Lymphocyte Apoptosis in HIV Infection

  • Naoki Oyaizu
  • Savita Pahwa


Human immunodeficiency virus (HIV-1) is the etiologic agent of acquired immunodeficiency syndrome (AIDS). Our understanding of the complexities of pathogenic mechanisms of HIV disease is still evolving; however, the mechanism whereby HIV-1 infection leads to profound depletion of CD4 T cells remains one of the central unsolved problems in AIDS research. In the past several years, there has been a dichotomy between virological and immunological viewpoints in understanding HIV-mediated cytopathicity, the former emphasizing killing of infected CD4 cells by HIV and the latter emphasizing indirect mechanisms wherein HIV or its soluble component(s) alter CD4 T-cell function and induce susceptibility to apoptosis.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Accessory Cell Lymphocyte Apoptosis Simian Immunodeficiency Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akbar, A. N., Borthwick, N., Salmon, M., Gombert, W., Bofill, M., Shamsadeen, N., Pilling, D., Pett, S., Grundy, J. E., and Janossy, G., 1993, The significance of low bcl-2 expression by CD45R0 T cells in normal individuals and patients with acute viral infections: The role of apoptosis in T cell memory, J. Exp. Med. 178:427–438.PubMedCrossRefGoogle Scholar
  2. Alderson, M. R., Tough, T. W., Davis-Smith, T., Braddy, S., Falk, B., Schooley, K. A., Goodwin, R. G., Smith, C. A., Ramsdell, F., and Lynch, D. H., 1995, Fas ligand mediates activation-induced cell death in human T lymphocytes, J. Exp. Med. 181:71–77.PubMedCrossRefGoogle Scholar
  3. Amadori, A., Silvestro, G. D., Zamarchi, R., Veronese, M. L., Mazza, M. R., Schiavo, G., Panozzo, M., DeRossi, A., Ometto, L., Mous, J., Barelli, A., Borri, A., Salmaso, L., and Chieco-Bianchi, L., 1992, CD4 epitope masking by gp120/anti-gp120 antibody complexes: A potential mechanism for CD4+ cell function down-regulation in AIDS patients, J. Immunol. 148:2709–2716.PubMedGoogle Scholar
  4. Ashwell, J. D., Cunningham, R. E., Noguchi, P. D., and Hernandez, D., 1987, Cell growth cycle block of T cell hybridomas upon activation with antigen, J. Exp. Med. 165:173–194.PubMedCrossRefGoogle Scholar
  5. Aziz, D. C., Hanna, Z., and Jolicoeur, P., 1989, Severe immunodeficiency disease induced by a defective murine leukemia virus, Nature 338:505–508.PubMedCrossRefGoogle Scholar
  6. Bakhshi, A., Jensen, J. P., Goldman, P., Wright, J. J., McBride, O. W., Epstein, A. L., and Korsmeyer, S. J., 1985, Cloning the chomosomal breakpoint of t(14;18) human lymphomas: Clustering around JH on chromosome 14 and near a transcriptional unit on 18, Cell 41:889–906.CrossRefGoogle Scholar
  7. Banda, N. K., Bernier, J., Kurahara, D. K., Kurrle, R., Haigwood, N., Sekaly, R.-P, and Finkel, T. H., 1992, Crosslinking CD4 by human immunodeficiency virus gp120 primes t cells for activation-induced apoptosis, J. Exp. Med. 176:1099–1106.PubMedCrossRefGoogle Scholar
  8. Bergeron, L., and Sodroski, J., 1992, Dissociation of unintegrated viral DNA accumulation from single-cell lysis induced by human immunodeficiency virus type 1, J. Virol. 66:5777–5787.PubMedGoogle Scholar
  9. Bishop, S. A., Gruffydd-Jones, T. J., Harbour, D. A., and Stokes, C. R., 1993, PCD (apoptosis) as a mechanism of cell death in PBMC from cats infected with feline immunodeficiency virus (FIV), Clin. Exp. Immunol. 93:65–71.PubMedCrossRefGoogle Scholar
  10. Biswas, P., Poli, G., Kinter, A. L., Justment, J. S., Stanley, S. K., Maury, W. J., Bressler, P., Orenstein, J. M., and Fauci, A. S., 1992, Interferon-gamma induces the expression of human immunodeficiency virus in persistently infected promonocytic cells (Ul) and redirects the production of virions to intracytoplasmic vacuoles in phorbol myristate acetate-differentiated U1 cells, J. Exp. Med. 176:739–750.PubMedCrossRefGoogle Scholar
  11. Biswas, P., Poli, G., Orenstein, J. M., and Fauci, A. S., 1994, Cytokine-mediated induction of human immunodeficiency virus (HIV) expression and cell death in chronically infected Ul cells: Do tumor necrosis factor alpha and gamma interferon selectively kill HIV-infected cells? J. Virol 68:2598–2604.PubMedGoogle Scholar
  12. Boise, L. H., Gonzalez-Garcia, M., Postema, C. E., Ding, L., Lindsten, T., Turka, L. A., Mao, X., Nunez, G., and Thompson, C. B., 1993, bcl-x, bcl-2-related gene that functions as a dominant regulator of apoptotic cell death, Cell 74:597–608.PubMedCrossRefGoogle Scholar
  13. Bonyhadi, M. L., Rabin, L., Salimi, S., Brown, D. A., Kosek, J., McCune, J. M., and Kaneshima, H., 1993, HIV induces thymus depletion in vivo, Nature 363:728–732.PubMedCrossRefGoogle Scholar
  14. Bossu, P., Singer, G. G., Andres, P., Ettinger, R., Marshak-Rothstein, A., and Abbas, A., K., 1994, Mature CD4+ T lymphocytes from MRL/lpr mice are resistant to receptor-mediated tolerance and apoptosis, J. Immunol. 151:7233–7239.Google Scholar
  15. Bowen, M. B., Butch, A. W., Parvin, C. A., Levine, A., and Nahm, M. H., 1991, Germinal center T cells are distinct helper-inducer T cells, Hum. Immunol. 31:67–76.PubMedCrossRefGoogle Scholar
  16. Brunner, T., Mogul, R., LaFace, D., Yoo, N. J., Mahboul, A., Echeverri, F., Martin, S. J., Force, W. R., Lynch, D. H., Ware, C. F., and Green, D. R., 1995, Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridoma, Nature 373:441–444.PubMedCrossRefGoogle Scholar
  17. Buttke, T. M., and Sandstrom, P. A., 1994, Oxidative stress as a mediator of apoptosis, Immunol. Today 15:209–213.CrossRefGoogle Scholar
  18. Carbonari, M., Cibati, M., Cherchi, M., Sbarigia, D., Pesce, A. M., Dell’Anna, L., Modica, A., and Fiorilli, M., 1994, Detection and characterization of apoptotic peripheral blood lymphocytes in human immunodeficiency virus infection and cancer chemotherapy by a novel flow immunocytometric method, Blood 83:1268–1277.PubMedGoogle Scholar
  19. Chakrabarti, L., Cumont, M.-C., Montagnier, L., and Hurtrel, B., 1994a, Variable course of primary simian immunodeficiency virus infection in lymph nodes: Relation to disease progression, J. Virol. 68:6634–6642.PubMedGoogle Scholar
  20. Chakrabarti, L., Isola, P., Cumont, M.-C., Claessens-Maire, M.-A., Hurtrel, M., Montagnier, L., and Hurtrel, B., 1994b, Early stages of simian immunodeficiency virus infection in lymph nodes, Am. J. Pathol. 144:1226–1237.PubMedGoogle Scholar
  21. Cheng, J., Zhou, T., Liu, C., Shapiro, J. P., Brauer, M. J., Kiefer, M. C., Barr, P. J., and Mounz, J. D., 1994, Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule, Science 263:1759–1762.PubMedCrossRefGoogle Scholar
  22. Cheynier, R., Henrichwark, S., Hadida, F., Pelletier, E., Oksenhendler, E., Autran, B., and Wain-Hobson, S., 1994, HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes, Cell 78:373–387.PubMedCrossRefGoogle Scholar
  23. Chirmule, N., Karyanaraman, V. S., Oyaizu, N., Slade, H., and Pahwa, S., 1990, Inhibition of functional properties of tetanus antigen-specific T cell clones by envelope glycoproteins of HIV-1, Blood 75:152–159.PubMedGoogle Scholar
  24. Chirmule, N., McCloskey, T. W., Hu, R., Kalyanaraman, V S., and Pahwa, S., 1995, HIV gp120 inhibits T cell activation by interfering with expression of costimulatory molecules CD40 ligand and CD80 (B71), J. Immunol 155:917–924.PubMedGoogle Scholar
  25. Chittenden, T., Harrington, E. A., O’Conner, R., Flemington, C., Lutz, R. J., Evan, G. I., and Guild, B. C., 1995, Induction of apoptosis by the Bcl-2 homologue Bak, Nature 374:733–739.PubMedCrossRefGoogle Scholar
  26. Clark, E. A., and Ledbetter, J. A., 1994, How B and T cells talk to each other, Nature 367:425–428.PubMedCrossRefGoogle Scholar
  27. Clerici, M., and Shearer, G. M., 1993, A Thl-Th2 switch is a critical step in the etiology of HIV infection, Immunol. Today 14:107–110.PubMedCrossRefGoogle Scholar
  28. Clerici, M., Hakim, F. T., Venzon, D. J., Blatt, S., Hendrix, C. W., Wynn, T. A., and Shearer, G. M., 1993, Changes in interleukin-2 and interleukin-4 production in asymptomatic, human immunodeficiency virus-seropositive individuals, J. Clin. Invest. 91:759–765.PubMedCrossRefGoogle Scholar
  29. Clerici, M., Sarin, A., Coffman, R. L., Wynn, T. A., Blatt, S., Hendrix, C. W., Wolf, S. F., Shearer, G. M., and Henkart, P. A., 1995, Type 1/type 2 cytokine modulation of T-cell programmed cell death as a model for human immunodeficiency virus pathogenesis, Proc. Natl. Acad. Sci. USA 91:11811–11815.CrossRefGoogle Scholar
  30. Clouse, K. A., Cosentino, L. M., Weih, K. A., Pyle, S. W., Robbins, P. B., Hochstein, H. D., Natarajan, V., and Farrar, W. L., 1991, The HIV-1 gp120 envelope protein has the intrinsic capacity to stimulate monokine secretion, J. Immunol 147:2892–2901.PubMedGoogle Scholar
  31. Cloyd, M. W., and Lynn, W. S., 1991, Perturbation of host-cell membrane is a primary mechanism of HIV cytopathicity, Virology 181:307–309.CrossRefGoogle Scholar
  32. Cohen, P. L., and Eisenberg, R. A., 1991, Lpr and gld: Single gene models of systemic autoimmunity and lymphoproliferative disease, Annu. Rev. Immunol 9:243–262.PubMedCrossRefGoogle Scholar
  33. Debatin, K.-M., Fahrig-Faissner, A., Enenkel-Stoodt, S., Kreuz, W., Benner, A., and Krammer, P. H., 1994, High expression of Apo-1 (CD95) on T lymphocytes from human immunodeficiency virus-1-infected children, Blood 83:3101–3103.PubMedGoogle Scholar
  34. Del Llano, A. M., Amerio-Puig, J. P., Kraiselburd, E. N., Kessler, M. J., Malaga, C. A., and Lavergne, J. A., 1993, The combined assessment of cellular apoptosis, mitochondrial function and proliferative response to pokeweed mitogen has prognostic value in SIV infection, J. Med. Primatol. 22:194–200.Google Scholar
  35. DeRossi, A., Franchini, G., Aldovini, A., DelMistro, A., Chieco-Bianchi, L., Gallo, R., and Wong-Staal, R., 1986, Differential response to the cytopathic effects of human T-cell lymphotropic virus III (HTLV-III) superinfection in T4+ (helper) and T8+ (suppressor) T-cell clones transformed by HTLV-1, Proc. Natl. Acad. Sci. USA 83:4297–4301.CrossRefGoogle Scholar
  36. Dhein, J., Walczac, H., Baumler, C., Debatin, K.-M., and Krammer, P. H., 1995, Autocrine T-cell suicide mediated by APO-1/(Fas/CD95), Nature 373:438–441.PubMedCrossRefGoogle Scholar
  37. Diamond, D. C., Sleckman, B. P., Gregory, T., Lasky, L. A., Greenstein, J. L., and Burakoff, S. J., 1988, Inhibition of CD4+ T cell function by the HIV envelope protein gp120, J. Immunol. 141:3715–3717.PubMedGoogle Scholar
  38. Duh, E. J., Maury, W. J., Folks, T. M., Fauci, A. S., and Rabson, A., 1989, Tumor necrosis factor-alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kB sites in the long terminal repeat, Proc. Natl. Acad. Sci. USA 86:5974–5978.PubMedCrossRefGoogle Scholar
  39. Eischen, C. M., Dick, C. J., and Leibson, P. J., 1994, Tyrosine kinase activation provides an early and requisite signal for Fas-induced apoptosis, J. Immunol. 153:1947–1954.PubMedGoogle Scholar
  40. Embretson, J., Zupancic, M., Ribas, J. L., Burke, A., Racz, P., Tenner-Racz, K., and Haase, A. T., 1993, Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS, Nature 362:359–362.PubMedCrossRefGoogle Scholar
  41. Emilie, D., Permutter, M., Malliot, M. C., Brousse, N., Delfraissy, J. F., Dormont, J., and Galanaud, P., 1990, Production of interleukins in human immunodeficiency virus-1-replicating lymph nodes, J. Clin. Invest. 86:148–159.PubMedCrossRefGoogle Scholar
  42. Enari, M., Hug, H., and Nagata, S., 1995, Involvement of an ICE-like protease in Fas-mediated apoptosis, Nature 375:78–81.PubMedCrossRefGoogle Scholar
  43. Fan, J., Bass, H. Z., and Fahey, J. L., 1993, Elevated INF-7 and decreased IL-2 gene expression are associated with HIV infection, J. Immunol. 151:5031–5040.PubMedGoogle Scholar
  44. Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S., 1994, CPP32, a novel human apoptotic protein with homology to Caenorhabdtis elegans cell death protein Ced-3 and mammalian interleukin-1β-converting enzyme, J. Biol. Chem. 269:30761–30764.PubMedGoogle Scholar
  45. Finkel, T. H., Tudor-Williams, G., Banda, N. K., Cotton, M. R., Curiel, T., Monks, C., Baba, T. W., Ruorecht, R. M., and Kupfer, A., 1995, Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV-and SIV-infected lymph nodes, Nature Med. 1:129–134.PubMedCrossRefGoogle Scholar
  46. Fisher, G. H., Rosenberg, F. J., Straus, S. E., Dale, J. K., Middleton, L. A., Lin, A. Y., Strober, W., Lenardo, M. J., and Puck, J. M., 1995, Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome, Cell 81:935–946.PubMedCrossRefGoogle Scholar
  47. Foster, S., Beverley, P., and Aspinall, R., 1995, gp120-induced programmed cell death in recently activated T cells without subsequent ligation of the T cell receptor, Eur. J. Immunol. 25:1778–1782.PubMedCrossRefGoogle Scholar
  48. Fuller, K. A., Kanagawa, O., and Nahm, M. H., 1993, T cells within germinal centers are specific for the immunizing antigen, J. Immunol. 151:4505–4512.PubMedGoogle Scholar
  49. Gendelman, H. E., Ehrlich, G. D., Baca, L. M., Conley, S., Ribas, J., Kalter, D. C., Melzer, M. S., Poiez, B. J., and Nara, P., 1991, The inability of human immunodeficiency virus to infect chimpanzee monocytes can be overcome by serial passage in vivo, J. Virol. 65:3853–3863.PubMedGoogle Scholar
  50. Gessani, S., Puddu, P., Varano, B., Borghi, P., Conti, L., Fantuzzi, L., and Belardelli, R., 1994, Induction of beta interferon by human immunodeficiency virus type 1 and its gp120 protein in human monocyte macrophage, J. Virol. 68:1983–1986.PubMedGoogle Scholar
  51. Gibellini, D., Caputo, A., Celeghini, C., Bassini, A., La Placa, M., Capitani, S., and Zauli, G., 1995, Tat-expressing Jurkat cells show an increased resistance to different apoptotic stimuli, including acute human immunodeficiency virus-type 1 (HIV-1) infection, Br. J. Haematol. 89:24–33.PubMedCrossRefGoogle Scholar
  52. Gratiot-Deans, J., Merino, R., Nunez, G., and Turka, L. A., 1994, Bcl-2 expression during T cell development: Early loss and late return occur at specific stages of commitment to differentiation and survival, Proc. Natl. Acad. Sci. USA 91:10685–10689.PubMedCrossRefGoogle Scholar
  53. Graziosi, C., Pantaleo, G., Gantt, K. R., Fortin, J.-R, Demarrest, J. R., Cohen, O. J., Sèkaly, R. P., and Fauci, A. S., 1994, Lack of evidence for the dichotomy of Th1 and Th2 predominance in HIV-infected individuals, Science 265:248–252.PubMedCrossRefGoogle Scholar
  54. Grell, M., Zimmermann, G., Hülser, D., Pfizenmaier, K., and Scheunen, P., 1994, TNF receptors TR60 and TR80 can mediate apoptosis via induction of distinct signal pathways, J. Immunol. 153:1963–1972.PubMedGoogle Scholar
  55. Gribben, J. G., Freeman, G. J., Boussiotis, V. A., Rennert, P., Jellis, C., Greenfield, E., Barber, M., Restivo, V. A., Jr., Ke, X., Gray, G., and Nadler, L. K., 1995, CTLA4 mediates antigen-specific apoptosis of human T-cells, Proc. Natl. Acad. Sci. USA 92:811–815.PubMedCrossRefGoogle Scholar
  56. Groux, H., Torpier, G., Montè, D., Mounton, Y., Capon, A., and Ameisen, J.-C., 1992, Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency-infected asymptomatic individuals, J. Exp. Med. 175:331–340.PubMedCrossRefGoogle Scholar
  57. Groux, H., Monte, D., Plouvier, B., Capon, A., and Ameisen, J.-C., 1993, CD3-mediated apoptosis of human medullary thymocytes and activated T cells: Respective roles of interleukin-1, interleukin-2, interferon-7 and accessory cells, Eur. J. Immunol. 23:1623–1629.PubMedCrossRefGoogle Scholar
  58. Gulbins, E., Bissonnette, R., Mahboubi, A., Martin, S., Nishioka, W., Brunner, T., Baier, G., Baier-Bitterlich, G., Byrd, C., Lang, F., Kolesnick, R., Altman, A., and Green, D., 1995, Fas-induced apoptosis is mediated via a ceramide-initiated Ras signaling pathway, Immunity 2:341–351.PubMedCrossRefGoogle Scholar
  59. Herron, L. R., Eisenberg, R. A., Roper, E., Kakkanaiah, V. N., Cohen, P. P. L., and Kotzin, B. L., 1993, Selection of the T cell receptor repertoire in lpr mice, J. Immunol. 151:3450–3459.PubMedGoogle Scholar
  60. Heusel, J., Wesselschmidt, R. L., Shresta, S., Russel, J. H., and Ley, T. J., 1994, Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells, Cell 76:977–987.PubMedCrossRefGoogle Scholar
  61. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., and Markowitz, M., 1995, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature 373:123–126.PubMedCrossRefGoogle Scholar
  62. Hiigin, A. W., Vacchio, M. S., and Morse, H. C., III, 1991, A virus-encoded “superantigen” in a retrovirus-induced immunodeficiency syndrome of mice, Science 252:424–427.CrossRefGoogle Scholar
  63. Itoh, N., and Nagata, S., 1993, A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen, J. Biol. Chem. 268:10932–10937.PubMedGoogle Scholar
  64. Itoh, N., Yonehara, S., Ishii, A., Yonehara, M., Mizushima, S., Sameshima, M., Hase, A., Seto, Y., and Nagata, N., 1991, The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell 66:233–243.PubMedCrossRefGoogle Scholar
  65. Itoh, N., Tsujimoto, Y., and Nagata, S., 1993, Effect of bcl-2 on Fas antigen-mediated cell death, J. Immunol. 151:621–627.PubMedGoogle Scholar
  66. Jaleco, A. C., Covas, M. J., and Victorino, R. M. M., 1994, Analysis of lymphocyte cell death and apoptosis in HIV-2-infected patients, Clin. Exp. Immunol. 98:185–189.PubMedCrossRefGoogle Scholar
  67. Johnson, B. K., Stone, G. A., Godec, M. S., Asher, D. M., Gajdusek, D. C., and Gibbs, C. J., Jr., 1993, Long-term observations of human immunodeficiency virus-infected chimpanzees, AIDS Res. Hum. Retrovir. 9:375–378.PubMedCrossRefGoogle Scholar
  68. Joling, P., Bakker, L. J., Strijp, J. A. G., Meerloo, T., de Graaf, L., Dekker, M. E. M., Goudsmit, J., Verhoef, J., and Schuurman, H.-J., 1993, Binding of human immunodeficiency virus type-1 to follicular dendritic cells in vitro is complement dependent, J. Immunol. 150:1065–1073.PubMedGoogle Scholar
  69. Ju, S. T., Cui, H., Panka, D., Ettinger, R., and Marshak-Rothstein, A., 1994, Participation of target Fas protein in apoptosis pathway induced by CD4+ Thl and CD8+ cytotoxic T cells, Proc. Natl. Acad. Sci. USA 91:4185–4189.PubMedCrossRefGoogle Scholar
  70. Ju, S. T., Panka, D. J., Cui, H., Ettinger, R., El-Khatib, M., Sherr, D. H., Stanger, B. Z., and Marshak-Rothstein, A., 1995, Fas (CD95)/FasL interactions required for programmed cell death after T cell activation, Nature 373:444–448.PubMedCrossRefGoogle Scholar
  71. Käji, D., Vignaux, R., Lederman, B., Bürki, K., Depraetere, V., Nagata, S., Hengartner, H., and Golstein, P., 1994, Fas and perform pathways as major mechanisms of T cell-mediated cytotoxicity, Science 265:528–530.CrossRefGoogle Scholar
  72. Katsikis, P. D., Wunderlich, E. S., Smith, C. A., Herzenberg, L. A., and Herzenberg, L. A., 1995, Fas antigen stimulation induces marked apoptosis of T Lymphocytes in human immunodeficiency virus-infected individuals, J. Exp. Med 181:2029–2036.PubMedCrossRefGoogle Scholar
  73. Kaufman, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., and Poirier, G. G., 1993, Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis, Cancer Res. 53:3976–3985.Google Scholar
  74. Kearney, E. R., Pape, K. A., Loh, D. Y., and Jenkins, M. K., 1994, Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo, Immunity 1:327–339.PubMedCrossRefGoogle Scholar
  75. Kerr, J. F. R., Wyllie, A. H., and Currie, A. R., 1972, Apoptosis: A basic biological phenomenon with wide ranging implication in tissue kinetics, Br. J. Cancer 26:239–257.PubMedCrossRefGoogle Scholar
  76. Kobayashi, N., Hamamoto, Y., Yamamoto, N., Ishii, A., Yonehara, M., and Yonehara, S., 1990, Anti-Fas monoclonal antibody is cytocidal to human immunodeficiency virus-infected cells without augmenting viral replication, Proc. Natl. Acad. Sci. USA 87:9620–9624.PubMedCrossRefGoogle Scholar
  77. Koga, Y., Nakamura, K., Sasaki, M., Kimura, G., and Nomoto, K., 1992, The difference in gp160 and gp120 of HIV type 1 in the induction of CD4 downregulation preceding single-cell killing, Virology 201:137–141.CrossRefGoogle Scholar
  78. Kojima, H., Someya-Shinohara, Y., Takagaki, Y., Ohno, H., Saito, T., Katayama, T., Yagita, H., Okumura, K., Shinkai, Y., Alt, F. W., Matsuzaki, A., Yonehara, S., and Takayama, H., 1994, Two distinct pathways of specific killing revealed by perform mutant cytotoxic T lymphocytes, Immunity 1:357–364.PubMedCrossRefGoogle Scholar
  79. Kovacs, J. A., Baseler, M., Dewar, R. J., Vogel, S., Davey, R. T., Jr., Falloon, J., Polis, M. A., Walker, R. E., Stevens, R., Salzman, N. P., Metcalf, J. A., Masur, H., and Lane, H. C., 1995, Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection, N. Engl. J. Med. 332:567–575.PubMedCrossRefGoogle Scholar
  80. Kowalski, M., Bergerson, L., Dorfman, T., Haseltine, W., and Sodorski, J., 1991, Attenuation of human immunodeficiency virus type 1 cytopathic effect by a mutation affecting the transmembrane envelope protein, J. Virol. 65:281–291.PubMedGoogle Scholar
  81. Krowka, J. F., Sheppard, H. W., Acher, M. S., Fitzpatrick, P., Kiefer, M. C., Pavioff, N., and Barr, P. J., 1994, Soluble CD95 inhibits HIV-related apoptosis, Xth Int. Conf. AIDS, Yokohama (Abstr. #PA0105).Google Scholar
  82. Kuida, K., Lippke, J. A., Ku, G., Harding, M. W., Livingston, D. J., Su, M. S., and Flavell, R. A., 1995, Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme, Science 267:2000–2003.PubMedCrossRefGoogle Scholar
  83. Lahdevirta, J., Maury, C. P. J., Teppo, A.-M., and Repo, H., 1988, Elevated levels of circulating cachectin/tumor necrosis factor in patients with acquired immunodeficiency syndrome, Am. J. Med. 85:289–291.PubMedCrossRefGoogle Scholar
  84. Laurent-Crawford, A. G., Krust, B., Muller, S., Riviere, Y., Rey-Culle, M.-A., Bechet, J. M., Montagnier, L., and Hovanessian, A. G., 1991, The cytopathic effect of HIV is associated with apoptosis, Virology 185:829–839.PubMedCrossRefGoogle Scholar
  85. Laurent-Crawford, A. G., Krust, B., Muller, S., Riviere, Y., Desgranges, C., Muller, S., Kieny, M. P., Daugust, C., and Hovanessian, A. G., 1993, Membrane expression of HIV envelope glycoprotein triggers apoptosis in CD4 cells, AIDS Res. Hum. Retrovir. 9:761–773.PubMedCrossRefGoogle Scholar
  86. Leonardo, M. J., 1991, Interleukin-2 programs mouse αβ T lymphocytes for apoptosis, Nature 363:858–861.CrossRefGoogle Scholar
  87. Lewis, D. E., Ng Tang, D. S., Adu-Oppong, A., Schober, W., and Rodgers, J. R., 1994, Anergy and apoptosis in CD8+ T cells from HIV-infected persons, J. Immunol. 153:412–420.PubMedGoogle Scholar
  88. Li, C., Friedman, D. J., Wang, C., Metelev, V., and Pardee, A. B., 1995, Induction of apoptosis in uninfected lymphocytes by HIV-1 tat protein, Science 268:429–431.PubMedCrossRefGoogle Scholar
  89. Lifson, J. D., Feinberg, M. B., Reyes, G. R., Rabin, L., Banapour, B., Chakrabarti, S., Moss, B., Wong-Staal, F., Steimer, K. S., and Engleman, E. B., 1986, Induction of CD4-dependent cell fusion by the HTLVIII/LAV envelope protein, Nature 323:725–728.PubMedCrossRefGoogle Scholar
  90. Liu, Y., and Janeway, C. A., Jr., 1990, Interferon γ plays a critical role in induced cell death of effector T cell: A possible third mechanism of self-tolerance, J. Exp. Med. 172:1735–1739.PubMedCrossRefGoogle Scholar
  91. Los, M., de Craen, M. V., Penning, L. C., Schenk, H., Westendorp, M., Baeuerie, P. A., Drüge, W., Krammer, P. H., Fiers, W., and Schulze-Osthoff, K., 1995, Requirement of an ICE/CED-3 protease for Fas/Apo-1-mediated apoptosis, Nature 375:81–83.PubMedCrossRefGoogle Scholar
  92. Lu, Y-Y, Koga, Y., Tanaka, K., Sasaki, M., Kimura, G., and Nomotom, K., 1994, Apoptosis induced in CD4+ cells expressing gp160 of human immunodeficiency virus type 1, J. Virol. 68:390–399.PubMedGoogle Scholar
  93. Lynch, D. H., Watson, M. L., Alderson, M. R., Baum, P. R., Miller, R. E., Tough, T., Gibson, M., Davis-Smith, T., Smith, C. A., Hunter, K., Bhat, D., Din, W., Goodwin, R. G., and Seldin, M. F., 1994, The mouse Fas-ligand gene is mutated in gld mice and is part of TNF family gene cluster, Immunity 1:131–136.PubMedCrossRefGoogle Scholar
  94. McCloskey, T. W., Oyaizu, N., Kaplan, M., and Pahwa, S., 1995, Expression of the Fas antigen in patients infected with human immunodeficiency virus, Cytometry 22:111–114.PubMedCrossRefGoogle Scholar
  95. Meyaard, L., Otto, S. A., Jonker, R. R., Mijnster, M. J., Keet, R. P. M., and Miedema, F., 1992, Programmed death of T cells in HIV-1 infection, Science 257:217–219.PubMedCrossRefGoogle Scholar
  96. Meyaard, L., Otto, S. A., Keet, R. P. M., Roos, M. T. L., and Miedema, F., 1994, Programmed death of T cells in human immunodeficiency virus infection, J. Clin. Invest. 93:982–988.PubMedCrossRefGoogle Scholar
  97. Miyawaki, T., Uehara, T., Nibu, R., Tsuji, T., Yachie, A., Yonehara, S., and Taniguchi, N., 1992, Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulation in human peripheral blood, J. Immunol 149:3753–3758.PubMedGoogle Scholar
  98. Miyazaki, T., Liu, Z.-J., Kawahara, A., Minami, Y., Yamada, K., Tsujimoto, Y., Barsoumian, E. L., Perimutter, R. M., and Taniguchi, T., 1995, Three distinct IL-2 signaling pathways mediated by bcl-2, c-myc, and lck cooperate in hematopoietic cell proliferation, Cell 81:223–231.PubMedCrossRefGoogle Scholar
  99. Mosier, D. E., Gulizia, R. J., Maclsaac, P. D., Torbett, B. E., and Levy, J. A., 1993, Rapid loss of CD4+ T cells in human-PBL-SCID mice by noncytopathic HIV isolates, Science 260:689–692.PubMedCrossRefGoogle Scholar
  100. Muro-Cacho, C. A., Pantaleo, G., and Fauci, A. S., 1995, Analysis of apoptosis in lymph nodes of HIV-infected persons, J. Immunol. 154:5555–5566.PubMedGoogle Scholar
  101. Nagata, S., and Goldstein, P., 1995, The Fas death factor, Science 267:1449–1456.PubMedCrossRefGoogle Scholar
  102. Nakayama, K., Nakayama, K.-L, Negishi, I., Kuida, K., Sawa, H., and Loh, D. Y., 1994, Target disruption of Bcl-2αβ in mice: Occurrence of gray hair, polycystic kidney disease, and lymphocytopenia, Proc. Natl. Acad. Sci. USA 91:3700–3704.PubMedCrossRefGoogle Scholar
  103. Newell, M. K., Haughn, L. J., Maroun, C. R., and Julius, M. H., 1990, Death of mature T cells by separate ligation of CD4 and the T-cell receptor for antigen, Nature 347:286–289.PubMedCrossRefGoogle Scholar
  104. Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., Lazebnik, Y A., Munday, N. A., Raju, S. M., Smulson, M. E., Yamin, T.-T, Yu, V. L., and Miller, D. K., 1995, Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature 376:37–43.PubMedCrossRefGoogle Scholar
  105. Novelli, F., Pierro, F., diCelle, P. F., Bertini, S., Affaticati, P., Garotta, G., and Forni, G., 1994, Environmental signals influence expression of the IFN-γ receptor on human T cells control whether IFN-γ promotes proliferation or apoptosis, J. Immunol. 152:496–504.PubMedGoogle Scholar
  106. Obeid, L. M., Linardic, C. M., Karolak, L. A., and Hannun, Y A., 1993, Programmed cell death induced by ceramide, Science 259:1769–1771.PubMedCrossRefGoogle Scholar
  107. Oh, S.-K., Cruikshank, W. W., Raina, J., Blanchard, G. G., Adler, W. H., Walker, J., and Kornfeld, H., 1992, Identification of HIV-1 envelope glycoprotein in the serum of AIDS and ARC patients, J. Acq. Immune Defic. Syndr. 5:251–256.Google Scholar
  108. O’Hara, C. J., 1989, Lymphoid system, in: Pathology and Pathophysiology of AIDS and HIV-Related Diseases (S. J. Harawi and C. J. O’Hara, eds.) Chapman & Hall, London, pp. 136–183.Google Scholar
  109. Oltvai, Z., Milliman, C. L., and Korsmeyer, S. J., 1993, Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death, Cell 74:609–619.PubMedCrossRefGoogle Scholar
  110. Owen-Schaub, L. B., Yonehara, S., Crump, W. L., III, and Grimm, E. A., 1992, DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement, Cell. Immunol. 140:197–295.PubMedCrossRefGoogle Scholar
  111. Oyaizu, N., Chirmule, N., Ohnishi, Y., Kalyanaraman, V. S., and Pahwa, S., 1991, Human immunodeficiency virus type 1 envelope glycoprotein gp120 and gp160 induce interleukin-6 production in CD4+ T-cell clones, J. Virol. 65:6277–6282.PubMedGoogle Scholar
  112. Oyaizu, N., Chirmule, N., Kalyanaraman, V. S., Hall, W. W., Good, R. A., and Pahwa, S., 1990, Human immunodeficiency virus type 1 envelope protein gp120 produces immune defects in CD4+ T lymphocytes by inhibiting interleukin 2 mRNA, Proc. Natl. Acad. Sci. USA 87:2379–2383.PubMedCrossRefGoogle Scholar
  113. Oyaizu, N., Chirmule, N., and Pahwa, S., 1992, Role of CD4 molecule in the induction of interleukin 2 and interleukin 2 receptor in class II major histocompatibility complex-restricted antigen specific T helper clones, J. Clin. Invest. 89:1807–1816.PubMedCrossRefGoogle Scholar
  114. Oyaizu, N., McCloskey, T. W., Coronesi, M., Chirmule, N., Kalyanaraman, V. S., and Pahwa, S., 1993, Accelerated apoptosis in peripheral blood mononuclear cells (PBMC) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals, Blood 82:3392–3400.PubMedGoogle Scholar
  115. Oyaizu, N., McCloskey, T. W., Soe Than, Hu, R., Kalyanaraman, V. S., and Pahwa, S., 1994, Crosslinking of CD4 molecules up-regulates Fas antigen expression in lymphocytes by inducing interferon 7 and tumor necrosis factor-α secretion, Blood 84:2622–2631.PubMedGoogle Scholar
  116. Pahwa, S., Pahwa, R., Saxinger, C., Gallo, R. C., and Good, R. A., 1985, Influence of the human T-lymphotropic virus/lymphadenopathy-associated virus on functions of human lymphocytes: Evidence for immunosuppressive effects and polyclonal B-cell activation by banded viral preparations, Proc. Natl. Acad. Sci. USA 82:8198–8202.PubMedCrossRefGoogle Scholar
  117. Pantaleo, G., Graziosi, G., and Fauci, A. S., 1993a, The immuno-pathogenesis of human immunodeficiency virus infection, N. Engl. J. Med. 328:327–335.PubMedCrossRefGoogle Scholar
  118. Pantaleo, G., Graziosi, G., Demarest, J. F., Butini, L., Montroni, M., Fox, G H., Orenstein, J. M., Kotler, D. P., and Fauci, A. S., 1993b, HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease, Nature 362:355–358.PubMedCrossRefGoogle Scholar
  119. Poli, G., Bressler, P., Kinter, A., Duh, E., Timmer, W. C., Rabson, A., Justement, J. S., Stanley, S., and Fauci, A. S., 1990, Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor a by transcriptional and post-transcriptional mechanisms, J. Exp. Med. 172:151–158.PubMedCrossRefGoogle Scholar
  120. Pope, M., Betjes, M. G. H., Romani, N., Hirmand, H., Cameron, P. U., Hoffman, L., Gezelter, S., Schuler, G., and Steinman, R. M., 1994, Conjugate of dendritic cells and memory T lymphocytes from skin facilitate productive infection of HIV-1, Cell 78:389–398.PubMedCrossRefGoogle Scholar
  121. Rieckmann, P., Poli, G., Fox, C. H., Kehrl, J. H., and Fauci, A. S., 1991, Recombinant gp120 specifically enhances tumor necrosis factor-a production and Ig secretion in B lymphocytes from HIV-infected individuals but not from seronegative donors, J. Immunol 147:2922–2927.PubMedGoogle Scholar
  122. Rivas, C. I., Golde, D. W., Vera, J. C., and Kolesnick, R. N., 1994, Involvement of the sphingomyelin pathway in autocrine tumor necrosis factor signaling for human immunodeficiency virus production in chronically infected HL-60 cells, Blood 83:2191–2197.PubMedGoogle Scholar
  123. Russell, J., Rush, B., Weaver, C., and Wang, R., 1993, Mature T cells of autoimmune lpr/lpr mice have a defect in antigen-stimulated suicide, Proc. Natl. Acad. Sci. USA 90:4409–4413.PubMedCrossRefGoogle Scholar
  124. Saksela, K., Stevens, C., Rubinstein, P., and Baltimore, D., 1994, Human immunodeficiency virus type 1 mRNA expression in peripheral blood cells predicts disease progression independently of the numbers of CD4+ lymphocytes, Proc. Natl. Acad. Sci. USA 91:1104–1108.PubMedCrossRefGoogle Scholar
  125. Salgame, P., Abrams, J. S., Clayberger, C., Goldstein, H., Convit, J., Modlin, R. T., and Bloom, B. R., 1991, Differential lymphokine profile of functional subsets of human CD4 and CD8 T cell clone, Science 254:279–282.PubMedCrossRefGoogle Scholar
  126. Salmon, M., Pilling, D., Borthwick, N. J., Viner, N., Janossy, G., Bacon, P. A., and Akbar, A. N., 1994, The progressive differentiation of primed T cells is associated with an increased susceptibility to apoptosis, Eur. J. Immunol. 24:892–899.PubMedCrossRefGoogle Scholar
  127. Sarin, A., Adams, D. H., and Henkart, P. A., 1993, Protease inhibitors selectively block T-cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T-cells, J. Exp. Med. 178:1693–1700.PubMedCrossRefGoogle Scholar
  128. Sarin, A., Clerici, M., Blatt, S. P., Hendrix, C. W., Shearer, G. M., and Henkart, P. A., 1994, Inhibition of activation-induced programmed cell death and restoration of defective immune responses of HIV+ donors by cysteine protease inhibitors, J. Immunol. 153:862–872.PubMedGoogle Scholar
  129. Sato, T., Irie, S., Kitada, S., and Reed, J. C., 1995, FAP-1: A protein tyrosine phosphatase that associates with Fas, Science 268:411–415.PubMedCrossRefGoogle Scholar
  130. Schnittman, S. M., Psallidopoulos, M., Lane, H. C., Thompson, L., Baseler, M., Massari, F., Fox, C. H., Salzmann, N. P., and Fauci, A. S., 1992, The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4, Science 245:305–308.CrossRefGoogle Scholar
  131. Schuitemaker, H., Meyaard, L., Kootstra, N. A., Dubbes, R., Otto, S. A., Termette, M., Heeney, J. L., and Miedema, F., 1993, Lack of T cell dysfunction and programmed cell death in human immunodeficiency virus type 1-infected chimpanzees correlates with absence of monocytotropic variants, J. Infect. Dis. 168:1140–1147.PubMedCrossRefGoogle Scholar
  132. Singer, G. G., and Abbas, A. K., 1994, The Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice, Immunity 1:365–371.PubMedCrossRefGoogle Scholar
  133. Sodroski, J., Goh, W. C., Rosen, C. A., Campbell, K., and Haseltine, W., 1986, Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity, Nature 322:470–474.PubMedCrossRefGoogle Scholar
  134. Somasundaran, M., and Robinson, H. L., 1987, A major mechanism of human immunodeficiency virus-induced cell killing does not involve cell fusion, J. Virol. 61:3114–3119.PubMedGoogle Scholar
  135. Stevenson, M., Meier, C., Mann, A. M., Chapman, N., and Wasiak, W., 1988, Envelope glycoprotein of HIV induces interference and cytolysis resistance in CD4+ cells: Mechanism for persistence in AIDS, Cell 53:483–496.PubMedCrossRefGoogle Scholar
  136. Su, L., Kanesima, H., Bonyhadi, M., Salimi, S., Kraft, D., Rabin, L., and McCune, J. M., 1995a, HIV-1-induced thymocyte depletion is associated with indirect cytopathicity and infection of progenitor cells in vivo, Immunity 2:25–36.PubMedCrossRefGoogle Scholar
  137. Su, X., Zhou, T., Wang, Z., Yang, P., Jope, R. S., and Mountz, J. D., 1995b, Defective expression of hematopoietic cell protein phosphatase (HCP) in lymphoid cells blocks Fas-mediated apoptosis, Immunity 2:353–362.PubMedCrossRefGoogle Scholar
  138. Suda, T., Takahashi, T., Golstein, P., and Nagata, S., 1993, Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family, Cell 75:1169–1178.PubMedCrossRefGoogle Scholar
  139. Suda, T., Okazaki, T., Naito, Y., Yokota, T., Arai, N., Ozaki, S., Nakao, K., and Nagata, S., 1995, Expression of Fas ligand in cells of T cell lineage, J. Immunol 154:3806–3813.PubMedGoogle Scholar
  140. Takahashi, T., Tanaka, M., Brannan, C. I., Jenkins, N. A., Copeland, N. G., Suda, T., and Nagata, S., 1994, Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand, Cell 76:969–976.PubMedCrossRefGoogle Scholar
  141. Takayama, S., Sato, T., Krajewski, S., Kochel, K., Irie, S., Millan, J., and Reed, J. C., 1995, Cloning and functional analysis of BAG-1: A novel Bcl-2 binding protein with anti-cell death activity, Cell 80:279–284.PubMedCrossRefGoogle Scholar
  142. Tartaglia, L. A., Ayres, T. M., Wong, G. H. W., and Goeddel, D. V., 1993, A novel domain within the 55 kd TNF receptor signals cell death, Cell 74:845–853.PubMedCrossRefGoogle Scholar
  143. Terai, C., Kornbluth, R. S., Pavia, D., Richman, D. D., and Carson, D. A., 1991, Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1, J. Clin. Invest. 87:1710–1715.PubMedCrossRefGoogle Scholar
  144. Tewari, M., Quan, L. T., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier, G. G., Salvesen, G. S., and Dixit, V. M., 1995, Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell 81:801–809.PubMedCrossRefGoogle Scholar
  145. Than, S., Oyaizu, N., Kalyanaraman, V. S., and Pahwa, S., 1994, Effect of HIV-1 envelope protein gp160 on cytokine production from cord blood T cells, Blood 84:184–188.PubMedGoogle Scholar
  146. Ucker, D. S., Aswell, J. D., and Nickas, G., 1989, Activation-driven T cell death I. Requirements for de novo transcription and translation and association of genome fragmentation, J. Immunol. 143:3461.PubMedGoogle Scholar
  147. Uehara, T., Miyawaki, T., Ohta, K., Tamaru, Y., Yokoi, T., Nakamura, S., and Taniguchi, A., 1992, Apoptotic cell death of primed CD45R0+ T lymphocytes in Epstein-Barr virus-induced infectious mononucleosis, Blood 80:452–458.PubMedGoogle Scholar
  148. van den Eterwegh, A. J. M., Laman, V. D., Schellekens, M. M., Boersma, W. J. A., and Ciaassen, E., 1992, Complement-mediated follicular localization of T-independent type-2 antigens: The role of marginal zone macrophage, Eur. J. Immunol. 22:719–726.CrossRefGoogle Scholar
  149. Van Veldhoven, P. P., Matthews, T. J., Bolognasi, D. P., and Bell, R. M., 1992, Change in bioactive lipids, alkyacylglycerol and ceramide, occur in HIV-infected cells, Biochem. Biophys. Res. Commun. 187:209–216.PubMedCrossRefGoogle Scholar
  150. Wahl, L. M., Corcoran, M. L., Pyle, S. W., Arthur, L. O., Harel-Bellan, A., and Farrar, W., 1989, Human immunodeficiency virus glycoprotein (gp120) induction of monocyte arachidonic acid metabolites and interleukin 1, Proc. Natl. Acad. Sci. USA 86:621–625.PubMedCrossRefGoogle Scholar
  151. Wang, J., Stolman, S. A., and Dennert, G., 1994, TCR cross-linking induces CTL death via internal action of TNF, J. Immunol. 152:3824–3832.PubMedGoogle Scholar
  152. Wang, Z., Dudhane, A., Orlikowsky, T., Clarke, K., Li, X., Darzynkeiwicz, Z., and Hoffmann, M. K., 1994a, CD4 engagement induces Fas antigen-dependent apoptosis in vivo, Eur. J. Immunol. 24:1549–1552.PubMedCrossRefGoogle Scholar
  153. Wang, Z., Orlikowsky, T., Dudhane, A., Clarke, K., Li, X., Darzynkeiwicz, Z., and Hoffmann, M. K., 1994b, Deletion of T lymphocytes in human CD4 transgenic mice induced by HIV-gp120 and gp120-specific antibodies from AIDS patients, Eur. J. Immunol. 24:1553–1557.PubMedCrossRefGoogle Scholar
  154. Watanabe, M., Ringler, D. J., Fultz, P. N., MacKey, J. J., Boyson, J. E., Levine, C. G., and Letvin, N. L., 1991, A chimpanzee-passaged human immunodeficiency virus isolate is cytopathic for chimpanzee cells but does not induce disease, J. Virol. 65:3344–3348.PubMedGoogle Scholar
  155. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A., and Nagata, S., 1992a, Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis, Nature 356:314–317.PubMedCrossRefGoogle Scholar
  156. Watanabe-Fukunaga, R., Brannan, C. I., Ito, N., Yonehara, S., Copeland, N. G., Jenkins, N. A., and Nagata, S., 1992b, The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen, J. Immunol. 148:1274–1279.PubMedGoogle Scholar
  157. Wei, X., Ghosh, S. K., Taylor, M. E., Johnson, V. A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., Saag, M. S., and Shaw, G. M., 1995, Viral dynamics in human immunodeficiency virus type 1 infection, Nature 373:117–122.PubMedCrossRefGoogle Scholar
  158. Weigmann, K., Schütze, S., Machleidt, T., Witte, D., and Krönke, M., 1994, Functional dichotomy of neutral and acid sphingomyelinases in tumor necrosis factor signaling, Cell 78:1005–1015.CrossRefGoogle Scholar
  159. Westendorp, M. O., Frank, R., Ochsenbauer, C., Stricker, K., Dhein, J., Walczak, H., Debatin, K.-M., and Krammer, P. H., 1995, Sensitization of T cells to CD95-mediated apoptosis by HIV-1 and gp120, Nature 375:495–500.CrossRefGoogle Scholar
  160. Wyllie, A. H., Kerr, J. F. R., and Currie, A. R., 1980, Cell death: The significance of apoptosis, Int. Rev. Cytol. 68:251–306.PubMedCrossRefGoogle Scholar
  161. Yang, E., Zha, J., Jockei, J., Boise, L. H., Thompson, C. B., and Korsmeyer, S. J., 1995, Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces Bax and promote cell death, Cell 80:285–291.PubMedCrossRefGoogle Scholar
  162. Yin, X.-M., Oltvai, Z. N., and Korsmeyer, S. J., 1994, BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax, Nature 369:321–323.PubMedCrossRefGoogle Scholar
  163. Yonehara, S., Ishii, A., and Yonehara, M., 1989, A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor, J. Exp. Med. 169:1747–1756.PubMedCrossRefGoogle Scholar
  164. Yoshino, T., Kondo, E., Cao, L., Takahashi, K., Hayashi, K., Nomura, S., and Akagi, T., 1994, Inverse expression of bcl-2 protein and Fas antigen in lymphoblasts in peripheral lymph nodes and activated peripheral blood T and B lymphocytes, Blood 83:1856–1861.PubMedGoogle Scholar
  165. Zauli, G., Gibellini, D., Milani, D., Mazzoni, M., Borgatti, P., La Placa, M., and Capitani, S., 1993, Human immunodeficiency virus type 1 tat protein protects lymphoid, epithelial, and neuronal cell lines from death by apoptosis, Cancer Res. 53:4481–4485.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Naoki Oyaizu
    • 1
  • Savita Pahwa
    • 1
  1. 1.Department of PediatricsNorth Shore University Hospital-Cornell University Medical CollegeManhassetUSA

Personalised recommendations