Acad. Sci. USA 86:9549–9553.

    PubMed  CAS  Google Scholar 

  • Hanly, S. M., Rimsky, L. T., Malim, M. H., Kim, J. H., Hauber, J., Dodon, M. D., Lee, S. Y., Maizel, J. V., Cullen, B. R., and Greene, W. C., 1989, Comparative analysis of the HTLV-1 Rex and HIV-1 Rev trans-regulatory proteins and their RNA response elements, Genes Dev. 3:1534–1544.

    PubMed  CAS  Google Scholar 

  • Harrich, D., Garcia, J., Mitsuyasu, R., and Gaynor, R. B., 1990, TAR independent activation of the human immunodeficiency virus in phorbol ester stimulated T lymphocytes, EMBO J. 9:4417–4423.

    PubMed  CAS  Google Scholar 

  • Hauber, J., and Cullen, B., 1988, Mutational analysis of the transactivation-responsive region of the human immunodeficiency virus type 1 long terminal repeat, J. Virol. 62:673–679.

    PubMed  CAS  Google Scholar 

  • Hauber, J., Malim, M. H., and Cullen, B. R., 1989, Mutational analysis of the conserved basic domain of the human immunodeficiency virus tat protein, J. Virol. 63:1181–1187.

    PubMed  CAS  Google Scholar 

  • Heaphy, S., Dingwall, C., Emberg, I., Gait, M. J., Green, S. M. f Kam, J., Lowe, A. D., Singh, M., and Skinner, M. A., 1990, HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the Rev response element region, Cell 60:685–693.

    PubMed  CAS  Google Scholar 

  • Horwitz, M. S., Boyce-Jacino, M. T., and Faras, A. J., 1992, Novel human endogenous sequences related to human immunodeficiency virus type I, J. Virol. 66:2170–2179.

    PubMed  CAS  Google Scholar 

  • Howcroft, T., Strebel, K. K., Martin, M. A., and Singer, D. S., 1993, Repression of MHC class I gene promoter by two exon Tat of HIV, Science 260:1320–1322.

    PubMed  CAS  Google Scholar 

  • Huang, X., Hope, T. J., Bond, B. L., McDonald, D., Grahl, K., and Parslow, T. G., 1991, Minimal Rev-response element for type 1 human immunodeficiency virus, J. Virol. 65:2131–2134.

    PubMed  CAS  Google Scholar 

  • Jakobovits, A., Smith, D. H., Jakobovits, E. B., and Capon, D. J., 1988, A discrete element 3’ of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans-activator, Mol. Cell. Biol. 8:2555–2561.

    PubMed  CAS  Google Scholar 

  • Kaiser, P. T., Offermann, J. T., and Lipton, S. A., 1990, Neuronal injury due to HIV-1 envelope protein is blocked by anti-gp120 antibodies but not by anti-CD43 antibodies, Neurology 40:1757–1761.

    PubMed  CAS  Google Scholar 

  • Kao, S. Y., Caiman, A. F., Luciw, P. A., and Peterlin, B. M., 1987, Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product, Nature 330:489–493.

    PubMed  CAS  Google Scholar 

  • Kekow, J., Wachsman, W., McCutchan, J. A., Cronin, M., Carson, D. A., and Lotz, M., 1990, Transforming growth factor bl and non-cytopathic mechanisms of immunodeficiency in human immunodeficiency virus infection, Proc. Natl. Acad. Sci. USA 87:8321–8325.

    PubMed  CAS  Google Scholar 

  • Kessler, M., and Mathews, M. B., 1991, Tat transactivation of the human immunodeficiency virus type 1 promoter is influenced by basal promoter activity and the simian virus 40 origin of DNA replication, Proc. Natl. Acad. Sci. USA 88:10018–10022.

    PubMed  CAS  Google Scholar 

  • Kim, S., Byrn, R., Groopman, J., and Baltimore, D., 1989a, Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: Evidence for differential gene expression, J. Virol 63:3708–3713.

    PubMed  CAS  Google Scholar 

  • Kim, S., Ikeuchi, K., Byrn, R., Groopman, J., and Baltimore, D., 1989b, Lack of a negative influence on viral growth by the nef gene of human immuno-deficiency virus type 1, Proc. Natl. Acad. Sci. USA 86:9544–9548.

    PubMed  CAS  Google Scholar 

  • Kimura-Kuroda, J., Nagashima, K., and Yasui, K., 1994, Inhibition of myelin formation by HIV-1 gp120 in rat cerebral cortex, J. Virol. 137:81–99.

    CAS  Google Scholar 

  • Laspia, K. M. F., Rice, A. P., and Mathews, M. B., 1989, HIV-1 Tat protein increases transcriptional initiation and stabilized elongation, Cell 59:283–292.

    PubMed  CAS  Google Scholar 

  • Lazdins, J. K., Klimkait, T., Alten, E., Walker, M., Woods-Kook, K., Cox, D., Bilbe, G., Shipman, R., Cerletti, N., and McMaster, G., 1991a, TGF-β up regulator of HIV replication in macrophages, Res. Virol. 142:239–242.

    PubMed  CAS  Google Scholar 

  • Lazdins, J. K., Klimkait, T., Woods-Kook, K., Walker, M., Altern, E., Cox, D., Cerletti, N., Shipman, R., Bilbe, G., and McMaster, G., 1991b, In vitro effect of transforming growth factor-β on progression of HIV-1 infection in primary mononuclear phagocytes, J. Immunol. 147:120–127.

    Google Scholar 

  • Lazinski, D., Grzadzielska, E., and Das, A., 1989, Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif, Cell 59:207–218.

    PubMed  CAS  Google Scholar 

  • Liegler, T. J. and Stites, D. P., 1994, HIV-1 gp120 and anti-gp120 induce reversible unresponsiveness in peripheral CD4 T lymphocytes, J. Acq. Immune Defic. Syndr. 7:340–348.

    CAS  Google Scholar 

  • Lipton, S. A., 1992a, Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120, Neuroreport 3:913–915.

    PubMed  CAS  Google Scholar 

  • Lipton, S. A., 1992b, Memantine prevents HIV coat protein-induced neuronal injury in vitro, Neurology 42:1403–1405.

    PubMed  CAS  Google Scholar 

  • Lotz, M., Keckow, J., Cronin, M. T., McCutchan, J. A., Clark-Lewis, I., Carson, D. A., and Wachsman, W., 1990, Induction of transforming growth factor b (TGFb) by HIV-1 Tat: A noncytopathic pathway of immunodeficiency in HIV infection, FASEB J. 4:A1861.

    Google Scholar 

  • Malim, M. H., and Cullen, B. R., 1991, HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: Implications for HIV-1 latency, Cell 65:241–248.

    PubMed  CAS  Google Scholar 

  • Malim, M. H., Hauber, J., Fenrick, R., and Cullen, B. R., 1988, Immuno-deficiency virus rev trans-activator modulates the expression of the viral regulatory genes, Nature 335:181–183.

    PubMed  CAS  Google Scholar 

  • Malim, M. H., Hauber, J., Le, S.-Y, Maizel, J. V., and Cullen, B. R., 1989a, The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA, Nature 338:254–257.

    PubMed  CAS  Google Scholar 

  • Malim, M. H., Bohnlein, S., Hauber, J., and Cullen, B. R., 1989b, Functional dissection of the HIV-1 Rev transactivator-derivation of a trans-dominant repressor of Rev function, Cell 58:205–214.

    PubMed  CAS  Google Scholar 

  • Malim, M. H., Tiley, L. S., McCarn, D. F., Rusche, J. R., Hauber, J., and Cullen, B. R., 1990, HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence, Cell 60:675–683.

    PubMed  CAS  Google Scholar 

  • Malim, M. H., McCarn, D. R., Tiley, L. S., and Cullen, B. R., 1991, Mutational definition of the human immunodeficiency type 1 Rev activation domain, J. Virol. 65:4248–4254.

    PubMed  CAS  Google Scholar 

  • Mann, D. A., and Frankel, A. D., 1991, Endocytosis and targeting of exogenous HIV-1 Tat protein, EMBO J. 10:1733–1739.

    PubMed  CAS  Google Scholar 

  • Marciniak, R. A., Calnan, B. J., Frankel, A. D., and Sharp, P. A., 1990a, HIV-1 Tat protein trans-activates transcription in vitro, Cell 63:791–802.

    PubMed  CAS  Google Scholar 

  • Marciniak, R. A., Garcia-Blanco, M. A., and Sharp, P. A., 1990b, Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus, Proc. Natl. Acad. Sci. USA 87:3624–3628.

    PubMed  CAS  Google Scholar 

  • Masood, R., Lunardi-Iskandar, Y., Zhang, M. T., Law, R. E., Huang, C. L., Puri, R. K., Levine, A. M., and Gill, P. S., 1994, IL-10 inhibits HIV-1 replication and is induced by tat, Biochem. Biophys. Res. Commun. 202:374–383.

    PubMed  CAS  Google Scholar 

  • Muesing, M. A., Smith, D. H., and Capon, D. J., 1987, Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein, Cell 48:691–701.

    PubMed  CAS  Google Scholar 

  • Myers, G., and Pavlakis, G. N., 1991, Evolutionary potential of complex retroviruses, in: Viruses: The Retroviridae, Volume 1 (R. R. Wagner, H. Fraenkel-Conrat, and J. Levy, eds.), Plenum Press, New York, pp 1–37.

    Google Scholar 

  • Nabel, G., and Baltimore, D., 1987, An inducible transcription factor activates expression of human immunodeficiency virus in T cells, Nature 326:711–713.

    PubMed  CAS  Google Scholar 

  • Nair. M. P. N., Laign, T. J., and Schwartz, S. A., 1986, Decreased natural and antibody-dependent cellular cytotoxic activities in intravenous drug abusers, Clin. Immunol. Immunopathol. 38:68–78.

    PubMed  CAS  Google Scholar 

  • Nair, M. P. N., Pottathil, R., Heimer, E. P., and Schwartz, S. A., 1988, Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes, Proc. Natl. Acad. Sci. USA 85:6498–6502.

    PubMed  CAS  Google Scholar 

  • Nebreda, A. R., Bryan, T., Segade, F., Wingfield, P., Venkatesan, S., and Santos, E., 1991, Biochemical and biological comparison of HIV-1 NEF and ras gene product, Virology 183:151–159.

    PubMed  CAS  Google Scholar 

  • Olsen, H. S., Cochrane, A. W., Dillon, P. J., Nalin, C. M., and Rosen, C. A., 1990, Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids, Genes Dev. 4:1357–1364.

    PubMed  CAS  Google Scholar 

  • Oyaizu, N., Chirmule, N., Kalyanaraman, V S., Hall, W. W., Pahwa, R., Shuster, M., and Pahwa, S., 1990, Human immunodeficiency virus type 1 envelope glycoprotein gp120 produces immune defects in CD4+ T lymphocytes by inhibiting interleukin 2 mRNA, Proc. Natl. Acad. Sci. USA 87:2379–2387.

    PubMed  CAS  Google Scholar 

  • Pahwa, S., Pahwa, R., Saxinger, C., Gallo, R. C., and Good, R. A., 1985, Influence of the human T-lymphotropic virus/lymphadenopathy-associated virus on functions of human lymphocytes: Evidence for immunosuppressive effects and polyclonal B-cell activation by banded viral preparations, Proc. Natl. Acad. Sci. USA 82:8198–8202.

    PubMed  CAS  Google Scholar 

  • Pahwa, S., Pahwa, R., Good, R. A., Gallo, R. C., and Saxinger, C., 1986, Stimulatory and inhibitory influences of human immunodeficiency virus on normal B lymphocytes, Proc. Natl. Acad. Sci. USA 83:9124–9128.

    PubMed  CAS  Google Scholar 

  • Pantaleo, G., Graziosi, C., Butini, L., Pizzo, P. A., Schnittman, S. M., Kotier, D. P., and Fauci, A. S., 1991, Lymphoid organs function as major reservoirs for human immunodeficiency virus, Proc. Natl. Acad. Sci. USA 88:9838–9842.

    PubMed  CAS  Google Scholar 

  • Pantaleo, G., Graziosi, C., Demarest, H. F., Butini, L., Montroli, M., Fox, C. H., Orenstein, J. M., Kotler, D., and Fauci, A. S., 1993, HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of the disease, Nature 362:355–358.

    PubMed  CAS  Google Scholar 

  • Pulliam, L., West, D., Haigwood, N., and Swanson, R. A., 1993, HIV-1 envelope gp120 alters astrocytes in human brain cultures, AIDS Res. Hum. Retrovir. 9:439–444.

    PubMed  CAS  Google Scholar 

  • Puri, R. K., Leland, P., and Aggarwal, B. B., 1995, Constitutive expression of human immunodeficiency virus type 1 tat gene inhibits interleukin 2 and interleukin 2-receptor expression in a human CD4+ T lymphoid (H9) cell line, AIDS Res. Hum. Retrovir. 11:31–40.

    PubMed  CAS  Google Scholar 

  • Rappaport, J., Lee, S. J., Khalili, K., and Wong-Staal, F., 1989, The acidic amino-terminal region of the HIV-1 TAT protein constitutes an essential activating domain, New Biol. 1:101–110.

    PubMed  CAS  Google Scholar 

  • Ratnasabapathy, R., Sheldon, M., Johal, L., and Hernandez, N., 1990, The HIV-1 long terminal repeat contains an unusual element that induces the synthesis of short RNAs from various mRNA and snRNA promoters, Genes Dev. 64:2061–2074.

    Google Scholar 

  • Rautonen, J., Rautonen, N., Martin, N. L., and Wara, D. W., 1994, HIV type 1 Tat protein induces immunoglobulin and interleukin 6 synthesis by uninfected peripheral blood mononuclear cells, AIDS Res. Hum. Retrovir. 10:781–785.

    PubMed  CAS  Google Scholar 

  • Rittner, K., Churcher, M. J., Gait, M. J., and Kam, J., 1995, The human immunodeficiency virus long terminal repeat includes a specialized initiator element which is required for tat-responsive transcription, J. Mol. Biol. 248:562–580.

    PubMed  CAS  Google Scholar 

  • Robinson, W. E., Jr., Mitchell, W. M., Chambers, W. H., Schuffman, S. J., Montefiori, D. C., and Oeltmann, T. N., 1988, Natural killer cell infection and inactivation in vitro by the human immunodeficiency virus, Pathology 19:535–540.

    Google Scholar 

  • Rosen, C. A., Sodroski, I. G., and Haseltine, W. A., 1985, The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat, Cell 41:813–823.

    PubMed  CAS  Google Scholar 

  • Rosen, C. A., Terwilliger, E., Dayton, A., Sodroski, J. G., and Haseltine, W. A., 1988, Intragenic cis-acting gene-responsive sequences of the human immunodeficiency virus, Proc. Natl. Acad. Sci. USA 85:2071–2075.

    PubMed  CAS  Google Scholar 

  • Roy, S., Delling, U., Chen, C. H., Rosen, C. A., and Sonenberg, N., 1990a, A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation, Genes Dev. 4:1365–1373.

    PubMed  CAS  Google Scholar 

  • Roy, S., Parkin, N. T., Rosen, C. A., Itovitch, J., and Sonenberg, N., 1990b, Structural requirements for trans-activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by tat: Importance of base pairing, loop sequence, and bulges in the tat-responsive sequence, J. Virol. 64:1402–1406.

    PubMed  CAS  Google Scholar 

  • Ruben, S., Perkins, A., Purcell, R., Joung, K., Sia, R., Burghoff, R., Haseltine, W. A., and Rosen, C. A., 1989, Structural and functional characterization of human immunodeficiency virus tat protein, J. Virol. 63:1–8.

    PubMed  CAS  Google Scholar 

  • Ruscetti, F. W., Mikovits, J. A., Kalyanaraman, V. S., Overton, R., Stevenson, H., Stromberg, K., Herberman, R. B., Farrar, W. L., and Ortaldo, J. R., 1986, Analysis of effector mechanisms against HTLV-I-and HTLV-III/LAV-infected lymphoid cells, Immunology 136:3619–3624.

    CAS  Google Scholar 

  • Sastry, K. J., Reddy, H. R., Pandita, R., Totpal, K., and Aggarwal, B. B., 1990, HIV-1 tat gene induces tumor necrosis factor-b (lymphotoxin) in a human b-lymphoblastoid cell line, J. Biol. Chem. 265:20091–20093.

    PubMed  CAS  Google Scholar 

  • Scala, G., Ruocco, M. R., Ambrosino, C., Mallardo, M., Giordano, V., Baldassarre, F., Dragonetti, E., Quinto, I., and Venuta, S., 1994, The expression of the interleukin 6 gene induced by the human immunodeficiency virus type 1 Tat protein, J. Exp. Med. 179:961–971.

    PubMed  CAS  Google Scholar 

  • Schnittman, S. M., Lane, H. C., Higgins, S., Folks, T., and Fauci, A. S., 1986, Direct polyclonal activation of human B lymphocytes by acquired immunodeficiency virus, Science 233:1084–1086.

    PubMed  CAS  Google Scholar 

  • Selby, M. J., Bain, E. S., Luciw, P. A., and Peterlin, B. M., 1989, Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat, Genes Dev. 3:547–558.

    PubMed  CAS  Google Scholar 

  • Sharp, P. A., and Marciniak, R. A., 1989, HIV TAR: An RNA enhancer, Cell 59:229–230.

    PubMed  CAS  Google Scholar 

  • Shoeman, R. L., Young, D., Pottathil, R., Victor, J., Conroy, R. R., Crowl, R. M., Coleman, T., Heimer, E., Lai, C. Y., and Ganguly, L., 1987, Comparison of recombinant human immunodeficiency virus gag precursor and gag/env fusion proteins and a synthetic env pepetide as diagnostic reagents, Anal. Biochem. 161:370–379.

    PubMed  CAS  Google Scholar 

  • Sindou, P., Couratier, P., Esclaire, F., Yardin, C., Bousseau, A., and Hugon, J., 1994, Prevention of HIV coat protein (gp120) toxicity in cortical cell cultures by riluzole, J. Neurol. Sci. 126:133–137.

    PubMed  CAS  Google Scholar 

  • Siomi, H., Shida, H., Maki, M., and Hatanaka, M., 1990, Effects of a highly basic region of human immunodeficiency virus Tat protein on nucleolar localization, J. Virol. 64:1803–1807.

    PubMed  CAS  Google Scholar 

  • Siranni, M. C., Tagliaferri, F., and Aiuti, F., 1990, Pathogenesis of natural killer cell deficiency in AIDS, Immunol. Today 11:81–82.

    Google Scholar 

  • Sodroski, J. G., Rosen, C. A., and Haseltine, W. A., 1984, Trans-acting transcriptional activation of the long terminal repeat of human T lymphotropic viruses in infected cells, Science 225:381–421.

    PubMed  CAS  Google Scholar 

  • Sodroski, J. R., Patarca, C., Rosen, C., Wong-Staal, F., and Haseltine, W., 1985, Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III, Science 229:74–77.

    PubMed  CAS  Google Scholar 

  • Sodroski, J., Goh, W. C., Rosen, C., Dayton, A., Terwilliger, E., and Haseltine, W. A., 1986, A second post-transcriptional transactivator gene required for the HTLV-III replication, Nature 321:412–417.

    PubMed  CAS  Google Scholar 

  • Southgate, C. D., and Green, M. R., 1991, The HIV-1 Tat protein activates transcription from an upstream DNA-binding site: Implications for Tat function, Genes Dev. 5:2496–2507.

    PubMed  CAS  Google Scholar 

  • Sumner-Smith, M., Roy, S., Barnett, R., Reid, L. S., Kuperman, R., Delling, U., and Sonenberg, N., 1991, Critical chemical features in trans-acting-responsive RNA are required for interaction with human immunodeficiency virus type 1 TAT protein, J. Virol. 65:5196–5202.

    PubMed  CAS  Google Scholar 

  • Taylor, J. P., Cupp, C., Diaz, A., Chowdhury, M., Khalili, K., Jimenez, S. A., and Amini, S., 1992a, Activation of expression of genes coding for extra-cellular matrix proteins in Tat-producing glioblastoma cells, Proc. Natl. Acad. Sci. USA 89:9617–9621.

    PubMed  CAS  Google Scholar 

  • Taylor, J. P., Pomerantz, R., Bagasra, O., Chowdhury, M., Rappaport, J., Khalili, K., and Amini, S., 1992b, TAR-independent transactivation by Tat in cells derived from the CNS: A novel mechanism of HIV-1 gene regulation, EMBO J. 11:395–403.

    Google Scholar 

  • Taylor, J. P., Pomerantz, R. J., Oakes, J. W., Khalili, K., and Amini, S., 1995, A CNS-enriched factor that binds to NF-kappa B and is required for interaction with HIV-1 tat, Oncogene 10:395–400.

    PubMed  Google Scholar 

  • Terwilliger, E., Sodroski, J. G., Rosen, C. A., and Haseltine, W. A., 1986, Effects of mutations with the 3’ orf open reading frame region of human T-cell lymphotrophic virus type III (HTLV-III/LAV) on replication and cytopathogenicity, J. Virol. 60:754–760.

    PubMed  CAS  Google Scholar 

  • Terwilliger, E. F., Langhoff, E., Gabuzda, D., Zazopoulos, E., and Haseltine, W. A., 1991, Allelic variation in the effects of the nef gene on replication of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 88:10971–10975.

    PubMed  CAS  Google Scholar 

  • Tiley, L. S., Malim, M. H., Tewary, H. K., Stockley, P. G., and Cullen, B. R., 1992, Identification of a high-affinity RNA-binding site for the human immunodeficiency virus type 1 Rev protein, Proc. Natl. Acad. Sci. USA 89:758–762.

    PubMed  CAS  Google Scholar 

  • Ushijima, H., Ando, S., Kunisada, T., Schroder, H. C., Klocking, H. P., Kijjoa, A., and Muller, W. E., 1993, HIV-1 gp120 and MNDA induce protein kinase C translocation differentially in rat primary neuronal cultures, J. Acq. Immune Defic. Syndr. 6:339–343.

    CAS  Google Scholar 

  • Varmus, H., and Brown, P., 1989, Retroviruses, in: Mobile DNA (D. E. Berg and M. M. Howe, eds.), American Society for Microbiology, Washington, DC., pp. 53–108.

    Google Scholar 

  • Viscidi, R. P., Mayur, K., Lederman, H. M., and Frankel, A. D., 1989, Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1, Science 246:1606–1608.

    PubMed  CAS  Google Scholar 

  • Vogel, B. F., Lee, S. S., Hildebrand, A., Craig, W., Pierschbacher, M. D., Wong-Staal, F., and Ruoslahti, E., 1993, A novel integrin specificity exemplified by binding of the avb5 integrin to the basic domain of the HIV tat protein and vitronectin, J. Cell Biol. 121:461–468.

    PubMed  CAS  Google Scholar 

  • Weeks, K. M., and Crothers, D. M., 1991, RNA recognition by Tat-derived peptides: Interaction in the major groove, Cell 66:577–588.

    PubMed  CAS  Google Scholar 

  • Westendorp, M. O., Li-Weber, M., Frank, R. W., and Krammer, P. H., 1994, Human immunodeficiency virus type 1 tat upregulates interleukin-2 secretion in activated T cells, J. Virol. 68:4177–4185.

    PubMed  CAS  Google Scholar 

  • Zapp, M., and Green, M., 1989, Sequence-specific RNA binding by the HIV-1 Rev protein, Nature 342:714–716.

    PubMed  CAS  Google Scholar 

  • Zauli, G., Re, M. C., Furlini, G., Giovannini, M., and La Placa, M., 1991, Evidence for an HIV-1 mediated suppression of in vitro growth of enriched (CD-34+) hematopoietic progenitors, J. AIDS 4:1251–1253.

    CAS  Google Scholar 

  • Zauli, G., Davis, B. R., Re, B. R., Visani, M. C., Furlini, G., and La Placa, M., 1992, Tat protein stimulates production of transforming growth factor-β by marrow macrophages: A potential mechanism for HIV-1 induced hematopoietic suppression, Blood 80:3036–3043.

    PubMed  CAS  Google Scholar 

  • Zauli, G., Gibellini, D., Milani, D., Mazzoni, M., Borgatti, P., La Placa, M., and Capitani, S., 1993, Human immunodeficiency virus type 1 Tat protein protects lymphoid, epithelial and neuronal cell lines from death by apoptosis, Cancer Res. 53:4481–4485.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwartz, S.A., Nair, M.P.N., Ludwig, L.B. (1996). Biological Activities of HIV-Specific Peptides. In: Gupta, S. (eds) Immunology of HIV Infection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0191-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0191-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0193-4

  • Online ISBN: 978-1-4899-0191-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics