Mucosal Immunity in HIV Infection

  • Herman F. Staats
  • Jerry R. McGhee


The mucosal immune system consists of T and B lymphocytes and accessory cells that function to protect the human body from pathogens and toxins that enter the host via the mucosal surfaces. One major pathogen is human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome (AIDS). By the year 2000, an estimated 35-40 million people will be infected with HIV worldwide (Chin, 1991). The most common mode of transmission of HIV is via sexual contact where HIV-infected cells or possibly cell-free HIV initiate infection at the mucosal surfaces of the vagina or the rectum (Milman and Sharma, 1994). Based on studies performed in the simian immunodeficiency virus (SIV) model, it appears that HIV infection of newborns may be initiated at the mucosal surfaces of the alimentary canal after swallowing HIV during birth (Baba et al., 1994, 1995). In vitro studies suggest that cells residing in mucosal tissues may be the first cells to become infected with HIV after exposure at the mucosal surface (Batman et al., 1994). The mucosal immune system is therefore in a pivotal position to play a key role in resistance to as well as contribute to the morbidity associated with HIV infection. This chapter will introduce basic concepts of T-helper cell regulation of the mucosal antibody response, followed by a discussion of the effects of HIV infection on the mucosal immune system and conclude with current strategies being employed to prevent HIV infection at mucosal surfaces.


Human Immunodeficiency Virus Human Immunodeficiency Virus Infection Mucosal Immunity Female Reproductive Tract Mucosal Immune System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous, 1994, Immunologic markers of AIDS progression: Consistency across five HIV-infected cohorts, AIDS 8:911-921.Google Scholar
  2. Ayehunie, S., Groves, R. W., Bruzzese, A. M., Ruprecht, R. M., Kupper, T. S., and Langhoff, E., 1995, Acutely infected Langerhans cells are more efficient than T cells in disseminating HIV type 1 to activated T cells following a short cell-cell contact, AIDS Res. Hum. Retrovir. 11:877–884.PubMedCrossRefGoogle Scholar
  3. Baba, T. W., Koch, J., Mittler, E. S., Greene, M., Wyand, M., Penninck, D., and Ruprecht, R. M., 1994, Mucosal infection of neonatal rhesus monkeys with cell-free SIV, AIDS Res. Hum. Retrovir. 10:351–357.PubMedCrossRefGoogle Scholar
  4. Baba, T. W., Jeong, Y. S., Penninck, D., Bronson, R., Greene, M. F., and Ruprecht, R. M., 1995, Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques, Science 267:1820–1825.PubMedCrossRefGoogle Scholar
  5. Batman, P. A., Fleming, S. C., Sedgwick, P. M., MacDonald, T. T., and Griffin, G. E., 1994, HIV infection of human fetal intestinal expiant cultures induces epithelial cell proliferation, AIDS 8:161–167.PubMedCrossRefGoogle Scholar
  6. Beagley, K. W., Eldridge, J. H., Kiyono, H., Everson, M. P., Koopman, W. J., Honjo, T., and McGhee, J. R., 1988, Recombinant murine IL-5 induces high rate IgA synthesis in cycling IgA-positive Peyer’s patch B cells, J. Immunol. 141:2035–2042.PubMedGoogle Scholar
  7. Beagley, K. W., Eldridge, J. H., Lee, F., Kiyono, H., Everson, M. P., Koopman, W. J., Hirano, T., Kishimoto, T., and McGhee, J. R., 1989, Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA-committed B cells, J. Exp. Med. 169:2133–2148.PubMedCrossRefGoogle Scholar
  8. Beagley, K. W., Eldridge, J. H., Aicher, W. K., Mestecky, J., DiFabio, S., Kiyono, H., and McGhee, J. R., 1991, Peyer’s patch B cells with memory cell characteristics undergo terminal differentiation within 24 hours in response to interleukin-6, Cytokine 3:107–116.PubMedCrossRefGoogle Scholar
  9. Belec, L., Dupre, T., Prazuck, T., Tevibenissan, C., Kanga, J. M., Pathey, O., Lu, X. S., and Pillot, J., 1995a, Cervicovaginal overproduction of specific IgG to human immunodeficiency virus (HIV) contrasts with normal or impaired IgA local response in HIV infection, J. Infect. Dis. 172:691–697.PubMedCrossRefGoogle Scholar
  10. Belec, L., Meillet, D., Gaillard, O., Prazuck, T., Michel, E., Ekome, J. N., and Pillot, J., 1995b, Decreased cervicovaginal production of both IgA1 and IgA2 subclasses in women with AIDS, Clin. Exp. Immunol. 101:100–106.PubMedCrossRefGoogle Scholar
  11. Benson, E. B., and Strober, W., 1988, Regulation of IgA secretion by T cell clones derived from the human gastrointestinal tract, J. Immunol. 140:1874–1882.PubMedGoogle Scholar
  12. Bernstein, J. M., 1992, Mucosal immunology of the upper respiratory tract, Respiration 59(Suppl. 3):3–13.PubMedCrossRefGoogle Scholar
  13. Blauvelt, A., and Katz, S. L., 1995, The skin as target, vector, and effector organ in human immunodeficiency virus disease, J. Invest. Dermatol. 105(1 Suppl.):S122–S126.CrossRefGoogle Scholar
  14. Bond, M. W., Shrader, B., Mosmann, T. R., and Coffman, R. L., 1987, A mouse T cell product that preferentially enhances IgA production. II. Physiochemical characterization, J. Immunol. 139:3691–3696.PubMedGoogle Scholar
  15. Brandtzaeg, P., 1994, Distribution and characterization of mucosal immunoglobulin-producing cells, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, S. Warren, J. R. McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, pp. 251–262.Google Scholar
  16. Brandtzaeg, P., Krajci, P., Lamm, M. E., and Kaetzel, C. S., 1994, Epithelial and hepatobiliary transport of polymeric immunoglobulins, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, S. Warren, J. R. McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, p. 113.Google Scholar
  17. Brown, W. R., Newcomb, R. W., and Ishizaka, K., 1970, Proteolytic degradation of exocrine and serum immunoglobulins, J. Clin. Invest. 49:1374–1380.PubMedCrossRefGoogle Scholar
  18. Bukawa, H., Sekigawa, K. I., Hamajima, K., Fukushima, J., Yamada, Y., Kiyono, H., and Okuda, K., 1995, Neutralization of HIV-1 by secretory IgA induced by oral immunization with a new macromolecular multicomponent peptide vaccine candidate, Nature Med. 1:681–685.PubMedCrossRefGoogle Scholar
  19. Burnett, P. R., VanCott, T. C., Polonis, V. R., Redfield, R. R., and Birx, D. L., 1994, Serum IgA-mediated neutralization of HIV type 1, J. Immunol. 152:4642–4648.PubMedGoogle Scholar
  20. Butcher, E. C., Rouse, R. V., Coffman, R. L., Nottenburg, C. N., Hardy, R. R., and Weissman, I. L., 1982, Surface phenotype of Peyer’s patch germinal center cells: Implications for the role of germinal centers in B cell differentiation, J. Immunol 129:2698–2707.PubMedGoogle Scholar
  21. Carson, P. J., Schut, R. L., Simpson, M. L., O’Brien, J., and Janoff, E. N., 1995, Antibody class and subclass responses to pneumococcal polysaccharides following immunization of human immunodeficiency virus-infected patients, J. Infect. Dis. 172:340–345.PubMedCrossRefGoogle Scholar
  22. Chatfield, S. N., Charles, I. G., Makoff, A. J., Oxer, M. D., Dougan, G., Pickard, D., Slater, D., and Fairweather, N. F., 1992, Use of the nirB promoter to direct stable expression of heterologous antigen in Salmonella oral vaccines strains: development of a single dose oral tetanus vaccine. Biotechnology 10:888–892.PubMedCrossRefGoogle Scholar
  23. Chin, J., 1991, Global estimates of HIV infection and AIDS cases, AIDS 5(Suppl. 2):557–561.Google Scholar
  24. Coffman, R. L., Shrader, B., Carty, J., Mosmann, T. R., and Bond, M. W., 1987, A mouse T cell product that preferentially enhances IgA production. I. Biologic characterization, J. Immunol. 139:3685–3690.PubMedGoogle Scholar
  25. Coffman, R. L., Lebman, D. A., and Shrader, B., 1989, Transforming growth factor β specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes, J. Exp. Med. 170:1039–1044.PubMedCrossRefGoogle Scholar
  26. Conley, M. E., and Delacroix, D. L., 1987, Intravascular and mucosal immunoglobulin A: Two separate but related systems of immune defense? Ann. Intern. Med. 106:892–899.PubMedCrossRefGoogle Scholar
  27. Coogan, M. M., Sweet, S. P., and Challacombe, S. J., 1994, Immunoglobulin A (IgA), IgA1, and IgA2 antibodies to Candida albicans in whole and parotid saliva in human immunodeficiency virus infection and AIDS, Infect. Immun. 62:892–896.PubMedGoogle Scholar
  28. Czinn, S. J., Cai, A., and Nedrud, J. G., 1993, Protection of germ-free mice from infection by Helicobacter felis after active oral or passive IgA immunization, Vaccine 11:637–642.PubMedCrossRefGoogle Scholar
  29. Dalton, D. K., Pitts-Meek, S., Keshav, S., Figari, I. S., Bradley, A., and Steward, T. A., 1993, Multiple defects of immune cell function in mice with disrupted interferon-7 genes, Science 259:1739–1742.PubMedCrossRefGoogle Scholar
  30. DeFrance, T., Vanbervliet, B., Briére, F., Durand, L., Rousset, F., and Banchereau, J., 1992, Interleukin 10 and transforming growth factor β cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A, J. Exp. Med. 175:671–682.PubMedCrossRefGoogle Scholar
  31. De Maria, A., Cirillo, C., and Moretta, L., 1994, Occurrence of human immunodeficiency virus type 1 (HIV-1)-specific cytolytic T cell activity in apparently uninfected children born to HIV-1-infected mothers, J. Infect. Dis. 170:1296–1299.PubMedCrossRefGoogle Scholar
  32. Deshaw, M., and Pirofski, L. A., 1995, Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV+ and HIV individuals, Clin. Exp. Immunol. 99:425–432.PubMedCrossRefGoogle Scholar
  33. Elson, C. O., Heck, J. A., and Strober, W., 1979, T-cell regulation of murine IgA synthesis, J. Exp. Med. 149:632–643.PubMedCrossRefGoogle Scholar
  34. Eriksson, K., Kilander, A., Hagberg, L., Norkrans, G., Holmgren, J., and Czerkinsky, C., 1995, Virus-specific antibody production and polyclonal B-cell activation in the intestinal mucosa of HIV-infected individuals, AIDS 9:695–700.PubMedCrossRefGoogle Scholar
  35. Fiorentino, D. R., Bond, M. W., and Mosmann, T. R., 1989, Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones, J. Exp. Med. 170:2081–2095.PubMedCrossRefGoogle Scholar
  36. Fujihashi, K., McGhee, J. R., Lue, C., Beagley, K. W., Taga, T., Hirano, T., Kishimoto, T., Mestecky, J., and Kiyono, H., 1991, Human appendix B cells naturally express receptors for an respond to interleukin 6 with selective IgA1 and IgA2 synthesis, J. Clin. Invest. 88:248–252.PubMedCrossRefGoogle Scholar
  37. Furuta, Y., Eriksson, K., Svennerholm, B., Fredman, P., Horal, P., Jeansson, S., Vahlne, A., Holmgren, J., and Czerkinsky, C., 1994, Infection of vaginal and colonic epithelial cells by the human immunodeficiency virus type 1 is neutralized by antibodies raised against conserved epitopes in the envelope glycoprotein gp120, Proc. Natl. Acad. Sci. USA 91:12559–12563.PubMedCrossRefGoogle Scholar
  38. Grossetete, B., Viard, J. P., Lehuen, A., Bach, J. F., and Monteiro, R. C., 1995, Impaired Fc alpha receptor expression is linked to increased immunoglobulin A levels and disease progression in HIV-1-infected patients, AIDS 9:229–234.PubMedGoogle Scholar
  39. Gurram, M., Chirmule, N., Wang, X. P., Ponugoti, N., and Pahwa, S., 1994, Increased spontaneous secretion of interleukin 6 and tumor necrosis factor alpha by peripheral blood lymphocytes of human immunodeficiency virus-infected children, Pediatr. Infect. Dis. J. 13:496–501.PubMedGoogle Scholar
  40. Harriman, G. R., Kunimoto, D. Y., Elliott, J. F., Paetkau, V., and Strober, W., 1988, The role of IL-5 in IgA B cell differentiation, J. Immunol. 140:3033–3039.PubMedGoogle Scholar
  41. Heath, S. L., Tew, J. G., Tew, J. G., Szakal, A. K., and Burton, G. R., 1995, Follicular dendritic cells and human immunodeficiency virus infection, Nature 377:740–744.PubMedCrossRefGoogle Scholar
  42. Hocini, H., Barra, A., Belec, L., Iscaki, S., Preudhomme, J. L., Pillot, J., and Bouvet, J. P., 1995, Systemic and secretory humoral immunity in the normal human vaginal tract, Scand. J. Immunol. 42:269–274.PubMedCrossRefGoogle Scholar
  43. Islam, K. B., Nilsson, L., Sideras, P., Hammarström, L., and Smith, C. I. E., 1991, TGF-β1 induces germ-line transcripts of both IgA subclasses in human B lymphocytes, Int. Immunol. 3:1099–1160.PubMedCrossRefGoogle Scholar
  44. Janoff, E. N., Jackson, S., Wahl, S. M., Thomas, K., Peterman, J. H., and Smith, P. D., 1994, Intestinal mucosal immunoglobulins during human immunodeficiency virus type 1 infection, J. Infect. Dis. 170:299–307.PubMedCrossRefGoogle Scholar
  45. Janoff, E. N., Wahl, S. M., Thomas, K., and Smith, P. D., 1995, Modulation of human immunodeficiency virus type 1 infection of human monocytes by IgA, J. Infect. Dis. 172:855–858.PubMedCrossRefGoogle Scholar
  46. Jindal, K. K., Trillo, A., Bishop, G., Hirsch, D., and Cohen, A., 1991, Crescentic IgA nephropathy as a manifestation of human immune deficiency virus infection, Am. J. Nephrol. 11:147–150.PubMedCrossRefGoogle Scholar
  47. Jones, P. P., and Cebra, J. J., 1974, Restriction of gene expression in B lymphocytes and their progeny. III. Endogenous IgA and IgM on the membranes of different plasma cell precursors, J. Exp. Med. 140:966–976.PubMedCrossRefGoogle Scholar
  48. Kameoka, M., Nishino, Y., Matsuo, K., Ohara, N., Kimura, T., Yamazaki, A., Yamada, T., and Ikuta, K., 1994, Cytotoxic T lymphocyte response in mice induced by a recombinant BCG vaccination which produces an extracellular alpha antigen that fused with the human immunodeficiency virus type 1 envelope immunodominant domain in the V3 loop, Vaccine 12:153–158.PubMedCrossRefGoogle Scholar
  49. Kassa, M., Comby, E., Lemeteil, D., Brasseur, P., and Ballet, J. J., 1991, Characterization of anti-Cryptosporidium IgA antibodies in sera from immunocompetent individuals and HIV-infected patients, J. Protozool. 38:179S–180S.PubMedGoogle Scholar
  50. Kato, T., and Owen, R. L., 1994, Structure and function of intestinal mucosal epithelium, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, S. Warren, J. R. McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, p. 11.Google Scholar
  51. Katz, A., Bargman, J. M., Miller, D. C., Guo, J. W., Ghali, V. S., and Schoeneman, M. J., 1992, IgA nephritis in HIV-positive patients: A new HIV-associated nephropathy? Clin. Nephrol. 38:61–68.PubMedGoogle Scholar
  52. Kawanishi, H., Saltzman, L., and Strober, W., 1983a, Mechanisms regulating IgA class-specific immunoglobulin production in murine gut-associated lymphoid tissues. I. T cells derived from Peyer’s patches that switch sIgM B cells to slgA B cells in vitro, J. Exp. Med. 157:433–450.PubMedCrossRefGoogle Scholar
  53. Kawanishi, H., Saltzman, L., and Strober, W., 1983b, Mechanisms regulating IgA class-specific immunoglobulin production in murine gut-associated lymphoid tissues. II. Terminal differentiation of postswitch sIgA-bearing Peyer’s patch B cells, J. Exp. Med. 158:649–669.PubMedCrossRefGoogle Scholar
  54. Kawanishi, H., Ozato, K., and Strober, W., 1985, The proliferative response of cloned Peyer’s patch switch T-cells to syngeneic and allogeneic stimuli, J. Immunol. 134:3586–3591.PubMedGoogle Scholar
  55. Kett, K., Brandtzaeg, P., Radl, J., and Haaijman, J. F., 1986, Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues, J. Immunol. 136:3631–3635.PubMedGoogle Scholar
  56. Kilian, M., and Russell, M. W., 1994, Function of mucosal immunoglobulins, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, S. Warren, J. R. McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, p. 127.Google Scholar
  57. Kitani, A., and Strober, W., 1994, Differential regulation of Cal and Ca2 germ-line and mature mRNA transcripts in human peripheral blood B cells, J. Immunol. 153:1466–1477.PubMedGoogle Scholar
  58. Kiyono, H., McGhee, J. R., Mosteller, L. M., Eldridge, J. H., Koopman, W. J., Kearney, J. F., and Michalek, S. M., 1982, Murine Peyer’s patch T-cell clones. Characterization of antigen-specific helper T cells for immunoglobulin A responses, J. Exp. Med. 156:1115–1130.PubMedCrossRefGoogle Scholar
  59. Kiyono, H., Cooper, M. D., Kearney, J. F., Mosteller, L. M., Michalek, S. M., Koopman, W. J., and McGhee, J. R., 1984, Isotype-specificity of helper T cell clones. Peyer’s patch Th cells preferentially collaborate with mature IgA B cells for IgA responses, J. Exp. Med. 159:798–811.PubMedCrossRefGoogle Scholar
  60. Kiyono, H., Mosteller-Barnum, L. M., Pitts, A. M., Williamson, S. I., Michalek, S. M., and McGhee, J. R., 1985, Isotype-specific immunoregulation: IgA binding factors produced by Fcβ receptor+ T cell hybridomas regulate IgA responses, J. Exp. Med. 161:731–747.PubMedCrossRefGoogle Scholar
  61. Kopf, M., LeGros, G., Bachmann, M., Lamers, M. C., Bluethmann, H., and Köhler, G., 1993, Disruption of the murine IL-4 gene blocks Th2 cytokine responses, Nature 362:245–248.PubMedCrossRefGoogle Scholar
  62. Koup, R. A., Safrit, J. T., Cao, Y., Andrews, C. A., McLeod, G., Borkowsky, W., Farthing, C., and Ho, D. D., 1994, Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome, J. Virol. 68:4650–4655.PubMedGoogle Scholar
  63. Kozlowski, P. A., and Jackson, S., 1992, Serum IgA subclasses and molecular forms in HIV infection: Selective increases in monomer and apparent restriction of the antibody response to IgA1 antibodies mainly directed at env glycoproteins, AIDS Res. Hum. Retrovir. 8:1773–1780.PubMedCrossRefGoogle Scholar
  64. Kozlowski, P. A., Chen, D., Eldridge, J. H., and Jackson, S., 1994, Contrasting IgA and IgG neutralizing capacities and responses to HIV type 1 gp120 V3 loop in HIV-infected individuals, AIDS Res. Hum. Retrovir. 10:813–822.PubMedGoogle Scholar
  65. Kozlowski, P. A., Black, P. B., Shen, L., and Jackson, S., 1995, High prevalence of serum IgA HIV-1 infection-enhancing antibodies in HIV-infected persons. Masking by IgG, J. Immunol. 154:6163–6173.PubMedGoogle Scholar
  66. Kraehenbuhl, J. P., and Neutra, M. R., 1992, Molecular and cellular basis for immune protection of mucosal surfaces, Physiol. Rev. 72:853–879.PubMedGoogle Scholar
  67. Kühn, R., Rajewsky, K., and Müller, W., 1991, Generation and analysis of interleukin-4 deficient mice, Science 254:707–710.PubMedCrossRefGoogle Scholar
  68. Kuper, C. F., Koornstra, P. J., Hameleers, D. M. H., Biewenga, J., Spit, B. J., Duijvestijn, A. M., van Breda Vriesman, P. J. C., and Sminia, T., 1992, The role of nasopharyngeal lymphoid tissue, Immunol. Today 13:219–224.PubMedCrossRefGoogle Scholar
  69. Kutteh, W. H., and Mestecky, J., 1994, Secretory immunity in the female reproductive tract, Am. J. Reprod. Immunol. 31:40–46.PubMedCrossRefGoogle Scholar
  70. Lagranderie, M., Murray, A., Gicquel, B., Leclerc, C., and Gheorghiu, M., 1993, Oral immunization with recombinant BCG induces cellular and humoral immune responses against the foreign antigen, Vaccine 11:1283–1290.PubMedCrossRefGoogle Scholar
  71. Lebman, D. A., and Coffman, R. L., 1988, The effects of IL-4 and IL-5 on the IgA responses by murine Peyer’s patch B cell subpopulations, J. Immunol. 141:2050–2056.PubMedGoogle Scholar
  72. Lebman, D. A., and Coffman, R. L., 1994, Cytokines in the mucosal immune system, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, J. R. McGhee, S. Warren, and J. Bienenstock, eds.), Academic Press, San Diego, p. 243.Google Scholar
  73. Lebman, D. A., Lee, F. D., and Coffman, R. L. 1990a, Mechanism for transforming growth factor β and IL-2 enhancement of IgA expression in lipopolysaccharide-stimulated B cell cultures, J. Immunol. 144:952–959.PubMedGoogle Scholar
  74. Lebman, D. A., Lee, F. D., and Coffman, R. L., 1990b, Molecular characterization of germ-line immunoglobulin A transcripts produced during transforming growth factor type β-induced isotype switching, Proc. Natl. Acad. Sci. USA 87:3962–3966.PubMedCrossRefGoogle Scholar
  75. Lee, C. K., Weltzin, R., Soman, G., Georgakopoulos, K. M., Houle, D. M., and Monath, T. P., 1994, Oral administration of polymeric immunoglobulin A prevents colonization with Vibrio cholerae in neonatal mice, Infect. Immun. 62:887–891.PubMedGoogle Scholar
  76. Lehner, T., Bergmeier, L. A., Panagiotidi, C., Tao, L., Brookes, R., Klavinskis, L. S., Walker, R., Walker, J., Ward, R. G., Hussain, L., Gearing, A. J. H., and Adams, S. E., 1992, Induction of mucosal and systemic immunity to a recombinant simian immunodeficiency viral protein, Science 258:1365–1369.PubMedCrossRefGoogle Scholar
  77. Lehner, T., Tao, L., Panagiotidi, C., Klavinskis, L. S., Brookes, R., Hussain, L., Meyers, N., Adams, S. E., Gearing, A. J., and Bergmeier, L. A., 1994, Mucosal model of genital immunization in male rhesus macaques with a recombinant simian immunodeficiency virus p27 antigen, J. Virol. 68:1624–1632.PubMedGoogle Scholar
  78. Levy, E., Margalith, M., Sarov, B., Sarov, I., Rinaldo, C. R., Detels, R., Phair, J., Kaslow, R., Ginzburg, H., and Saah, A. J., 1991, Cytomegalovirus IgG and IgA serum antibodies in a study of HIV infection and HIV related diseases in homosexual men, J. Med. Virol. 35:174–179.PubMedCrossRefGoogle Scholar
  79. Lewis, D. J., Gilks, C. R., Ojoo, S., Castello-Branco, L. R., Dougan, G., Evans, M. R., McDermott, S., and Griffin, G. E., 1994, Immune response following oral administration of cholera toxin B subunit to HIV-1-infected UK and Kenyan subjects, AIDS 8:779–785.PubMedCrossRefGoogle Scholar
  80. Lim, S. G., Condez, A., and Poulter, L. W., 1993, Mucosal macrophage subsets of the gut in HIV: Decrease in antigen-presenting cell phenotype, Clin. Exp. Immunol. 92:442–447.PubMedCrossRefGoogle Scholar
  81. Liu, Y.-J., Johnson, G. D., Gordon, J., and MacLennan, I. C. M., 1992, Germinal centers in T-cell dependent antibody responses, Immunol. Today 13:17–21.PubMedCrossRefGoogle Scholar
  82. London, S.D., 1994, Cytotoxic lymphocytes in mucosal effector sites, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, S. Warren, J. R. McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, p. 325.Google Scholar
  83. Lubeck, M. D., Natuk, R. J., Chengalvala, M., Chanda, P. K., Murthy, K. K., Murthy, S., Mizutani, S., Lee, S. G., Wade, M. S., Bhat, B. M., Dheer, S. K., Eichberg, J. W., Davis, A. R., and Hung, P. P., 1994, Immunogenicity of recombinant adenovirus-human immunodeficiency virus vaccines in chimpanzees following intranasal administration, AIDS Res. Hum. Retrovir. 10:1443–1449.PubMedCrossRefGoogle Scholar
  84. Lutzker, S., and Alt, F. W., 1988, Structure and expression of germ line immunoglobulin G2b transcripts, Mol. Cell. Biol. 8:1849–1852.PubMedGoogle Scholar
  85. Lutzker, S., Rothman, P., Pollock, R., Coffman, R. L., and Alt, F. W., 1988, Mitogen and IL-4 regulated expression of germ-line IgG2b transcripts: Evidence for directed heavy chain class switching, Cell 53:177–184.PubMedCrossRefGoogle Scholar
  86. Lyamuya, E. F., Maselle, S. Y., and Matre, R., 1994, Serum immunoglobulin profiles in asymptomatic HIV-1 seropositive adults and in patients with AIDS in Dar es Salaam, Tanzania, East Afr. Med. J. 71:24–28.PubMedGoogle Scholar
  87. McGhee, J. R., Mestecky, J., Dertzbaugh, M. T., Eldridge, J. H., Hirasawa, M., and Kiyono, H., 1992, The mucosal immune system: From fundamental concepts to vaccine development, Vaccine 10:75–88.PubMedCrossRefGoogle Scholar
  88. Marinaro, M., Staats, H. F., Hiroi, T., Jackson, R. J., Coste, M., Boyaka, P. N., Okahashi, N., Yamamoto, M., Kiyono, H., Bluethmann, H., Fujihashi, K., and McGhee, J. R., 1995, Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4, J. Immunol. 155:4621–4629.PubMedGoogle Scholar
  89. Marx, P. A., Compans, R. W., Gettie, A., Staas, J. K., Gilley, R. M., Mulligan, M. J., Yamschikov, G. V., Chen, D., and Eldridge, J. H., 1993, Protection against vaginal SIV transmission with microencapsulated vaccine, Science 260:1323–1327.PubMedCrossRefGoogle Scholar
  90. Mayer, L., and Shlien, R., 1987, Evidence for function of Ia molecules on gut epithelial cells in man, J. Exp. Med. 166:1471–1483.PubMedCrossRefGoogle Scholar
  91. Mayer, L., Posnett, D. N., and Kunkel, H. G., 1985, Human malignant T-cells capable of inducing an immunoglobulin class switch, J. Exp. Med. 161:134–144.PubMedCrossRefGoogle Scholar
  92. Mayer, L., Kwan, S. P., Thompson, C., Ko, H. S., Chiorazzi, N., Waldmann, T., and Rosen, F., 1986, Evidence for a defect in “switch” T cells in patients with immunodeficiency and hyperimmunoglobulin M, N. Engl. J. Med. 314:409–413.PubMedCrossRefGoogle Scholar
  93. Mega, J., McGhee, J. R., and Kiyono, H., 1992, Cytokine-and Ig-producing cells in mucosal effector tissues: Analysis of IL-5 and IFN-γ producing T cells, T cell receptor expression, and IgA plasma cells from mouse salivary gland-associated tissues, J. Immunol. 148:2030–2039.PubMedGoogle Scholar
  94. Mestecky, J., and Jackson, S., 1994, Reassessment of the impact of mucosal immunity in infection with the human immunodeficiency virus (HIV) and design of relevant vaccines, J. Clin. Immunol. 14:259–272.PubMedCrossRefGoogle Scholar
  95. Mestecky, J., and McGhee, J. R., 1987, Immunoglobulin A (IgA): Molecular and cellular interactions involved in IgA biosynthesis and immune response, Adv. Immunol. 40:153–245.PubMedCrossRefGoogle Scholar
  96. Mestecky, J., Abraham, R., and Ogra, P. L., 1994, Common mucosal immune system and strategies for the development of vaccine effective at the mucosal surface, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, S. Warren, J. R. McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, p. 357.Google Scholar
  97. Michetti, P., Mahan, M. J., Slauch, J. M., Mekalanos, J. J., and Neutra, M. R., 1992, Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium, Infect. Immun. 60:1786–1792.Google Scholar
  98. Miller, C. J., Alexander, N. J., Sutjipto, S., Lackner, A. A., Hendrickx, A. G., Gettie, A., Lowenstine, L. J., Jennings, M., and Marx, P. A., 1989, Genital mucosal transmission of simian immunodeficiency virus: Animal model for heterosexual transmission of human immunodeficiency virus, J. Virol. 63:4277–4284.PubMedGoogle Scholar
  99. Miller, C. J., Kang, D. W., Marthas, M., Moldoveanu, Z., Kiyono, H., Marx, P., Eldridge, J. H., Mestecky, J., and McGhee, J. R., 1992a, Genital secretory immune response to chronic simian immunodeficiency virus (SIV) infection: A comparison between intravenously and genitally inoculated rhesus macaques, Clin. Exp. Immunol 88:520–526.PubMedCrossRefGoogle Scholar
  100. Miller, C. J., McChesney, M., and Moore, P. F., 1992b, Langerhans cells, macrophages and lymphocyte subsets in the cervix and vagina of rhesus macaques, Lab. Invest. 67:628–634.PubMedGoogle Scholar
  101. Miller, C. J., Marthas, M., Torten, J., Alexander, N. J., Moore, J. P., Doncel, G. F., and Hendrickx, A. G., 1994a, Intravaginal inoculation of rhesus macaques with cell-free simian immunodeficiency virus results in persistent or transient viremia, J. Virol. 68:6391–6400.PubMedGoogle Scholar
  102. Miller, C. J., Vogel, P., Alexander, N. J., Nandekar, S., Hendrickx, A. G., and Marx, P. A., 1994b, Pathology and localization of simian immunodeficiency virus in the reproductive tract of chronically infected male rhesus macaques, Lab. Invest. 70:255–262.PubMedGoogle Scholar
  103. Milman, G., and Sharma, O., 1994, Mechanisms of HIV/SIV mucosal transmission, AIDS Res. Hum. Retrovir. 10:1305–1312.PubMedCrossRefGoogle Scholar
  104. Morin, M. J., Warner, A., and Fields, B. N., 1994, A pathway for entry of reoviruses into the host through M cells of the respiratory tract, J. Exp. Med. 180:1523–1527.PubMedCrossRefGoogle Scholar
  105. Morrow, C. D., Porter, D. C., Ansardi, D. C., Moldoveanu, Z., and Fultz, P. N., 1994, New approaches for mucosal vaccines for AIDS: Encapsidation and serial passages of poliovirus replicons that express HIV-1 proteins on infection, AIDS Res. Hum. Retrovir. 10(Suppl. 2):S61–S66.PubMedGoogle Scholar
  106. Mosmann, T. R., and Coffman, R. L., 1987, Two types of mouse helper T-cell clone, Immunol. Today 8:223–227.CrossRefGoogle Scholar
  107. Mosmann, T. R., and Coffman, R. L., 1989, Th1 and Th2 cells: Different patterns of lymphokine secretion lead to different functional properties, Annu. Rev. Immunol. 7:145–173.PubMedCrossRefGoogle Scholar
  108. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., and Coffman, R. L., 1986, Two types of murine helper T cell clone. 1. Definition according to profiles of lymphokine activities and secreted proteins, J. Immunol. 136:2348–2357.PubMedGoogle Scholar
  109. Muller, F., Froland, S. S., Hvatum, M., Radl, J., and Brandtzaeg, P., 1991, Both IgA subclasses are reduced in parotid saliva from patients with AIDS, Clin. Exp. Immunol. 83:203–209.PubMedCrossRefGoogle Scholar
  110. Murray, P. D., McKenzie, D. T., Swain, S. L., and Kagnoff, M. F., 1987, Interleukin 5 and interleukin 4 produced by Peyer’s patch T-cells selectively enhance immunoglobulin A expression, J. Immunol. 139:2669–2674.PubMedGoogle Scholar
  111. Nardelli, B., Haser, P. B., and Tarn, J. P., 1994, Oral administration of an antigenic synthetic lipopeptide (MAP-P3C) evokes salivary antibodies and systemic humoral and cellular responses, Vaccine 12:1335–1339.PubMedCrossRefGoogle Scholar
  112. Nehete, P. N., Casement, K. S., Arlinghaus, R. B., and Sastry, K. H., 1995, Studies on in vivo induction of HIV-1 envelope-specific cytotoxic T lymphocytes by synthetic peptides from the V3 loop region of HIV-1 IIIB gp120, Cell. Immunol. 160:217–223.PubMedCrossRefGoogle Scholar
  113. Nilsson, L., Islam, K. B., Olaffsson, O., Zalcberg, I. I., Samakoulis, C., Hammarström, L., Smith, C. I. E., and Sideras, P., 1991, Structure of TGF-β1 induced human immunoglobulin Cal and Ca2 germ-line transcripts, Int. Immunol. 3:1107–1115.PubMedCrossRefGoogle Scholar
  114. Okahashi, N., Yamamoto, M., VanCott, J. L., Chatifield, S. N., Roberts, M., Bluethmann, H., Hiroi, T., Kiyono, H., and McGhee, J. R., 1996, Mucosal immunity in IL-4 knockout mice: Oral administration of recombinant Salmonella or cholera toxin elicits CD4+ Th2 cells producing IL-6 and IL-10 and IgA responses, Infect. Immun. 64:1516–1525.PubMedGoogle Scholar
  115. Opstad, N. L., Daley, C. L., Thurn, J. R., Rubins, J. B., Merrifield, C., Hopewell, P. C., and Janoff, E. N., 1995, Impact of Streptococcus pneumoniae bacteremia and human immunodeficiency virus type 1 on oral mucosal immunity, J. Infect. Dis. 172:566–570.PubMedCrossRefGoogle Scholar
  116. Perra, M. T., Turno, F., and Sirigu, P., 1994, Human urethral epithelium: Immunohistochemical demonstration of secretory IgA, Arch. Androl. 32:227–233.PubMedCrossRefGoogle Scholar
  117. Phillips, A. N., Sabin, C. A., Elford, J., Bofill, M., Lee, C. A., and Janossy, G., 1993, CD8 lymphocyte counts and serum immunoglobulin A levels early in HIV infection as predictors of CD4 lymphocyte depletion during 8 years of follow-up, AIDS 7:975–980.PubMedCrossRefGoogle Scholar
  118. Quayle, A. J., Pudney, J., Munoz, D. E., and Anderson, D. J., 1994, Characterization of T lymphocytes and antigen-presenting cells in the murine male urethra, Biol. Reprod. 51:809–820.PubMedCrossRefGoogle Scholar
  119. Quesnel, A., Pozzetto, B., Moja, P., Grattard, F., Lucht, F. R., Touraine, J. L., Gaudin, O. G., and Genin, C., 1993, Prognostic value of serum immunoglobulin A antibodies to pol gene products during HIV-1 infection, Clin. Exp. Immunol 91:237–240.PubMedCrossRefGoogle Scholar
  120. Quesnel, A., Moja, P., Blanche, S., Griscelli, C., and Genin, C., 1994a, Early impairment of gut mucosal immunity in HIV-1-infected children, Clin. Exp. Immunol 97:380–385.PubMedCrossRefGoogle Scholar
  121. Quesnel, A., Moja, P., Lucht, R., Touraine, J. L., Pozzetto, B., and Genin, C., 1994b, Is there IgA of gut mucosal origin in the serum of HIV-1 infected patients? Gut 35:803–808.PubMedCrossRefGoogle Scholar
  122. Ramsay, A. J., Husband, A. J., Ramshaw, I. A., Bao, S., Matthaei, K. L., Kohler, G., and Kopf, M., 1994, The role of interleukin-6 in mucosal IgA antibody responses in vivo, Science 264:561–563.PubMedCrossRefGoogle Scholar
  123. Rautonen, J., Rautonen, N., Martin, N. L., Philip, R., and Wara, D. W., 1991, Serum interleukin-6 concentrations are elevated and associated with elevated tumor necrosis factor-alpha and immunoglobulin G and A concentrations in children with HIV infection, AIDS 5:1319–1325.PubMedCrossRefGoogle Scholar
  124. Rautonen, J., Rautonen, N., Martin, N. L., and Wara, D. W., 1994, HIV type 1 Tat protein induces immunoglobulin and interleukin 6 synthesis by uninfected peripheral blood mononuclear cells. AIDS Res. Hum. Retrovir. 10:781–785.PubMedGoogle Scholar
  125. Reka, S., Garro, M. L., and Kotier, D. P., 1994, Variation in the expression of human immunodeficiency virus RNA and cytokine mRNA in rectal mucosa during the progression of infection, Lymphokine Cytokine Res. 13:391–398.PubMedGoogle Scholar
  126. Renegar, K. B., and Small, P., 1991, Passive transfer of local immunity to influenza virus infection by IgA antibody, J. Immunol 146:1972–1978.PubMedGoogle Scholar
  127. Rowland-Jones, S. L., Nixon, D. F., Aldhous, M. C., Gotch, R., Ariyoshi, K., Hallam, N., Kroll, J. S., Froebel, K., and McMichael, A., 1993, HIV-specific cytotoxic T-cell activity in an HIV-exposed but uninfected infant, Lancet 341:860–861.PubMedCrossRefGoogle Scholar
  128. Sandor, M., Gajewski, T., Thorson, J., Kemp, J. D., Fitch, R W., and Hoover, R. G., 1990, CD4+ murine T cell clones that express high levels of immunoglobulin binding belong to the interleukin-4 producing T helper cell type 2 subset, J. Exp. Med. 171:2171–2176.PubMedCrossRefGoogle Scholar
  129. Sastry, K. J., Nehete, P. N., Venkatnarayanan, S., Morkowski, J., Platsoucas, C. D., and Arlinghaus, R. B., 1992, Rapid in vivo induction of HIV-specific CD8+ cytotoxic T lymphocytes by a 15-amino acid unmodified free peptide from the immunodominant V3-loop of GP120, Virology 188:502–509.PubMedCrossRefGoogle Scholar
  130. Schoeneman, M. J., Ghali, V., Lieberman, K., and Reisman, L., 1992, IgA nephritis in a child with human immunodeficiency virus: A unique form of human immunodeficiency virus-associated nephropathy? Pediatr. Nephrol. 6:46–49.PubMedCrossRefGoogle Scholar
  131. Schwartlander, B., Bek, B., Skarabis, H., Koch, J., Burkowitz, J., and Koch, M. A., 1993, Improvement of the predictive value of CD4+ lymphocyte count by beta 2-microglobulin, immunoglobulin A and erythrocyte sedimentation rate. The Multicentre Cohort Study Group, AIDS 7:813–821.PubMedCrossRefGoogle Scholar
  132. Seder, R. A., and Paul, W. E., 1994, Acquisition of lymphokine-producing phenotype by CD4+ T cells, Annu. Rev. Immunol. 12:635–637.PubMedCrossRefGoogle Scholar
  133. Sonoda, E., Matsumoto, R., Hitoshi, Y., Ishii, T., Sugimoto, M., Araki, S., Tominaga, A., Yamaguchi, N., and Takatsu, K., 1989, Transforming growth factor β induces IgA production and acts additively with interleukin 5 for IgA production, J. Exp. Med. 170:1415–1420.PubMedCrossRefGoogle Scholar
  134. Spalding, D. M., Koopman, W. J., Eldridge, J. H., McGhee, J. R., and Steinman, R., 1983, Accessory cells in murine Peyer’s patch: I. Identification and enrichment of function and dendritic cells, J. Exp. Med. 157:1646–1659.PubMedCrossRefGoogle Scholar
  135. Spalding, D. M., Williamson, S. I., Koopman, W. J., and McGhee, J. R., 1984, Preferential induction of polyclonal IgA secretion by murine Peyer’s patch dendritic cell-T cell mixtures, J. Exp. Med. 160:941–946.PubMedCrossRefGoogle Scholar
  136. Sporn, M. B., Roberts, A. B., Wakefield, L. M., and Assoian, R. K., 1986, Transforming growth factor β: Biologic function and chemical structure, Science 233:532–534.PubMedCrossRefGoogle Scholar
  137. Staats, H. R., Jackson, R. J., Marinaro, M., Takahashi, I., Kiyono, H., and McGhee, J. R., 1994, Mucosal immunity to infection with implications for vaccine development, Curr. Opin. Immunol. 6:572–583.PubMedCrossRefGoogle Scholar
  138. Staats, H. R., Nichols, W. G., and Palker, T. J., 1996, Mucosal immunity to HIV-1: Systemic and vaginal antibody responses after intranasal immunization with the HIV-1 C4/V3 peptide TISP10MN(A), J. Immunol. (in press).Google Scholar
  139. Stavnezer, J., Radcliffe, G., Lin, Y. C., Nietupski, J., Berggren, L., Sitia, R., and Severinson, E., 1988, Immunoglobulin heavy-chain switching may be directed by prior induction of transcripts from constant-region genes, Proc. Natl. Acad. Sci. USA 85:7704–7708.PubMedCrossRefGoogle Scholar
  140. Stavnezer-Nordgren, J., and Sirlin, S., 1986, Specificity of immunoglobulin heavy chain switch correlates with activity of germ-line heavy chain genes prior to switching, EMBO J. 5:95–102.PubMedGoogle Scholar
  141. Stover, C. K., de la Cruz, V. R., Fuerst, T. R., Burlein, J. E., Benson, L. A., Bennett, L. T., Bansal, G. P., Young, J. F., Lee, M. H., Hatfull, G. F., Snapper, S. B., Barletta, R. G., Jacobs, W. R., Jr., and Bloom, B. R., 1991, New use of BCG for recombinant vaccines, Nature 351:456–460.PubMedCrossRefGoogle Scholar
  142. Street, N. E., and Mosmann, T. R., 1991, Functional diversity of lymphocytes due to secretion of different cytokine patterns, FASEB J. 5:171–177.PubMedGoogle Scholar
  143. Szakal, A. K., Kosco, M. H., and Tew, J. G., 1989, Microanatomy of lymphoid tissue during humoral immune responses. Structure function relationships, Annu. Rev. Immunol. 7:91–109.PubMedCrossRefGoogle Scholar
  144. Taguchi, T., McGhee, J. R., Coffman, R. L., Beagley, K. W., Eldridge, J. H., Takatsu, K., and Kiyono, H., 1990, Analysis of Th1 and Th2 cells in murine gut-associated tissues. Frequencies of CD4+ and CD8+ T cells that secrete IFN-γ and IL-5, J. Immunol. 145:68–77.PubMedGoogle Scholar
  145. Tew, J. G., Phipps, R. P., and Mandel, T. E., 1980, The maintenance and regulation of humoral immune response. Persisting antigen and the role of follicular antigen-binding dendritic cells as accessory cells, Immunol. Rev. 53:175–201.PubMedCrossRefGoogle Scholar
  146. Underdown, B. J., and Mestecky, J., 1994, Mucosal immunoglobulins, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, S. Warren, J. R. McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, p. 79.Google Scholar
  147. Vajdy, M., Kosco-Vilbois, M. H., Kopf, M., Köhler, G., and Lycke, N., 1995, Impaired mucosal immune responses in interleukin 4-targeted mice. J. Exp. Med. 181:41–53.PubMedCrossRefGoogle Scholar
  148. VanCott, J. L., Staats, H. F., Pascual, D. W., Roberts, M., Chatfield, S., Yamamoto, M., Carter, P. B., Kiyono, H., and McGhee, J. R., 1996a, Regulation of mucosal and systemic antibody responses by T helper cell subsets, macrophages and derived cytokines following oral immunization with live recombinant Salmonella, J. Immunol. 156:1504–1514.PubMedGoogle Scholar
  149. VanCott, J. L., Pascual, D. W., Hone, D. M., Chatfield, S. N., Roberts, M., Fujihashi, K., Kiyono, H., and McGhee, J. R., 1996b, A novel approach to insure safety and immunogenicity of live oral Salmonella vaccine vectors, Immunity (submitted for publication).Google Scholar
  150. Vincent, C., Cozon, G., Zittoun, M., Mellquist, M., Kazatchkine, M. D., Czerkinsky, C., and Revillard, J. P., 1992, Secretory immunoglobulins in serum from human immunodeficiency virus (HIV)-infected patients, J. Clin. Immunol. 12:381–388.PubMedCrossRefGoogle Scholar
  151. Winner, L., 3d, Mack, J., Weltzin, R., Mekalanos, J. J., Kraehenbuhl, J.-P, and Neutra, M. R., 1991, New model for analysis of mucosal immunity: Intestinal secretion of specific monoclonal immunoglobulin A from hybridoma tumors protects against Vibrio cholerae infection, Infect. Immun. 59:977–982.PubMedGoogle Scholar
  152. Xu-Amano, J., Kiyono, H., Jackson, R. J., Staats, H. F., Fujihashi, K., Burrows, P. D., Elson, C. O., Pillai, S., and McGhee, J. R., 1993, Helper T cell subsets for immunoglobulin A responses: Oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa-associated tissues, J. Exp. Med. 178:1309–1320.PubMedCrossRefGoogle Scholar
  153. Xu-Amano, J., Jackson, R. J., Fujihashi, K., Kiyono, H., Staats, H. F., and McGhee, J. R., 1994, Helper Th1 and Th2 cell responses following mucosal or systemic immunization with cholera toxin, Vaccine 12:903–911.PubMedCrossRefGoogle Scholar
  154. Yancopoulos, G. D., DePinho, R. A., Zimmerman, K. A., Lutzker, S. G., Rosenberg, N., and Alt, F. W., 1986, Secondary genomic rearrangement events in pre-B cells. VHDJH replacement by a LINE-1 sequence and directed class switching, EMBO J. 5:3259–3266.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Herman F. Staats
    • 1
  • Jerry R. McGhee
    • 2
  1. 1.Department of Medicine and Center for AIDS ResearchDuke University Medical CenterDurhamUSA
  2. 2.Immunobiology Vaccine Center, Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations