HIV and Complement

  • Manfred P. Dierich
  • Heribert Stoiber
  • Ying-Hua Chen


Avian, feline, murine, and simian RNA tumor viruses are inactivated and lysed by human serum (Fuchs et al., 1988). Activation of complement occurs in the absence of antibody and is initiated by direct binding of C1q (Sölder et al., 1988) to the transmembrane protein of Moloney leukemia virus (Sölder et al., 1989a). Human complement was therefore considered to be the natural defense mechanism against RNA tumor viruses. In this respect it came as a big surprise when human T-cell lymphotropic virus 1, HTLV-1, and later on HIV-1 and HIV-2 were discovered. While human serum inactivated animal retroviruses, it obviously did not do so in the case of human retroviruses. We therefore undertook experiments to elucidate the relationship between human retroviruses and human complement.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Human Immunodeficiency Virus Infection Complement Receptor Follicular Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arthus, L. O., Bess, J. W., Sowder, R. C., Benveniste, R. E., Mann, D. L., Chermann, J. C., and Henderson, L. E., 1992, Cellular proteins bound to immunodeficiency viruses: Implications for pathogenesis and vaccines, Science 258:1935–1938.CrossRefGoogle Scholar
  2. Bakker, L. J., Nottet, H. S. L. M., Vos, N. M., Graaf, L., Van Strijp, J. A. G., Visser, M. R., and Verhoef, J., 1992, Antibodies and complement enhance binding and uptake of HIV-1 by human monocytes, AIDS 6:35–41.PubMedCrossRefGoogle Scholar
  3. Boyer, V., Desgranges, C., Trabaud, M. A., Fischer, E., and Kazatchkine, M. D., 1991, Complement mediates human immunodeficiency virus type 1 infection of a human T cell line in a CD4-and antibody-independent fashion, J. Exp. Med. 173:1151–1158.PubMedCrossRefGoogle Scholar
  4. Boyer, V., Delibrias, C., Noraz, N., Fischer, E., Kazatchkine, M. D., and Desgranges, C., 1992, Complement receptor type 2 mediates infection of the human CD4-negative Raji B-cell line with opsonized HIV, Scand J. Immunol. 26:879–883.CrossRefGoogle Scholar
  5. Brenneman, D. E., Westbrook, G. L., Fitzgerald, S. P., Ennist, D. L., Elkins, K. L., Ruff, M. R., and Pert, C.B., 1988, Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide, Nature 335:639–642.PubMedCrossRefGoogle Scholar
  6. Carini, C., D’Amelio, R., Mezzaroma, I., and Aiuti, F., 1987a, Detection and characterization of circulating immune complexes in HIV-related diseases, Diagn. Clin. Immunol. 5:135–139.PubMedGoogle Scholar
  7. Carini, C., Mezzaroma, I., Scano, G., D’Amelio, R., Matricardi, P., and Aiuti, F., 1987b, Characterization of specific immune complexes in HIV-related disorders, Scand. J. Immunol. 26:21–28.PubMedCrossRefGoogle Scholar
  8. Carini, C., Perricone, R., and Fratazzi, C., 1989, Complement activation is associated with the presence of specific human immunodeficiency virus (HIV)-anti-HIV immune complexes in patients with acquired immunodeficiency syndrome-related complex or lymphoadenopathy syndrome, Scand J. Immunol. 30:347–353.PubMedCrossRefGoogle Scholar
  9. Chen, Y. H., Ebenbichler, C., Vornhagen, R., Schulz, T. F., Böck, G., Steindl, F., Katinger, H., and Dierich, M. P., 1992, HIV-1 gp41 contains two sites for interaction with several proteins on the helper T-lymphoid cell line, H9, AIDS 6:533–539.PubMedCrossRefGoogle Scholar
  10. Chen, Y. H., Böck, G., Vornhagen, R., Steindl, F., Katinger, H., and Dierich, M. P., 1993a, HIV-1 gp41 binding to human peripheral blood mononuclear cells occurs preferentially to B lymphocytes and monocytes, Immunobiology 188:323–329.PubMedCrossRefGoogle Scholar
  11. Chen, Y. H., Böck, G., Vornhagen, R., Steindl, F., Katinger, H., and Dierich, M. P., 1993b, HIV-1 gp41 binds to several proteins on the human B cell line, Raji, Mol. Immunol. 30:1159–1163.PubMedCrossRefGoogle Scholar
  12. Chen, Y. H., Böck, G., Vornhagen, R., Steindl, F., Katinger, H., and Dierich, M. P., 1993c, The human monocyte cell line U937 binds HIV-1 gp41 by proteins 37, 45, 49, 62 and 92 kDa, Immunol. Lett. 37:41–45.PubMedCrossRefGoogle Scholar
  13. Chen, Y. H., Christiansen, A., Böck, G., and Dierich, M. P., 1995, HIV-2 transmembrane protein gp36 like HIV-1 gp41 binds human lymphocytes and monocytes, AIDS 9:1193–1194.PubMedCrossRefGoogle Scholar
  14. Cooper, N. R., 1991, Complement evasion strategies of microorganisms, Immunol. Today 12:327–331.PubMedCrossRefGoogle Scholar
  15. Delibrias, C. C., Kazatchkine, M. D., and Fischer, E., 1993, Evidence for the role of CR1 (CD35), in addition to CR2 (CD21), in facilitating infection of human T cells with opsonized HIV, Scand. J. Immunol 38:183–189.PubMedCrossRefGoogle Scholar
  16. Denner, J., Vogel, T., Norley, S., Ennen, J., and Kurth, R., 1993, The immunosuppressive (ISU-) peptide of HIV-1: Binding to lymphocyte surface proteins, J. Can. Res. Clin. Oncol. 119(S1):S28 (10/104).CrossRefGoogle Scholar
  17. Denner, J., Norley, S., and Kurth, R., 1994, The immunosuppressive peptide of HIV-1: Functional domains and immune response in AIDS patients, AIDS 8:1063–1072.PubMedCrossRefGoogle Scholar
  18. Denner, J., Vogel, T., Norley, S., Hoffmann, A., and Kurth, R., 1995, The immunosuppressive (ISU-) peptide of HIV-1: Binding proteins on lymphocytes detected by different methods, J. Can. Res. Clin. Oncol 121(S1):S35 (11/128).Google Scholar
  19. De-Panfilis, G., Soligo, D., Manara, G. C., Ferrari, C., Torresain, C., and Zucchi, A., 1990, Human normal-resting epidermal Langerhans cells do express the type 3 complement receptor, Br. J. Dermatol. 122:127–136.PubMedCrossRefGoogle Scholar
  20. Dierich, M. P., Ebenbichler, C. R., Marschang, P., Föst, G., Thielens, N. M., and Arlaud, G. J., 1993, HIV and human complement: Mechanisms of interaction and biological implications, Immunol. Today 14:435–440.PubMedCrossRefGoogle Scholar
  21. Douvas, A., and Takehana, Y., 1994, Cross-reactivity between autoimmune anti-U1 snRNP antibodies and neutralizing epitopes of HIV-1 gp120/41, Aids Res. Hum. Retrovir. 10:253–262.PubMedCrossRefGoogle Scholar
  22. Dukor, P., Bianco, G., and Nussenzwej, V., 1970, Tissue localization of lymphocytes bearing a membrane receptor for antigen-antibody-complement complexes, Proc. Natl. Acad. Sci. (USA) 67:991–997.CrossRefGoogle Scholar
  23. Ebenbichler, C. F., Thielens, N. M., Vornhagen, R., Marschang, P., Arlaud, G. J., and Dierich, M. R., 1991, Human immunodeficiency virus type 1 activates the classical pathway of complement by direct C1 binding through specific sites in the transmembrane glycoprotein gp41, J. Exp. Med. 174:1417–1424.PubMedCrossRefGoogle Scholar
  24. Ebenbichler, C. F., Röder, C., Vornhagen, R., Ratner, L., and Dierich, M. P., 1993, Cell surface proteins binding to recombinant soluble HIV-1 and HIV-2 transmembrane proteins, AIDS 7:489–495.PubMedCrossRefGoogle Scholar
  25. Ebersold, A., Boyer, V., and Klasse, P. J., 1992, Human and murine monoclonal antibodies directed against a conserved sequence from gp41 (aa583–599) of human immunodeficiency virus type 1, Res. Virol. 143:179–191.PubMedCrossRefGoogle Scholar
  26. Ellaurie, M., Calvelli, T., and Rubinstein, A., 1990, Immune complexes in pediatric human immunodeficiency virus infection, Am. J. Dis. Child. 144:1207–1209.PubMedGoogle Scholar
  27. Ezekowitz, R. R., Kuhlman, M., Groopman, J. E., and Byrn, B. A., 1989, A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus, J. Exp. Med. 169:185–196.PubMedCrossRefGoogle Scholar
  28. Fischer, E., Delibrias, C., and Kazatchkine, M. D., 1991, Expression of CR2 (the C3dg/EBV receptor, CD21) on normal human peripheral blood T lymphocytes, J. Immunol. 146:865–869.PubMedGoogle Scholar
  29. Fuchs, D., Hausen, A., Reibnegger, G., Werner, E. R., Dierich, M. P., and Wachter, H., 1988, Neopterin as a marker for activated cell-mediated immunity, Immunol. Today 9:150–155.PubMedCrossRefGoogle Scholar
  30. Fuchs, D., Zangerle, R., Artner-Dworzak, E., Weiss, G., Fritsch, P., Tilz, G. P., Dierich, M. P., and Wachter, H., 1993, Association between immune activation, changes of iron metabolism and anaemia in patients with HIV infection, Eur. J. Haematol. 50:90–94.PubMedCrossRefGoogle Scholar
  31. Gallaher, W. R., 1987, Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus, Cell 50:327–328.PubMedCrossRefGoogle Scholar
  32. Garry, R. R., 1990, Extensive antigenic mimicry by retrovirus capsid proteins, AIDS Res. Hum. Retrovir. 12:1361–1362.CrossRefGoogle Scholar
  33. Gelderblom, H. R., Reupke, H., Winkel, T., Kunze, R., and Pauli, G., 1987, MHC-antigens: Constituents of the envelopes of human and simian immunodeficiency virus, Z. Naturforsch. 42c:1328–1334.Google Scholar
  34. Golding, H., Robey, R A., Gates, F. T., III, Linder, W., Beining, P. R., Hoffmann, T., and Golding, B., 1988, Identification of homologous regions in human immunodeficiency virus I gp41 and human MHC class II 1 domain, J. Exp. Med. 167:914–923.PubMedCrossRefGoogle Scholar
  35. Gras, G. S., and Dormont, D., 1991, Antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus type 1 infection in a human, Epstein-Barr virus-transformed B-lymphocytic cell line, J. Virol. 65:541–545.PubMedGoogle Scholar
  36. Henderson, L. A., and Qureshi, M. N., 1993, A peptide inhibitor of human immunodeficiency virus infection binds to novel human cell surface polypeptides, J. Biol. Chem. 268:15291–15297.PubMedGoogle Scholar
  37. Hosoi, S., Borsos, T., Dunlop, N., and Nara, P. L., 1990, Heat-labile, complement-like factor(s) of animal sera prevent(s) HIV-1 infectivity in vitro, AIDS 3:366–371.Google Scholar
  38. Joling, P., Bakker, L. J., Van Strijp, J. A. G., Meerloo, T., de Graaf, L., Dekker, M. E. M., Goudsmit, J., Verhoef, J., and Schuurman, H.-J., 1993, Binding of human immunodeficiency virus type-1 to follicular dendritic cells in vitro is complement dependent, J. Immunol. 150:1065–1073.PubMedGoogle Scholar
  39. June, R. A., Schade, S. Z., Bankowski, M. J., Kuhns, M., McNamara, A., Lint, T. R., Landay, A. L., and Spear, G. T., 1991, Complement and antibody mediate enhancement of HIV infection by increasing virus binding and provirus formation, AIDS 5:269–274.PubMedCrossRefGoogle Scholar
  40. June, R. A., Landay, A. L., Stefanik, K., Lint, T. R., and Spear, G. T., 1992, Phenotypic analysis of complement receptor 2+ T lymphocytes: Reduced expression on CD4+ cells in HIV-infected persons, Immunology 75:59–65.PubMedGoogle Scholar
  41. Kotwal, G. J., and Moss, B., 1988, Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins, Nature 325:176–178.CrossRefGoogle Scholar
  42. Larcher, C., Schulz, T. F., Hofbauer, J., Hengster, P., Romani, N., and Wachter, H., 1990, Expression of the C3d/ EBV receptor and of other cell membrane surface markers is altered upon HIV-1 infection of myeloid, T., and B cells, J. Acq. Immune Defic. Syndr. 3:103–108.Google Scholar
  43. Lee, M. R., Ho, D. D., and Gurney, M. E., 1987, Functional interaction and partial homology between human immunodeficiency virus and neuroleukin, Science 237:1047–1051.PubMedCrossRefGoogle Scholar
  44. Levy, J. A., 1993, Pathogenesis of human immunodeficiency virus infection, Microbiol. Rev. 57:183–289.PubMedGoogle Scholar
  45. Lewis, M. G., Elkins, W. R., and McCutchan, F. E., 1993, Passively transferred antibodies directed against conserved regions of SIV envelope protect macaques from SIV infection, Vaccine 11:1347–1355.PubMedCrossRefGoogle Scholar
  46. Lin, R. Y., Wildfeuer, O., Franklin, M. M., and Candido, K., 1988, Hypocomplementenia and human immunodeficiency virus infection, Int. Arch. Allergy Appl. Immunol. 87:40–46.PubMedCrossRefGoogle Scholar
  47. McClure, M. O., Marsh, M., and Weiss, R. A., 1988, Human immunodeficiency virus infection of CD4 bearing cells occurs by a pH independent mechanism, EMBO J. 7:513–518.PubMedGoogle Scholar
  48. Marschang, P., Gürtler, L., Tötsch, M., Thielens, N. M., Arlaud, G. J., Hittmair, A., Katinger, H., and Dierich, M. R., 1993, HIV-1 and HIV-2 isolates differ in their ability to activate the complement system on the surface of infected cells, AIDS 7:903–910.PubMedCrossRefGoogle Scholar
  49. Marschang, P., Ebenbichler, C. F., and Dierich, M. P., 1994, HIV and complement: Role of the complement system in HIV infection, Int. Arch. Allergy Appl. Immunol. 103:113–117.CrossRefGoogle Scholar
  50. Marschang, P., Sodroski, J., Würzner, R., and Dierich, M. P., 1995, Decay-accelerating factor (CD55) protects human immunodeficiency virus type 1 from inactivation by human complement, Eur. J. Immunol. 25:285–290.PubMedCrossRefGoogle Scholar
  51. Meerloo, T., Parmentier, H. K., Osterhaus, A. D. M. E., Goudsmit, J., and Schuurman, H. J., 1992, Modulation of cell surface molecules during HIV-1 infection of H9 cells. An immunoelectron microscopy study, AIDS 6:1105–1116.PubMedCrossRefGoogle Scholar
  52. Miller, G. W., and Nussenzweig, V., 1974, Complement as a regulator of interactions between immune complexes and cell membranes, J. Immunol. 113:464–469.PubMedGoogle Scholar
  53. Miller, G. W., and Nussenzweig, V., 1975, A new complement function: Solubilization of antigen-antibody aggregates, Proc. Natl. Acad. Sci. USA 72:418–422.PubMedCrossRefGoogle Scholar
  54. Miller, G. W., Saluk, P. H., and Nussenzweig, V., 1973, Complement-dependent release of immune complexes from the lymphocyte membrane, J. Exp. Med. 138:495–507.PubMedCrossRefGoogle Scholar
  55. Montefiori, D. C., Zhou, J., and Shaff, D. I., 1992, CD4-dependent binding of HIV-1 to the B lymphocyte receptor CR2 (CD21) in the presence of complement and antibody, Clin. Exp. Immunol. 90:383–389.PubMedCrossRefGoogle Scholar
  56. Morgan, B. P., and Meri, S., 1994, Membrane proteins that protect against complement lysis, Springer Semin. Immunopathol. 15:369–396.PubMedCrossRefGoogle Scholar
  57. Morrow, W. J. W., Wharton, M., Strieker, R. B., and Levy, J. A., 1986, Circulating immune complexes in patients with acquired immune deficiency syndrome contain the AIDS-associated retrovirus, Clin. Immunol. Immunopathol. 40:515–524.PubMedCrossRefGoogle Scholar
  58. Morrow, W. J. W., Isenberg, D. A., Sobol, R. E., Strieker, R. B., and Kieber-Emmons, T., 1991, AIDS virus infection and autoimmunity: A perspective of the clinical, immunological, and molecular origins of the autoallergic pathologies associated with HIV disease, Clin. Immunol. Immunopathol. 58:163–180.PubMedCrossRefGoogle Scholar
  59. Naylor, P. H., Naylor, C. W., Badamchian, M., Wada, S., Goldstein, A. L., Wang, S. S., Sun, D. K., Thornton, A. H., and Sarin, P. S., 1987, Human immunodeficiency virus contains an epitope immunoreactive with thymosin α1 and the 30-amino acid synthetic p17 group-specific antigen peptide HGP-30, Proc. Natl. Acad. Sci. USA 84:2951–2955.PubMedCrossRefGoogle Scholar
  60. Oldstone, M. B. A., 1987, Molecular mimicry and autoimmune disease, Cell 50:819–820.PubMedCrossRefGoogle Scholar
  61. Orentas, R. J., and Hildreth, J. E. K., 1993, Association of host cell surface adhesion receptors and other membrane proteins with HIV and SIV, AIDS Res. Hum. Retrovir. 9:1157–1165.PubMedCrossRefGoogle Scholar
  62. Pinter, C., Siccardi, A. G., Lopalco, L., Longhi, R., and Clivio, A., 1995, HIV glycoprotein 41 and complement factor H interact with each other and share functional as well as antigenic homology, AIDS Res. Hum. Retrovir. 11:971–980.PubMedCrossRefGoogle Scholar
  63. Purtscher, M., Trkola, A., Gruber, G., Buchacher, A., Predl, R., Steindl, F., Tauer, C., Berger, R., Barrett, N., Jungbauer, A., and Katinger, H., 1994, A broadly neutralizing human monoclonal antibody against gp41 of human immunodeficiency virus type 1, AIDS Res. Hum. Retrovir. 10:1651–1658.PubMedCrossRefGoogle Scholar
  64. Qureshi, N. M., Coy, D. H., Garry, R. F., and Henderson, L. A., 1990, Characterization of a putative cellular receptor for HIV-1 transmembrane glycoprotein using synthetic peptides, AIDS 4:553–558.PubMedCrossRefGoogle Scholar
  65. Reiher, W. E., Blalock, J. F., and Brunck, T. K., 1988, Sequence homology between acquired immunodeficiency syndrome virus envelope protein and interleukin 2, Proc. Natl. Acad. Sci. USA 85:9188–9192.Google Scholar
  66. Reisinger, E. C., Vogetseder, W., Berzow, D., Köfler, D., Bitterlich, G., Lehr, H. A., Wachter, H., and Dierich, M. P., 1990, Complement-mediated enhancement of HIV-1 infection of the monoblastoid cell line U 937, AIDS 4:961–965.PubMedCrossRefGoogle Scholar
  67. Ross, G. D., ed., 1986, Immunobiology of the Complement System, Academic Press, New York, pp. 197–212.Google Scholar
  68. Saifuddin, M. Landay, A. L., Ghassemi, M., Patki, C., and Spear, G. T., 1995a, HTLV-1 activates complement leading to increased binding to complement receptor-positive cells, AIDS Res. Hum. Retrovir. 11:1115–1122.PubMedCrossRefGoogle Scholar
  69. Saifuddin, M., Parker, C. J., Peeples, M. E., Gorny, M. K., Zolla-Pazner, S., Ghassemi, M., Rooney, I. A., Atkinson, J. P., and Spear, G. T., 1995b, Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CD59 in complement resistance of cell line-derived and primary isolates of HIV-1, J. Exp. Med. 182:501–509.PubMedCrossRefGoogle Scholar
  70. Santis, C., Lopalco, L., Robbioni, P., Longhi, R., Rappocciolo, G., Siccardi, A. G., and Beretta, A., 1994, Human antibodies to immunodominant C5 region of HIV-1 gp120 cross-react with HLA class I on activated cells, AIDS Res. Hum. Retrovir. 102:157–162.CrossRefGoogle Scholar
  71. Schifferli, J. A., Yin, C., and Peters, D. K., 1986, The role of complement and its receptor in the elimination of immune complexes, N. Engl. J. Med. 315:488–495.PubMedCrossRefGoogle Scholar
  72. Schupbach, J., Kalyanaraman, V. S., Sarngadharan, M. G., Bunn, P. A., Blayney, D. W., and Gallo, R. C., 1984, Demonstration of viral antigen p24 in circulating immune complexes of two patients with human T-cell leukaemia/lymphoma virus (HTLV) positive lymphoma, Lancet 1:302–305.PubMedCrossRefGoogle Scholar
  73. Scott, M. E., Landay, A. L., Lint, T. F., and Spear, G. T., 1993, In vivo decrease in the expression of complement receptor 2 on B cells in HIV-infection, AIDS 7:37–41.PubMedCrossRefGoogle Scholar
  74. Shafferman, A., Jahrling, P. B., and Benveniste, R. E., 1991, Protection of macaques with a simian immunodeficiency virus envelope peptide vaccine based on conserved human immunodeficiency virus type 1 sequences, Proc. Natl. Acad. Sci. USA 88:7126–7130.PubMedCrossRefGoogle Scholar
  75. Solder, B. M., Schulz, T. F., Hengster, P., Larcher, C., Bitterlich, G., Eigentier, A., Löwer, J., Kurth, R., Wachter, H., and Dierich, M. P., 1988, HIV and HIV-infected cells activate the complement system, Immunobiology 178:69.Google Scholar
  76. Sölder, B., Marschang, P., Wachter H., Dierich, M. P., Nayyar, S., Lewin, I. V., and Stanworth, D. R., 1989a, Antiviral antibodies in HIV (HTLV-III) infection possess auto-antibody activity against a CH1 domain determinant in human IgG: Possible immunological consequences, Immunol. Lett. 23:9–20.PubMedCrossRefGoogle Scholar
  77. Sölder, B., Reisinger, E. C., Köfler, D., Bitterlich, G., Wachter, H., and Dierich, M. P., 1989b, Complement receptors: Another port of entry for HIV, Lancet 2:271–272.CrossRefGoogle Scholar
  78. Sölder, B., Schulz, T. F., Hengster, R., Löwer, J., Larcher, C., Bitterlich, G., Kurth, R., Wachter, H., and Dierich, M. P., 1989c, HIV and HIV-infected cells differentially activate the human complement system independent of antibody, Immunol. Lett. 22:135–146.PubMedCrossRefGoogle Scholar
  79. Spear, G. T., Sullivan, B. L., Landay, A. L., and Lint, T. E., 1990, Neutralization of human immunodeficiency virus type 1 by complement occurs by viral lysis, J. Virol. 64:5869–5873.PubMedGoogle Scholar
  80. Spear, G. T., Sullivan, B. L., Takefman, D. M., Landay, A. L., and Lint, T. F., 1991, Human immunodeficiency virus (HIV)-infected cells and free virus directly activate the classical complement pathway in rabbit, mouse and guinea-pig sera, activation results in virus neutralization by virolysis, Immunology 73:377–382.PubMedGoogle Scholar
  81. Spear, G. T., Takefman, D. M., Sullivan, B. L., Landay, A. L., and Zolla-Pazner, S., 1993, Complement activation by human monoclonal antibodies to human immunodeficiency virus, J. Virol. 67:53–59.PubMedGoogle Scholar
  82. Stein, B., Gowda, S., Lifson, J., Penhallow, R., Bensch, K., and Engelmann, E., 1987, pH independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane, Cell 49:659–668.PubMedCrossRefGoogle Scholar
  83. Stoiber, H., Thielens, N. M., Ebenbichler, C. E., Arlaud, G. J., and Dierich, M. P., 1994, The envelope glycoprotein of HIV-1 gp120 and human complement protein C1q bind to the same peptides derived from three different regions of gp41, the transmembrane glycoprotein of HIV-1, and share antigenic homology, Eur. J. Immunol. 24:294–300.PubMedCrossRefGoogle Scholar
  84. Stoiber, H., Ebenbichler, C. F., Schneider, R., Janatova, J., and Dierich, M. P., 1995a, Interaction of several complement proteins with gp120 and gp41, the two envelope glycoproteins of HIV-1, AIDS 9:19–26.PubMedCrossRefGoogle Scholar
  85. Stoiber, H., Ebenbichler, C. E., Thielens, N. M., Arlaud, G. J., and Dierich, M. P., 1995b, HIV-1 rsgp41 depends on calcium for binding of human Clq but not for binding of gp120, Mol. Immunol. 5:371–374.CrossRefGoogle Scholar
  86. Stoiber, H., Schneider, R., Janatova, J., and Dierich, M. P., 1995c, Human complement proteins C3b, C4b, factor H and properdin react with specific sites in gp120 and gp41, the envelope proteins of HIV-1, Immunobiology 193:98–113.PubMedCrossRefGoogle Scholar
  87. Stoiber, H., Pinter, C., Siccardi, A. G., Clivio, A., and Dierich, M. P., 1996, Efficient destruction of HIV in human serum by inhibiting the protective action of complement factor H and decay accelerating factor (DAF, CD55), J. Exp. Med. 183:307–310.PubMedCrossRefGoogle Scholar
  88. Stricker, R. B., McHugh, T. M., Moody, D. J., Morrow, W. J. W., Stites, D. P., Shuman, M. A., and Levy, J. A., 1987, An AIDS-related cytotoxic antoantibody reacts with a specific antigen on stimulated CD4+ T cells, Nature 327:710–713.PubMedCrossRefGoogle Scholar
  89. Süsal, C., Kirschfink, M., Kröpelin, M., Daniel, V., and Opelz, G., 1994, Complement activation by recombinant HIV-1 glycoprotein gp120, J. Immunol 152:6028.PubMedGoogle Scholar
  90. Takahashi, M., Czop, J., Ferreira, A., and Nussenzweig, V., 1976, Mechanism of solubilization of immune aggregates by complement. Implications for immunopathology, Transplant Rev. 32:121–139.PubMedGoogle Scholar
  91. Takahashi, M., Tack, B. R., and Nussenzweig, V., 1977, Requirements for the solubilization of immune aggregates by complement. Assembly of a factor B-dependent C3-convertase on the immune complexes, J. Exp. Med. 145:86–100.PubMedCrossRefGoogle Scholar
  92. Takahashi, M., Takahashi, S., Brade, V., and Nussenzweig, V., 1978, Requirements for the solubilization of immune aggregates by complement. The role of the classical pathway, J. Clin. Invest. 62:349–358.PubMedCrossRefGoogle Scholar
  93. Thieblemont, N., Haeffner-Cavaillon, N. A., Ledur, A., L’Age-Stehr, J., Ziegler-Heitbrock, H. W. L., and Kazatchkine, M. D., 1993, CR1 (CD35) and CR3 (CD11b/CD18) mediate infection of human monocytes and monocytic cell lines with complement-opsonized HIV independently of CD4, Clin. Exp. Immunol. 92:106–113.PubMedCrossRefGoogle Scholar
  94. Thielens, N. M., Bally, I. M., Ebenbichler, C. F., Dierich, M. P., and Arlaud, G. J., 1993, Further characterization of the interaction between the C1q subcomponent of human C1 and the transmembrane envelope glycoprotein gp41 of HIV-1, J. Immunol. 151:6583–6592.PubMedGoogle Scholar
  95. Ujhelyi, E., Buki, B., Salavecz, V., Banhegyi, D., Horvath, A., Furst, G., and Hollan, S. R., 1987, A simple method for detecting HIV antibodies hidden in circulating immune complexes, AIDS 1:161–165.PubMedGoogle Scholar
  96. Vanini, S., Longhi, R., Lazzarin, A., Vigo, E., Siccardi, A. G., and Viale, G., 1993, Discrete regions of HIV-1 gp41 defined by syncytia-inhibiting affinity-purified human antibodies, AIDS 7:167–174.PubMedCrossRefGoogle Scholar
  97. Welsh, R. M., Cooper, N. R., Jensen, F. C., and Oldstone, M. B. A., 1975, Human serum lyses RNA tumour viruses, Nature 257:612–614.PubMedCrossRefGoogle Scholar
  98. Wu, A. F., Wood, C., and Wu, T. T., 1989, Possibility of HIV gp41 and thymosin beta-4 sharing the same antigenic epitope, AIDS 3:319–320.PubMedCrossRefGoogle Scholar
  99. Yamada, M., Zurbriggen, A., Oldstone, M. B. A., and Fujinami, R. S., 1991, Common immunologic determinant between human immunodeficiency virus type 1 gp41 and astrocytes, J. Virol. 65:1370–1376.PubMedGoogle Scholar
  100. Yefenof, E., Asjö, B., and Klein, E., 1991, Alternative complement pathway activation by HIV infected cells: C3 fixation does not lead to complement lysis but enhances NK sensitivity, Int. Immunol. 3:395–401.PubMedCrossRefGoogle Scholar
  101. Zagury, J. F., Bernhard, J., Achour, A., Astgen, A., Lachgar, A., Fall, L., Carelli, C., Issing, W., Mbika, J. P., Picard, O., Carlotti, M., Callebaut, I., Mornon, J. P., Burny, A., Feldman, M., Bizzini, B., and Zagury, D., 1993, Identification of CD4 and major histocompatibility complex functional peptide sites and their homology with oligopeptides from human immunodeficiency virus type 1 glycoprotein gp120: Role in AIDS pathogenesis, Proc. Natl. Acad. Sci. USA 90:7573–7577.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Manfred P. Dierich
    • 1
  • Heribert Stoiber
    • 1
  • Ying-Hua Chen
    • 1
  1. 1.Institute for HygieneLeopold-Franzens University, and Ludwig-Boltzmann Institute for AIDS ResearchInnsbruckAustria

Personalised recommendations