Dendritic Cell Functions in HIV Infection

  • Stella C. Knight


The pathological effects of HIV-1 center around the loss of T cells and cell-mediated immunity. Deficiencies in proliferative responses of T cells are identified early in infection (Clerici et al., 1989) and losses in both naive and memory populations of CD4+ T cells occur during disease progression (Schnittman et al., 1990; Van Noesel et al., 1990; Rabin et al., 1995; Roederer et al., 1995). Most studies have focused on mechanisms for direct loss of T-cell populations. However, T-cell proliferation is dependent on specialized antigen-presenting cells (APC); alteration of T-cell populations secondary to changes in APC may therefore occur in HIV infection and increasing evidence points to the importance of these specialized APC in the development of the immunological changes initiated by the virus. The bone marrow-derived dendritic cells (DC) are involved in all aspects of T-cell development from the shaping of the T-cell populations within the thymus, the stimulation of naive T cells which have not yet encountered antigens, and the expansion of memory and effector T-cell populations. Follicular dendritic cells (FDC), which are possibly derived in situ within the lymphoid follicles, stimulate memory B-cell populations. The DC and FDC and their acquisition and presentation of antigens thus shape the development of immune responses and the balance between cellular and humoral immunity (Knight and Stagg, 1993; Knight, 1993). This review will describe the interaction of HIV with DC and the evidence suggesting that this is pivotal to the type of immunological changes seen within the T-cell populations.


Human Immunodeficiency Virus Dendritic Cell Human Immunodeficiency Virus Type Human Immunodeficiency Virus Infection Follicular Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, J. A., and Home, R., 1984, Follicular dendritic cells and virus like particles in AIDS related lymphadenopathy, Lancet 2:370–372.PubMedCrossRefGoogle Scholar
  2. Austyn, J. M., Kupiec-Weglinski, J. W., Hankins, D. F., and Morris, P. J. 1988, Migration patterns of dendritic cells in the mouse. Homing to T-cell dependent areas of spleen and binding within marginal zone, J. Exp. Med. 167:646–651.PubMedCrossRefGoogle Scholar
  3. Ayehunie, S., Bruzzese, A. M., Groves, R. W., Kupper, T. S., and Langhoff, E., 1994, HIV-1 transmission by mucosal Langerhans cells, blood dendritic cells and monocytes in vitro, Reg. Immunol. 6(1–2):105–111.Google Scholar
  4. Belsito, D. V., Sanchez, M. R., Baer, R. L., Valentine, F., and Thorbecke, G. J., 1984, Reduced Langerhans cell 1a antigen and ATPase activity in patients with the acquired immunodeficiency syndrome, N. Engl. J. Med. 310:1279–1282.PubMedCrossRefGoogle Scholar
  5. Benson, M. T., Buckley, G., Jenkinson, E. J., and Owen, J. J. T., 1987, Survival of deoxyguanosine-treated fetal thymus allografts is prevented by priming with dendritic cells, Immunology 60:593–596.PubMedGoogle Scholar
  6. Berger, R., Gartner, S., Rappersberger, K., Foster, C. A., Wolff, K., and Stingl, G., 1992, Isolation of human immunodeficiency virus type 1 from human epidermis: Virus replication and transmission studies, J. Invest. Dermatol. 99:271–277.PubMedCrossRefGoogle Scholar
  7. Blauvelt, A., Clerici, M., Lucey, D. R., Steinberg, S. M., Yarchoan, R., Walker, R., Shearer, G. M., and Katz, S. I., 1995, Functional studies of epidermal Langerhans cells and blood monocytes in HIV-infected person, J. Immunol. 154:3506–3515.PubMedGoogle Scholar
  8. Blom, J., Nielsen, C., and Rhodes, J. M., 1993, An ultrastructural study of HIV-infected human dendritic cells and monocytes/macrophages, APMIS 101(9):672–680.PubMedCrossRefGoogle Scholar
  9. Boyd, R. L., and Hugo, P., 1991, Towards an integrated view of thymopoiesis, Immunol. Today 12:71–78.PubMedCrossRefGoogle Scholar
  10. Cameron, P. U., Forsum, U., Teppler, H., Granelli-Piperno, A., and Steinman, R. M., 1992a, During HIV-1 infection most blood dendritic cells are not productively infected and can function normally in clonal expansion of CD4+ T cells, Clin. Exp. Immunol. 88:226–236.PubMedCrossRefGoogle Scholar
  11. Cameron, P. U., Freudenthal, P. S., Barker, J. M., Gezelter, S., Inaba, K., and Steinman, R. M., 1992b, Dendritic cells exposed to human immunodeficiency virus-1 transmit a vigorous cytopathic infection to CD4+ cells, Science 257:383–386.PubMedCrossRefGoogle Scholar
  12. Cameron, P. U., Lowe, M. G., Crowe, S. M., O’Doherty, U., Pope, M., Gezelter, S., and Steinman, R. M., 1994a, Susceptibility of dendritic cells to HIV-1 infection in vitro, J. Leuk. Biol. 56:257–265.Google Scholar
  13. Cameron, P. IL, Pope, M., Gezelter, S., Barker, J. M., and Steinman, R. M., 1994b, Infection and apoptotic cell death of CD4+ T cells during an immune response to HIV-1-pulsed dendritic cells, AIDS Res. Hum. Retrovir. 10:61–71.PubMedCrossRefGoogle Scholar
  14. Caux, C., Dezutter-Dambuyant, C., Schmitt, D., and Banchereau, J., 1992, GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells, Nature 360:258–261.PubMedCrossRefGoogle Scholar
  15. Chehimi, J., Prakash, K., Shanmugam, V., Collman, R., Jackson, S. J., Bandyopadhyay, S., and Starr, S. E., 1993a, CD4-independent infection of human peripheral blood dendritic cells with isolates of human immunodeficiency virus type 1, J. Gen. Virol. 74:1277–1285.PubMedCrossRefGoogle Scholar
  16. Chehimi, J., Prakash, K., Shanmugam, V., Jackson, S. J., Bandyopadhyay, S., and Starr, S. E., 1993b, In-vitro infection of peripheral blood dendritic cells with human immunodeficiency virus-1 causes impairment of accessory functions, Adv. Exp. Med. Biol. 329:521–526.PubMedCrossRefGoogle Scholar
  17. Cheynier, R., Henrichwark, S., Hadida, F., Pelletier, E., Oksenhendler, E., Autran, B., and Wain-Hobson, S., 1994, HIV and T cell expansion in splenic white pulp is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes, Cell 78:373–387.PubMedCrossRefGoogle Scholar
  18. Cimarelli, A., Zambruno, G., Marconi, A., Girolomoni, G., Bertazzoni, U., and Giannetti, A., 1994, Quantitation by competitive PCR of HIV-1 proviral DNA in epidermal Langerhans cells of HIV-infected patients, J. Acq. Immune Defic. Syndr. 7:230–235.Google Scholar
  19. Clerici, M., Stocks, N. L., Zajac, R. A., Boswell, R. N., Lucey, D. R., Via, C. S., and Shearer, G. M., 1989, Detection of three distinct patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients. Independent of CD4+ cell numbers and clinical staging, J. Clin. Invest. 84:1892–1899.PubMedCrossRefGoogle Scholar
  20. Clerici, M., Stocks, N. I., Zajac, R. A., Boswell, R. N., and Shearer, G. M., 1990, Accessory cell function in asymptomatic human immunodeficiency virus-infected patients, Clin. Immunol. Immunopathol. 54:168–173.PubMedCrossRefGoogle Scholar
  21. Clerici, M., Lucey, D. R., Berzofsky, J. A., Pinto, L. A., Wynn, R. A., Blatt, S. P., Dolan, M. J., Hendrix, C. W., Wolf, S. F., and Shearer, G. M., 1993, Restoration of HIV-specific cell-mediated immune responses by interleukin-12 in vitro, Science 262:1721–1724.CrossRefGoogle Scholar
  22. Dai, R., and Streilein, J. W., 1993, In vitro culture allows splenic dendritic cells to reach their full potential for T cell activation, Reg. Immunol. 5:269–278.PubMedGoogle Scholar
  23. Donaldson, Y. K., Bell, J. E., Ironside, J. W., Brettle, R. P., Robertson, J. R., Busuttil, A., and Simmonds, P., 1994, Redistribution of HIV outside the lymphoid system with onset of AIDS, Lancet 343:383–385.PubMedCrossRefGoogle Scholar
  24. Dreno, B., Milpied, B., Bignon, J. D., Stalder, J. F., and Litoux, P., 1988, Prognostic value of Langerhans cells in the epidermis of HIV patients, Br. J. Dermatol. 118:481–486.PubMedCrossRefGoogle Scholar
  25. Eales, L.-J., Farrant, J., Helbert, M., and Pinching, A. J., 1988, Peripheral blood dendritic cells in persons with AIDS and AIDS-related complex: Loss of high intensity class II antigen expression and function, Clin. Exp. Immunol. B71:423–427.Google Scholar
  26. Essex, M., 1995, HIV Langerhans’ cell tropism: Implications for vaccine design, Proceedings of 10th Cent Gardes Meeting, October.Google Scholar
  27. Gabrilovich, D. L., Roberts, M. S., Harvey, J. J., Botcherby, M., Bedford, P. A., and Knight, S. C., 1993, Effects of murine leukemia viruses on the function of dendritic cells, Eur. J. Immunol. 23:2932–2938.PubMedCrossRefGoogle Scholar
  28. Gabrilovich, D. I., Patterson, S., Harvey, J. J., Woods, G. M., Elsley, W., and Knight, S. C., 1994, Murine retrovirus induces defects in the function of dendritic cells at early stages of infection, Cell. Immunol. 158:167–181.PubMedCrossRefGoogle Scholar
  29. Giannetti, A., Zambruno, G., Cimarelli, A., Marconi, A., Negroni, M., Girolomoni, G., and Bertazzoni, U., 1993, Direct detection of HIV RNA in epidermal Langerhans cells of HIV-infected patients, J. Acq. Immune Defic. Syndr. 6:329–333.Google Scholar
  30. Gompels, M., Patterson, S., Roberts, M. S., Pinching, A. J., and Knight, S.C., 1996, Increase in dendritic cell numbers, their function and the proportion uninfected during AZT therapy (in preparation).Google Scholar
  31. Hart, D. N. J., and Fabre, J. W., 1981, Demonstration and characterization of la-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues but not brain, J. Exp. Med. 153:347–361.CrossRefGoogle Scholar
  32. Heath, S. L., Tew, J. G., Tew, J. G., Szakal, A. K., and Burton, G. F., 1995, Follicular dendritic cells and human immunodeficiency virus infectivity, Nature 377:740–744.PubMedCrossRefGoogle Scholar
  33. Henry, M., Uthman, A., Ballaun, C., Stingl, G., and Tschachler, E., 1994, Epidermal Langerhans cells of AIDS patients express HIV-1 regulatory and structural genes, J. Invest. Dermatol. 103:593–596.PubMedCrossRefGoogle Scholar
  34. Hofmann, B., Odum, N., Jakobsen, B. K., Plats, P., Ryder, L. P., Nielsen, J. O., Gerstoft, J., and Sveigaard, A., 1986, Immunologie studies in the acquired immunodeficiency syndrome. II. Active suppression or intrinsic defect investigated by mixing AIDS cells with HLA-DR identical normal cells, Scand. J. Immunol. 23:669–678.PubMedCrossRefGoogle Scholar
  35. Hsia, K., Tsia, V., Zvaifler, N. J., and Spector, S. A., 1995, Low prevalence of HIV-1 proviral DNA in peripheral blood monocytes and dendritic cells from HIV-1 infected individuals, AIDS 9(4):398–399.PubMedGoogle Scholar
  36. Hussein, L. A., and Lehner, T., 1995, Comparative investigation of Langerhans’ cells and potential receptors for HIV in oral, genitourinary and rectal epithelia, Immunology 85:475–484.Google Scholar
  37. Kalter, D., Greenhouse, C. J. J., Orenstein, J. M., Schnittman, S. M., Gendelman, H. E., and Meltzer, M. S., 1991, Epidermal Langerhans cells are not principal reservoirs of virus in HIV disease, J. Immunol. 146:3396–3404.PubMedGoogle Scholar
  38. Kampgen, E., Koch, N., Koch, F., Stoger, P., Heufler, C., Schuler, G., and Romani, N., 1991, Class II major histocompatibility complex molecules of murine dendritic cells: Synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture, Proc. Natl. Acad. Sci. USA 88:3014–3018.PubMedCrossRefGoogle Scholar
  39. Kanitakis, J., Marchand, C., Su, H., Thivolet, J., Zambruno, G., Schmitt, D., and Gazzolo, L., 1989, Immuno-histochemical study of normal skin of HIV-infected patients shows no evidence of infection of epidermal Langerhans cell by HIV, AIDS Res. Hum. Retrovir. 5:293–302.PubMedCrossRefGoogle Scholar
  40. Kanitakis, J., Escaich, S., Trepo, C., and Thivolet, J., 1991, Detection of human immunodeficiency virus-DNA and RNA in the skin of HIV-infected patients using the polymerase chain reaction, J. Invest. Dermatol. 97:91–96.PubMedCrossRefGoogle Scholar
  41. Kleijmeer, M.-J., Ossevoort, M. A., Van Veen, C. J. H., van Hellemond, J. J., Neefjes, J. J., Kast, W. M., Melief, C. J. M., and Geuze, H. J., 1995, MHC II compartments and the kinetics of antigen presentation in activated mouse spleen dendritic cells, J. Immunol. 154:5715–5725.PubMedGoogle Scholar
  42. Knight, S. C., 1993, Dendritic cells, in: Clinical Aspects of Immunology, 5th ed. (P. J. Lachmann, D. K. Peters, R. S. Rosen, and M. J. Walport, eds.), Blackwell, Oxford, pp. 481–504.Google Scholar
  43. Knight, S. C., 1994, Infection of dendritic cells with HIV-1, AIDS Res. Hum. Retrovir. 10:1591–1595.PubMedCrossRefGoogle Scholar
  44. Knight, S. C., and Stagg, A. J., 1993, Antigen presenting cell types, Curr. Opin. Immunol. 5:374–382.PubMedCrossRefGoogle Scholar
  45. Knight, S. C., Farrant, J., Bryant, A., Edwards, A. J., Burman, A., Lever, A., Clarke, J., and Webster, A. D. B., 1986, Non-adherent, low-density cells from human peripheral blood contain dendritic cells and monocytes, both with veiled morphology, Immunology 57:595–603.PubMedGoogle Scholar
  46. Knight, S. C., Macatonia, S. E., and Patterson, S., 1993, Infection of dendritic cells with HIV-1: Virus load regulates stimulation and suppression of T cell activity, Res. Virol. 144:75–80.PubMedCrossRefGoogle Scholar
  47. Langhoff, E., Terwillinger, E. R., Box, H. J., Kalland, K. H., Poznansky, M. C., Bacon, O. M., and Haseltine, W. A., 1991, Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures, Proc. Natl. Acad. Sci. USA 88:7998–8002.PubMedCrossRefGoogle Scholar
  48. Langhoff, E., Kalland, K. H., and Hazeltine, W. A., 1993, Early molecular replication of human immunodeficiency virus type 1 in cultured blood derived T helper dendritic cells, J. Clin. Invest. 91:2721–2726.PubMedCrossRefGoogle Scholar
  49. Lim, S. G., Condez, A., and Poulter, L. W., 1993, Mucosal macrophage subsets of the gut in HIV: Decrease in antigen-presenting cell phenotype, Clin. Exp. Immunol. 92(3):442–447.PubMedCrossRefGoogle Scholar
  50. Macatonia, S., Lau, R., Patterson, S., Pinching, A. J., and Knight, S. C., 1990, Dendritic cell infection, depletion and dysfunction in HIV infected individuals, Immunology 71:38–45.PubMedGoogle Scholar
  51. Macatonia, S. E., Patterson, S., and Knight, S. C., 1989, Suppression of immune responses by dendritic cells infected with HIV, Immunology 67:285–289.PubMedGoogle Scholar
  52. Macatonia, S. E., Patterson, S., and Knight, S. C., 1991, Primary proliferative and cytotoxic T cell responses to HIV induced in vitro by human dendritic cells, Immunology 74:399–406.PubMedGoogle Scholar
  53. Macatonia, S., Gompels, M., Pinching, A. J., Patterson, S., and Knight, S., 1992a, Antigen presentation by macrophages but not by dendritic cells in human immunodeficiency virus (HIV), infection, Immunology 75:576–581.PubMedGoogle Scholar
  54. Macatonia, S. E., Cruickshank, J. K., Rudge, P., and Knight, S. C., 1992b, Dendritic cells from patients with tropical spastic paraparesis are infected with HTLV-1 and stimulate autologous lymphocyte proliferation, AIDS Res. Hum. Retrovir. 8:1699–1706.PubMedCrossRefGoogle Scholar
  55. McIlroy, D., Autran, B., Cheynier, R., Wain-Hobson, S., Clauvel, J.-R, Oksenhendler, E., Debre, P., and Hoswalin, A., 1995, Infection frequency of dendritic cells and CD4+ T lymphocytes in spleens of human immunodeficiency virus-positive patients, J. Virol. 69:4734–4745.Google Scholar
  56. Muller, J. G., Krenn, V., Czub, C., Stahl-Henning, C., Coulibaly, C., Hunsmann, G., Kneitz, C., Kerkau, T., Rethwilm, A., terMeulen, V., and Muller-Hermelink, H. K., 1993, Alteration of thymus cortical epithelium and interdigitating dendritic cells but no increase of thymocyte cell death in the early course of simian immunodeficiency virus infection, Am. J. Pathol. 143:699–713.PubMedGoogle Scholar
  57. Nixon, D. R., and McMichael, A. J., 1991, Cytotoxic T-cell recognition of HIV proteins and peptides, AIDS 5:1049–1059.PubMedGoogle Scholar
  58. Nuovo, G. J., Becker, J., Burk, M. W., Margiotta, M., Fuhrer, J., and Steigbigel, R. T., 1994, In situ detection of PCR-amplified HIV-1 nucleic acids in lymph nodes and peripheral blood in patients with asymptomatic HIV-1 infection and advanced stage AIDS, J. Acq. Immune Defic. Syndr. 7:916–923.Google Scholar
  59. O’Doherty, U., Pang, M., Steinman, R. M., Cameron, P. U., Kopeloff, L., Swiggard, W., Pope, M., and Bhardwaj, N., 1993, Dendritic cells freshly isolated from human blood express CD4 and mature into typical immuno-stimulatory dendritic cells after culture in monocyte-conditioned medium, J. Exp. Med. 178:1067–1078.PubMedCrossRefGoogle Scholar
  60. Oxholm, P., Helweg-Larsen, S., and Permin, H., 1986, Immunohistological skin investigations in patients with the acquired immune deficiency syndrome, Acta Pathol. Microbiol. Immunol. Scand. 94:113–116.Google Scholar
  61. Pantaleo, G., Graziosi, C., Demarest, J. R., Butini, L., Montroni, M., Fox, C. H., Orenstein, J. M., Kotlier, D. P., and Fauci, A. S., 1993, HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease, Nature 362:355–358.PubMedCrossRefGoogle Scholar
  62. Patterson, S., and Knight, S. C., 1987, Susceptibility of human peripheral blood dendritic cells to infection by human immunodeficiency virus, J. Gen. Virol. 68:1177–1181.PubMedCrossRefGoogle Scholar
  63. Patterson, S., Gross, J., Bedford, P., and Knight, S. C., 1991, Morphology and phenotype of dendritic cells from peripheral blood and their productive infection with human immunodeficiency virus type 1, Immunology 72:361–367.PubMedGoogle Scholar
  64. Patterson, S., Roberts, M. S., English, N. R., Macatonia, S. E., Gompels, M. N., Pinching, A. J., and Knight, S. C., 1994, Detection of HIV DNA in peripheral blood dendritic cells of HIV-Infected individuals, Res. Virol 145:171–176.PubMedCrossRefGoogle Scholar
  65. Patterson, S., Gross, J., English, N., Stackpoole, A., Bedford, P., and Knight, S. C., 1995, CD4 expression on dendritic cells and their infection by human immunodeficiency virus, J. Gen. Virol. 76:1155–1163.PubMedCrossRefGoogle Scholar
  66. Rabin, R. L., Roederer, M., Maldonado, Y., Petro, A., Herzenberg, L. A., and Hess, L. A., 1995, Altered representation of naive and memory CD8 T cell subsets in HIV-infected children, J. Clin. Invest. 95(5):2054–2060.PubMedCrossRefGoogle Scholar
  67. Rappersberger, K., Gartner, S., Schenk, P., Stingl, G., Groh, V., Tschachler, E., Mann, D. L., Wolff, K., Konrad, K., and Popovic, M., 1988, Langerhans cells are an actual site of HIV-1 replication, Intervirology 29:185–194.PubMedGoogle Scholar
  68. Ree, H. J., Liau, S., Yancovitz, S. R., Qureshi, M. N., Khan, A. A., and Teplitz, C., 1994, The number of CD1a+ large low-density cells with dendritic cell features is increased in the peripheral blood of HIV+ patients, Clin. Immunol. Immunopath. 70(3):190–197.CrossRefGoogle Scholar
  69. Ree, M. C., Furlini, G., Zauli, G., and La Placa, M., 1994, Human immunodeficiency virus type 1 (HIV-1) and human hematopoietic progenitor cells, Arch. Virol. 137:1–23.CrossRefGoogle Scholar
  70. Reid, C. D., Fryer, P. R., Clifford, C., Kirk, A., Tikerpae, J., and Knight, S. C., 1990, Identification of hematopoietic progenitors of macrophages and dendritic Langerhans cells (DL-CFU) in human bone marrow and peripheral blood, Blood 76:1139–1149.PubMedGoogle Scholar
  71. Reid, C. D., Stackpoole, A., Meager, A., and Tikerpae, J., 1992, Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow, J. Immunol. 149:2681–2688.PubMedGoogle Scholar
  72. Rich, E. A., Toossi, Z., Fujiwara, H., Hanigosky, R., Lederman, M. M., and Ellner, J. J., 1988, Defective accessory function of macrophages in human immunodeficiency virus-related disease syndromes, J. Lab. Clin. Med. 112:174–181.PubMedGoogle Scholar
  73. Roberts, M., Gompels, M., Pinching, A. J., and Knight, S. C., 1994a, Dendritic cells persistently stimulate antibody responses to HIV in seropositive individuals, AIDS 8:1097–1101.PubMedCrossRefGoogle Scholar
  74. Roberts, M., Gompels, M., Pinching, A. J., and Knight, S. C., 1994b, Dendritic cells from HIV-1 infected individuals show reduced capacity to stimulate autologous T-cell proliferation, Immunol. Lett. 43(1–2):39–43.PubMedCrossRefGoogle Scholar
  75. Rodriguez, E. R., Nasim, S., Hsia, J., Sandin, R. L., Ferreira, A., Hilliard, B. A., Ross, A. M., and Garrett, C. T., 1991, Cardiac myocytes and dendritic cells harbor human immunodeficiency virus in infected patients with and without cardiac dysfunction: Detection by multiplex, nested, polymerase chain reaction in individually microdissected cells from right ventricular endomyocardial biopsy tissue, Am. J. Cardiol. 68:1511–1519.PubMedCrossRefGoogle Scholar
  76. Roederer, M., Dobbs, J. G., Anderson, M. T., Rajau, P. A., Herzenberg, L. A., and Herzenberg, L. A., 1995, CD8 naive T cell counts decrease progressively in HIV infected adults, J. Clin. Invest. 95(5):2061–2066.PubMedCrossRefGoogle Scholar
  77. Sallusto, F., and Lanzavecchia, A., 1994, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, J. Exp. Med. 179:1109–1118.PubMedCrossRefGoogle Scholar
  78. Schnittman, S. M., Lane, H. C., Greenhouse, J., Justement, J. S., Baseler, M., and Fauci, A. S., 1990, Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: Evidence for a role in the selective T-cell functional defects observed in infected individuals, Proc. Natl. Acad. Sci. USA 87:6058–6062.PubMedCrossRefGoogle Scholar
  79. Schuler, G., and Steinman, R. M., 1985, Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro, J. Exp. Med. 161:526–546.PubMedCrossRefGoogle Scholar
  80. Shah, P. D., Gilbertson, S. M., and Rowley, D. A., 1985, Dendritic cells that have interacted with antigen are targets for natural killers, J. Exp. Med. 162:625–636.PubMedCrossRefGoogle Scholar
  81. Steinman, R. M., Kaplan, G., Witmer, M. D., and Cohn, Z. A., 1979, Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, maintenance in vitro, and new surface markers of dendritic cells, J. Exp. Med. 149:1–16.PubMedCrossRefGoogle Scholar
  82. Takahashi, H., Nakagawa, Y., Yokomuro, K., and Berzofsky, J. A., 1993, Induction of CD8+ cytotoxic T lymphocytes by immunization with syngeneic irradiated HIV-1 envelope derived peptide-pulsed dendritic cells, Int. Immunol. 5(8):849–857.PubMedCrossRefGoogle Scholar
  83. Thomas, R., Davis, L. S., and Lipsky, P. E., 1993, Isolation and characterization of human peripheral blood dendritic cells, J. Immunol. 150:821–834.PubMedGoogle Scholar
  84. Tschachler, E., Groh, U., Popovic, M., Mann, D. L., Konrad, K., Safai, B., Eron, L., diMarzo Veronese, F., Wolff, K., and Stingl, G., 1987, Epidermal Langerhans cells: A target for HTLV-III/LAV infection, J. Invest. Dermatol. 88:233–237.PubMedCrossRefGoogle Scholar
  85. Tsunetsugu-Yokota, Y., Akagawa, K., Kimoto, H., Suzuki, K., Iwasaki, M., Yasuda, S., Hausser, G., Hultgren, C., Meyerhans, A., and Takemolri, T., 1995, Monocyte-derived cultured dendritic cells are susceptible to human immunodeficiency virus infection and transmit virus to resting T cells in the process of nominal antigen presentation, J. Virol. 69:4544–4547.PubMedGoogle Scholar
  86. Valentin, H., Nugeyre, M.-T., Vuillier, F., Boumsell, L., Schmid, M., Barre-Sinoussi, B., and Pereira, R. A., 1994, Two subpopulations of human triple-negative thymic cells are susceptible to infection by human immunodeficiency virus type 1 in vitro, J. Virol. 68:3041–3050.PubMedGoogle Scholar
  87. Van Noesel, C. J. M., Gruters, R. A., Terpstra, F. G., Shellekens, P. A., van Lier, R. A. W., and Miedema, F., 1990, Functional and phenotypic evidence for a selective loss of memory T cells in asymptomatic HIV-infected men, J. Clin. Invest. 86:293–299.PubMedCrossRefGoogle Scholar
  88. Van Voorhis, W. C., Hair, L. S., Steinman, R. M., and Kaplan, G., 1982, Human dendritic cells: Enrichment and characterization from peripheral blood, J. Exp. Med. 155:1172–1187.PubMedCrossRefGoogle Scholar
  89. Von Stemm, A. M. R., Ramsauer, J., Tenner-Racz, K., Schmidt, H. F., Gigli, I., and Racz, P., 1993, Langerhans cells and interdigitating cells in HIV infection, Adv. Exp. Med. Biol. 329:539–544.CrossRefGoogle Scholar
  90. Wahren, B., Rosen, J., Mathiesen, T., and Wigzell, H., 1989, Common and unique T cell epitopes of HIV-1, J. Acq. Immune Defic. Syndr. 2:448–456.Google Scholar
  91. Weissman, D., Li, Y., Ananworanich, J., Zhou, L. J., Adelsberger, J., Tedder, T. F., Baseler, M., and Fauci, A. S., 1995, Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infectable with human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 92:826–830.PubMedCrossRefGoogle Scholar
  92. Williams, N., Harvey, J. J., Booth, R. F. G., Knight, S.C., 1996, Interleukin-12 restores dendritic cell function and cell mediated immunity in retrovirus infected mice (in preparation).Google Scholar
  93. Young, J. W., and Steinman, R. M., 1988, Accessory cell requirements for the mixed leukocyte reaction and polyclonal mitogens, as studied with a new technique for enriching blood dendritic cells, Cell. Immunol. 111:167–182.PubMedCrossRefGoogle Scholar
  94. Zambruno, G., Mori, L., Marconi, A., Mongiardo, N., De Rienzo, B., Bertazzoni, U., and Giannetti, A., 1991. Detection of HIV in epidermal Langerhans cells of HIV-infected patients using the polymerase chain reaction, J. Invest. Dermatol. 96:979–982.PubMedCrossRefGoogle Scholar
  95. Zinkernagel, R. M., 1988, Virus-triggered AIDS: A T-cell mediated immunopathology? Immunol. Today 9:370–371.PubMedCrossRefGoogle Scholar
  96. Zucker-Franklin, D., Fraig, M., and Grusky, G., 1995, Interaction of human immunodeficiency virus type 1, human T-cell leukemia/lymphoma virus type I (HTLV-I), and HTLV-II with in vitro-generated dendritic cells, Clin. Diagn. Lab. Immunol. 2(3):343–348.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Stella C. Knight
    • 1
  1. 1.Imperial College School of Medicine, Antigen Presentation Research GroupNorthwick Park Institute for Medical ResearchHarrowUK

Personalised recommendations