Macrophage Functions in HIV-1 Infection

  • Sharon M. Wahl
  • Jan M. Orenstein
  • Phillip D. Smith

Abstract

Human immunodeficiency virus type 1 (HIV-1) infects host cells through the CD4 molecule expressed on T lymphocytes and mononuclear phagocytes. CD4 recognition, binding, and internalization of HIV-1 precede viral replication in CD4+ T cells, which subsequently undergo depletion leading to immunosuppression. Mononuclear phagocytes also are infected by HIV-1, but depletion is not an inevitable consequence of infection. This enables HIV-1-infected mononuclear phagocytes to contribute to AIDS pathogenesis by serving as a viral reservoir, as a mobile source of virus, and as an amplifier of immune dysfunction. In this chapter, we focus on the role of mononuclear phagocytes in HIV-1 infection and the consequences of monocyte/macrophage-virus interactions in compromising host defense. Monocyte cell lines have been used as models for HIV-1 infection because of the difficulty in obtaining primary cells, but these model systems have generated considerable controversy concerning tropism, viral replication, and chronicity. Therefore, we emphasize information from studies of primary cells of monocyte lineage in vitro and from analysis of these cells in vivo to develop a clearer picture of the contribution of mononuclear phagocytes to AIDS pathogenesis.

Keywords

Lymphoma Dementia Sarcoma Integrin Cyclosporin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akridge, R. E., Oyafuso, L., and Reed, S. G., 1994, Interleukin 10 is induced during HIV-1 infection and is capable of decreasing viral replication in human macrophages, J. Immunol. 153:5782–5789.PubMedGoogle Scholar
  2. Alizon, M., and Dragic, T., 1994, CD26 antigen and HIV fusion? [Technical Comments] Science 264:1161–1162.CrossRefPubMedGoogle Scholar
  3. Allen, J. B., McCartney-Francis, N., Smith, P. D., Simon, G., Gartner, S., Wahl, L. M., Popovic, M., and Wahl, S. M., 1990, Expression of IL-2 receptors by monocytes from patients with acquired immune deficiency syndrome and induction of monocyte IL-2 receptors by human immunodeficiency virus-1 in vitro, J. Clin. Invest. 85:192–199.CrossRefPubMedGoogle Scholar
  4. Allen, J. B., Wong, H. L., Guyre, P., Simon, G., and Wahl, S. M., 1991, Circulating FC7RIII positive monocytes in AIDS patients with elevated levels of transforming growth factor β, J. Clin. Invest. 87:1773–1779.CrossRefPubMedGoogle Scholar
  5. Amendola, A., Lombardi, G., Oliverio, S., Colizzi, V., and Piacentini, M., 1994, HIV-1 gp120-dependent induction of apoptosis in antigen-specific human T cell clones is characterized by ‘tissue’ transglutaminase expression and prevented by cyclosporin A, FEBS 339:258–264.CrossRefGoogle Scholar
  6. Amerongen, H. M., Weltzin, R., Farnet, C. M., Michetti, P. L., Haseltine, W A., and Neutra, M. R., 1991, Transepithelial transport of HIV-1 by intestinal M cells: A mechanism for transmission of AIDS, J. Acq. Immune Defic. Syndr. 4:1773–1779.Google Scholar
  7. Ascher, M. S., and Sheppard, H. W., 1988, AIDS as immune system activation, a model for pathogenesis, Clin. Exp. Immunol 73:165–167.PubMedGoogle Scholar
  8. Baldwin, G. C., Fleischmann, J., Chung, Y., Koyanagi, Y., Chen, I. S. Y., and Golde, D. W., 1990, Human immunodeficiency virus causes mononuclear phagocyte dysfunction, Proc. Natl. Acad. Sci. USA 87:3933–3937.CrossRefPubMedGoogle Scholar
  9. Bender, B. S., Davidson, B. L., Kline, R., Brown, C., and Quinn, T. C., 1988, Role of mononuclear phagocyte system in the immunopathogenesis of human immunodeficiency virus infection and the acquired immunodeficiency syndrome, Rev. Infect. Dis. 10:1142–1154.CrossRefPubMedGoogle Scholar
  10. Birdsall, H. H., Trial, J., Hallum, J. A., de Jong, A. L., Green, L. K., Bandres, J. C., Smole, S. C., Laughter, A. H., and Rossen, R. D., 1994, Phenotypic and functional activation of monocytes in HIV-1 infection: Interactions with neural cells, J. Leuk. Biol. 56:310–317.Google Scholar
  11. Bou-Habib, D. C., Roderiquez, G., Oravecz, T., Berman, P. W., Lusso, P., and Norcross, M. A., 1994, Cryptic nature of envelope V3 region epitopes protects primary M-tropic human immunodeficiency virus type I from antibody neutralization, J. Virol. 68:6006–6013.PubMedGoogle Scholar
  12. Breen, E. C., Rerzai, A. R., Nakajima, K., Beall, G. N., Mitsuyasu, R. T., Hirano, T., Koshimoto, T., and Martinez-Maza, O., 1990, Infection with HIV is associated with elevated IL-6 levels and production, J. Immunol. 144:480–484.PubMedGoogle Scholar
  13. Brighty, D. W., Rosenberg, M., Chen, I. S. Y., and Ivey-Hoyle, M., 1991, Envelope proteins from clinical isolates of human immunodeficiency virus type 1 that are refractory to neutralization by soluble CD4 possess high affinity for the CD4 receptor, Proc. Natl. Acad. Sci. USA 88:7802–7805.CrossRefPubMedGoogle Scholar
  14. Broder, C. C., Nussbaum, O., Gutheil, W. G., Bachovchin, W. W., and Berger, E. A., 1994, CD26 antigen and HIV fusion? [Technical Comments] Science 264:1156–1159.CrossRefPubMedGoogle Scholar
  15. Bugelski, P. J., Kirsh, R., and Hart, T. K., 1994, HIV protease inhibitors: Effects on viral maturation and physiologic function in macrophages, J. Leuk. Biol. 56:374–380.Google Scholar
  16. Bukrinsky, M. I., Haggerty, S., Dempsey, M. P., Sharova, N., Adzhubel, A., Spitz, L., Lewis, P., Goldfarb, D., Emerman, M., and Stevenson, M., 1993, A nuclear localization signal within HIV-1 matrix protein that govens infection of non-dividing cells, Nature 365:666–669.CrossRefPubMedGoogle Scholar
  17. Callebaut, C., Krust, B., Jacotot, E., and Hovanessian, A. G., 1993, T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells, Science 262:2045–2050.CrossRefPubMedGoogle Scholar
  18. Camerini, D., Planelles, V., and Chen, I. S., 1994, CD26 antigen and HIV fusion? [Technical Comments] Science 264:1160–1161.CrossRefPubMedGoogle Scholar
  19. Cann, A. J., Churcher, M. J., Boyd, M., O’Brien, W., Zhao, J. Q., Zack, J., and Chen, I. S., 1992, The region of the envelope gene of human immunodeficiency virus type-1 responsible for determination of cell tropism, J. Virol. 66:305–309.PubMedGoogle Scholar
  20. Capsoni, F., Minonzio, F., Ongari, A. M., Rizzardi, G. P., Lazzarin, A., and Zanussi, C., 1992, Monocyte-derived macrophage function in HIV-infected subjects: In vitro modulation by rIFN-gamma and rGM-CSF, Clin. Immunol. Immunopathol. 62:176–182.CrossRefPubMedGoogle Scholar
  21. Chaturvedi, S., Frame, P., and Newman, S. L., 1995, Macrophages from human immunodeficiency virus-positive persons are defective in host defense against, Histoplasma capsulatum, J. Infect. Dis. 171:320–327.CrossRefPubMedGoogle Scholar
  22. Chehimi, J., Starr, S. E., Frank, I., D’Andrea, A., Ma, X., MacGregor, R. R., Sennelier, J., and Trinchieri, G., 1994, Impaired interleukin 12 production in human immunodeficiency virus-infected patients, J. Exp. Med. 179:1361–1366.CrossRefPubMedGoogle Scholar
  23. Chesebro, B., Wehrly, K., Nishino, J., and Perryman, S., 1992, Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: Definition of critical amino acids involved in cell tropism, J. Virol. 66:6547–6554.PubMedGoogle Scholar
  24. Cheynier, R., Henrichwark, S., Hadida, F., Pelletier, E., Oksenhendler, E., Autran, B., and Wain-Hobson, S., 1994, HIV and T cell expansion in splenic white pulp is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes, Cell 78:373–387.CrossRefPubMedGoogle Scholar
  25. Clark, S. J., Saag, M. S., Decker, W. D., Campbell-Hill, S., Roberson, J. L., Veldkamp, P. J., Kappes, J. C., Hahn, B. H., and Shaw, G. M., 1991, High titers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection, N. Engl. J. Med. 324:954–960.CrossRefPubMedGoogle Scholar
  26. Clements, G. J., Prince-Jones, M. J., Stephens, P. E., Sutton, C., Schultz, T. F., Clapham, P. R., McKeating, J. A., McClure, M. O., Thomson, S., Marsh, M., Kay, J., Weiss, R. A., and Moore, J. P., 1991, The V3 loops of the HIV-1 and HIV-2 surface glycoproteins contain proteolytic cleavage sites: A possible function in viral fusion? AIDS Res. Hum. Retrovir. 7:3–16.PubMedGoogle Scholar
  27. Clerici, M., and Shearer, G. M., 1994, The Thl-Th2 hypothesis of HIV infection: New insights, Immunol. Today 15:575–581.CrossRefPubMedGoogle Scholar
  28. Clerici, M., Lucey, D. R., Berzofsky, J. A., Pinto, L. A., Wynn, T. A., Blatt, S. P., Dolan, M. J., Hendrix, C. W., Wolf, S. F., and Shearer, G. M., 1993, Restoration of HIV-specific cell-mediated immune responses by interleukin-12 in vitro, Science 262:1721–1724.CrossRefPubMedGoogle Scholar
  29. Clerici, M., Synn, T. A., Berzofsky, J. A., Blatt, S. P., Hendrix, C. W., Sher, A., Coffman, R. L., and Shearer, G. M., 1994, Role of interleukin-10 in T helper cell dysfunction in asymptomatic individuals infected with the human immunodeficiency virus, J. Clin. Invest. 93:768–775.CrossRefPubMedGoogle Scholar
  30. Crowe, S. M., Carlin, J. B., Stewart, K. I., Lucas, C. R., and Hoy, L. F., 1991, Predictive value of CD4 lymphocyte numbers for the development of opportunistic infections and mallignancies in HIV-infected persons, J. Acq. Immune Defic. Syndr. 4:770–776.Google Scholar
  31. Crowe, S. M., Vardaxis, N. J., Kent, S. J., Maerz, A. L., Hewish, M. J., McGrath, M. S., and Mills, J., 1994, HIV infection of monocyte-derived macrophages in vitro reduces phagocytosis of Candida albicans, J. Leuk. Biol. 56:318–327.Google Scholar
  32. Daar, E. S., Moudgil, T., Meyer, R. D., and Ho, D. D., 1991, Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection, N. Engl. J. Med. 324:961–964.CrossRefPubMedGoogle Scholar
  33. Dalgleish, A., 1995, HIV and CD26, Nature Med. 1:881.CrossRefPubMedGoogle Scholar
  34. Dalgleish, A. G., Beverly, P. C. L., Clapham, P. R., Crawford, D. H., Greaves, M. R., and Weiss, R. A., 1984, The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus, Nature 312:763–767.CrossRefPubMedGoogle Scholar
  35. Dawson, V. L., Dawson, T. M., Uhl, G. R., and Snyder, S. H., 1993, Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures, Proc. Natl. Acad. Sci. USA 90:3256–3259.CrossRefPubMedGoogle Scholar
  36. De Jong, J. J., Goudsmit, J., Keulen, W., Klaver, B., Krone, W., Tersmette, M., and De Ronde, T., 1992, Human immunodeficiency viruses type-1 chimeric for the envelope V3 domain are distinct in syncytium formation and replication capacity, J. Virol. 66:757–765.PubMedGoogle Scholar
  37. Devaux, C., Boucraut, J., Poirier, G., Corbeau, P., Rey, F., Benkirane, M., Perarnau, B., Kourilsky, F., and Chermann, J. C., 1990, Anti-β2-microglobulin monoclonal antibodies mediate a delay in HIV-1 cytopathic effect on MT4 cells, Res. Immunol. 141:357–372.CrossRefPubMedGoogle Scholar
  38. Dezube, B., Pardee, A. B., Beckett, L. A., Ahlers, C. M., Ecto, L., Allen-Ryan, J., Anisowicz, A., Sager, R., and Crumpacker, C. S., 1992, Cytokine dysregulation in AIDS: In vivo expression of mRNA of tumor necrosis factor a and its correlation with that of the inflammatory cytokine GRO, J. Acq. Immune Defic. Syndr. 5:1099–1104.Google Scholar
  39. Diaz-Mitoma, E., Kumar, A., Karimi, S., Kryworuchko, M., Daftarian, P., Creery, W. D., Filion, L. G., and Cameron, W., 1995, Expression of interleukin (IL)-IO, IL-4 and interferon-7 in unstimulated and mitogen stimulated peripheral blood lymphocytes from HIV seropositive patients, Clin. Exp. Immunol. 102:31–39.CrossRefPubMedGoogle Scholar
  40. Dragic, T., Chameau, P., Clavel, F., and Alizon, M., 1992, Complementation of murine cells for human immunodeficiency virus envelope/CD4-mediated fusion in human/murine heterokaryons, J. Virol. 66:4794–4802.PubMedGoogle Scholar
  41. Dubrovsky, L., Ulrich, P., Nuovo, G. J., Manogue, K. R., Cerami, A., and Bukrinsky, M., 1995, Nuclear localization signal of HIV-1 as a novel target for therapeutic intervention, Mol. Med. 1:217–230.PubMedGoogle Scholar
  42. Duh, E. J., Maury, W. J., Folks, T. M., Fauci, A. S., and Rabson, A. B., 1989, Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-KB sites in the long terminal repeat, Proc. Natl. Acad. Sci. USA 86:5974–5978.CrossRefPubMedGoogle Scholar
  43. Dukes, C. S., Matthews, T. J., and Weinberg, J. B., 1993, Human immunodeficiency virus type 1 infection of human monocytes and macrophages does not alter their ability to generate on oxidative burst, J. Infect. Dis. 168:459–462.CrossRefPubMedGoogle Scholar
  44. Dukes, C., Yu, Y., Rivadeneira, E. D., Sauls, D. L., Liao, H. X., Haynes, B. F., and Weinberg, J. B., 1995, Cellular CD44S as a determinant of HIV-1 infection and cellular tropism, J. Virol. 69:4000–4005.PubMedGoogle Scholar
  45. Dunne, A. L., Siregar, H., Mills, J., and Crowe, S. M., 1994, HIV replication of chronically infected macrophages is not inhibited by the Tat inhibitors Ro-5-3335 and Ro-24-7429, J. Leuk. Biol. 56:369–373.Google Scholar
  46. Eales, L.-J., Moshtael, O., and Pinching, J., 1987, Microbicidal activity of monocyte derived macrophages in AIDS and related disorders, Clin. Exp. Immunol. 67:227–235.PubMedGoogle Scholar
  47. Embretson, J., Zupancic, M., Ribas, J. L., Burke, A., Racz, P., Tenner-Racz, K., and Haase, A. T., 1993, Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS, Nature 362:359–362.CrossRefPubMedGoogle Scholar
  48. Emilie, D. M., Peuchmaur, M. C., Maillot, M. C., Crevon, N., Brousee, J. F., Delfraissy, J., Dormont, P., and Galanaud, P., 1990, Production of interleukins in human immunodeficiency virus-1-replicating lymph nodes, J. Clin. Invest. 86:148–159.CrossRefPubMedGoogle Scholar
  49. Estevez, M. E., Ballart, I. J., Diez, R. A., Planes, N., Scaglione, C., and Sen, L., 1986, Early defect of phagocytic cell function in subjects at risk for acquired immunodeficiency syndrome, Scand. J. Immunol. 24:215–221.CrossRefPubMedGoogle Scholar
  50. Fan, S. X., Turpin, J. A., Aronovitz, J. R., and Meltzer, M. S., 1994, Interferon-7 protects primary monocytes against infection with human immunodeficiency virus type 1, J. Leuk. Biol. 56:362–368.Google Scholar
  51. Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A., 1996, HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor, Science 272:872–877.CrossRefPubMedGoogle Scholar
  52. Finberg, R. W., Wahl, S. M., Allen, J. B., Soman, G., Strom, T. B., Murphy, J. R., and Nichols, J. C., 1991, Selective elimination of HIV-1 infected cells using an IL-2 receptor specific cytotoxin, Science 252:1703–1705.CrossRefPubMedGoogle Scholar
  53. Fouchier, R. A. M., Groenink, M., Kootstra, N. A., Tersmette, M., Huisman, H. G., Miedema, F., and Schuitemaker, H., 1992, Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule, J. Virol. 66:3183–3187.PubMedGoogle Scholar
  54. Fox, C. H., Kotler, D. P., Tierney, A. T., Wilson, C. S., and Fauci, A. S., 1989, Detection of HIV-1 RNA in lamina propria of patients with AIDS and gastrointestinal disease, J. Infect. Dis. 159:467–471.CrossRefPubMedGoogle Scholar
  55. Fox, C. H., Tenner-Racz, K., Racz, P., Firpo, A., Rizzo, P. A., and Fauci, A. S., 1991, Lymphoid germinal centers are reservoirs of human immunodeficiency virus type 1 RNA, J. Infect. Dis. 164:1051–1057.CrossRefPubMedGoogle Scholar
  56. Fuchs, D., Hausen, A., Reibnegger, G., Werner, E. R., Werner-Felmayer, G., Dierich, M. P., Wachter, H., 1989, Interferon-7 concentrations are increased in sera from individuals infected with human immunodeficiency virus type 1, J. Acq. Immune. Defic. Syndr. 2:158–162.Google Scholar
  57. Gan, H., Ruef, C., Hall, B. F., Tobin, E., Remold, H. G., and Mellors, J. W., 1991, Interleukin-6 expression in primary macrophages infected with human immunodeficiency virus-1 (HIV-1), AIDS Res. Hum. Retrovir. 7:671.CrossRefPubMedGoogle Scholar
  58. Gartner, S., Markovitz, P., Markovitz, D. M., Kaplan, M. H., Gallo, R. C., and Popovic, M., 1986, The role of mononuclear phagocytes in HTLV-III/LAV infection, Science 233:215–219.CrossRefPubMedGoogle Scholar
  59. Gendelman, H. E., Phelps, W., Feigenbaum, L., Ostrove, J. M., Adachi, A., Howley, P. M., Khoury, G., and Ginsberg, H. S., 1986, Transactivation of the human immunodeficiency virus long terminal repeat sequence by DNA viruses, Proc. Natl. Acad. Sci. USA 83:9759–9763.CrossRefPubMedGoogle Scholar
  60. Gendelman, H. E., Orenstein, J. M., Martin, M. A., Ferruca, C., Mitra, R., Phipps, T., Wahl, L. A., Lane, H. C., Fauci, A. S., Burke, D. S., Skillman, D., and Meltzer, M. S., 1988, Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor-1 treated monocytes, J. Exp. Med. 167:1428–1441.CrossRefPubMedGoogle Scholar
  61. Gendelman, H. E., Baca, L. M., Turpin, J., Kalter, D. C., Hansen, B., Orenstein, J. M., Dieffenbach, C., Friedman, R. M., and Meltzer, M. S., 1990a, Regulation of HIV replication in infected monocytes by interferon a: Mechanisms for viral restriction, J. Immunol. 145:2669–2677.PubMedGoogle Scholar
  62. Gendelman, H. E., Friedman, R. M., Joe, S., Baca, L. M., Turpin, J., Dveskler, G., Meltzer, M. S., and Dieffenbach, C., 1990b, A selective defect of interferon-α production in human immunodeficiency virus-infected monocytes, J. Exp. Med. 172:1433–1442.CrossRefPubMedGoogle Scholar
  63. Gilles, P. N., Lathey, J. L., and Spector, S. A., 1995, Replication of macrophage-tropic and T-cell-tropic strains of human immunodeficiency virus type 1 as augmented by macrophage-endothelial cell contact, J. Virol. 69:2133–2139.PubMedGoogle Scholar
  64. Graziosi, C., Pantaleo, G., Gantt, K. R., Fortin, J. P., Demarest, J. F., Cohen, O. J., Sekaly, R. P., and Fauci, A. S., 1994, Lack of evidence for the dichotomy of TH1 and TH2 predominance in HIV-infected individuals, Science 265:248–252.CrossRefPubMedGoogle Scholar
  65. Griffin, G. E., Leung, K., Folks, T. M., Kunkel, S., and Nabel, G. J., 1989, Activation of HIV gene expression during monocyte differentiation by induction of NF-kappa B, Nature 339:70–73.CrossRefPubMedGoogle Scholar
  66. Gruber, M. F., Weih, K. A., Boone, E. J., Smith, P. D., and Clouse, K. A., 1995, Endogenous macrophage CSF production is associated with viral replication in HIV-1-infected human monocyte-derived macrophages, J. Immunol. 154:5528–5535.PubMedGoogle Scholar
  67. Gupta, S., Vayuvegula, B., Ruhling, M., and Thorton, M., 1987, Interleukin 1 and interleukin 2 production in the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex, J. Clin. Immunol. 22:113–116.Google Scholar
  68. Gutheil, W G., Subramanyam, M., Flentke, G. R., Sanford, D. G., Munoz, E., Huber, B. T., and Bachovchin, W. W., 1994, Human immunodeficiency virus 1 Tat binds to dipeptidyl aminopeptidase IV (CD26): A possible mechanism for Tat’s immunosuppressive activity, Proc. Natl. Acad. Sci. USA 91:6594–6598.CrossRefPubMedGoogle Scholar
  69. Harper, M. E., Marselle, L. M., Gallo, R. C., and Wong-Staal, F., 1986, Detection of lymphocytes expressing human T-lymphocyte virus type-III in lymph nodes and peripheral blood from infected individuals by in situ hybridization, Proc. Natl. Acad. Sci. USA 83:772–776.CrossRefPubMedGoogle Scholar
  70. Harriman, G. R., Smith, P. D., Home, M. K., Fox, C. H., Koenig, S., Lack, E. E., Lane, H. C., and Fauci, A. S., 1989, Vitamin B12 malabsorption in patients with acquired immunodeficiency syndrome, Arch. Intern. Med. 149:2039–2041.CrossRefPubMedGoogle Scholar
  71. Haseltine, W. A., 1991, Molecular biology of the human immunodeficiency virus type 1, FASEB J. 5:2349–2360.PubMedGoogle Scholar
  72. Heath, S., Tow, G., Taw, J. O., Szakal, A. K., and Burton, G. F., 1995, Follicular dendritic cells and human immunodeficiency virus infectivity, Nature 377:740–744.CrossRefPubMedGoogle Scholar
  73. Heinzinger, N. K., Bukrinsky, M. I., Haggerty, S. A., Ragland, A. M., Lee, M.-A., Kewalramani, V., Gendelman, H. E., Ratner, L., Stevenson, M., and Emerman, M., 1994, The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in non-dividing host cells, Proc. Natl. Acad. Sci. USA 91:7311–7315.CrossRefPubMedGoogle Scholar
  74. Ho, D. D., Bredsen, D. E., Vinters, H. V., and Daar, E. S., 1989, The acquired immunodeficiency syndrome (AIDS) dementia complex, Ann. Intern. Med. 111:400–410.CrossRefPubMedGoogle Scholar
  75. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., and Markowitz, M., 1995, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature 373:123–126.CrossRefPubMedGoogle Scholar
  76. Ho, J. L., He, S., Hu, A., Geng, J., Basile, F. G., Almeida, G. B., Saito, A. Y., Laurence, J., and Johnson, W. D., 1995, Neutrophils from human immunodeficiency virus (HFV)-seronegative donors induce HIV replication from HIV-infected patients’ mononuclear cells and cell lines: An in vitro model of HIV transmission facilitated by Chlamydia trachomatis, J. Exp. Med. 181:1493–1505.Google Scholar
  77. Homsy, J., Meyer, M., Tateno, M., Clarkson, S., and Levy, J. A., 1989, The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells, Science 244:1357–1360.CrossRefPubMedGoogle Scholar
  78. Honda, M., Kitamura, K., Mizutani, Y., Oishi, M., Arai, M., Okura, T., Igarahi, K., Yasukawa, K., Hirano, T., Kishimoto, T., Mitsuyasu, R., Chermann, J.-C., and Tokunaga, T., 1990, Quantitative analysis of serum IL-6 and its correlation with increased levels of serum IL-2R in HIV-induced diseases, J. Immunol. 145:4059–4064.PubMedGoogle Scholar
  79. Hwang, S. S., Boyle, T. J., Lyerly, H. K., and Cullen, B. R., 1991, Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1, Science 253:71–74.CrossRefPubMedGoogle Scholar
  80. Israel-Biet, D., Cadranel, J., Beldjord, K., Andrieu, J. M., Jeffrey, A., and Even, P., 1991, Tumor necrosis factor production in HIV-seropositive subjects, J. Immunol 147:490–494.PubMedGoogle Scholar
  81. Janoff, E. N., Wahl, S. M., Thomas, K., and Smith, P. D., 1995, Modulation of human immunodeficiency virus type 1 infection of human monocytes by IgA, J. Infect. Dis. 172:855–858.CrossRefPubMedGoogle Scholar
  82. Jarry, A., Cortez, A., Rene, E., Muzeau, F., and Brousse, N., 1990, Infected and immune cells in the gastrointestinal tract of AIDS patients, An immunohistochemical study of 127 cases, Histopathology 16:133–140.CrossRefPubMedGoogle Scholar
  83. Kazazi, F., Mathijs, J. M., Chang, J., Malafiej, P., Lopez, A., Dowton, D., Sorrell, T. C., Vadas, M. A., and Cunningham, A. L., 1992, Recombinant interleukin 4 stimulates human immunodeficiency virus production by infected monocytes and macrophages, J. Gen. Virol. 73:941–949.CrossRefPubMedGoogle Scholar
  84. Kekow, J., Wachsmann, W., McCutchan, J. A., Cronin, M., Carson, D. A., and Lotz, M., 1990, Transforming growth factor beta and noncytopathic mechanisms of immunodeficiency in human immunodeficiency virus infection, Proc. Natl. Acad. Sci. USA 87:8321–8325.CrossRefPubMedGoogle Scholar
  85. Kent, S. J., Stent, G., Sonza, S., Hunter, S. D., and Crowe, S. M., 1994, HIV-1 infection of monocyte-derived macrophages reduces Fc and complement receptor expression, Clin. Exp. Immunol. 95:450–454.CrossRefPubMedGoogle Scholar
  86. Kido, H., Fukotomi, A., and Katunuma, N., 1991, Tryptase TL2 in the membrane of human T4+ lymphocytes is a novel binding protein of the V3 domain of HIV-1 envelope glycoprotein gp120, FEBS Lett. 286:2233–236.CrossRefGoogle Scholar
  87. Klatzmann, C., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J.-C., and Montagnier, L., 1984, T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature 312:767–768.CrossRefPubMedGoogle Scholar
  88. Koenig, S., Gendelman, H. E., Orenstein, J. M., Dal Canto, M. C., Pezeshkpour, G. H., Yungbluth, M., Janotta, R., Aksamit, A., Martin, M. A., and Fauci, A. S., 1986, Detection of AIDS virus in macrophage in brain tissue from AIDS patients with encephalopathy, Science 233:1089.CrossRefPubMedGoogle Scholar
  89. Koito, A., Hattori, T., Murakami, T., Matsushita, S., Maeda, Y., Yamamoto, T., and Takatsuki, K., 1989, A neutralizing epitope of human immunodeficiency virus type 1 has homologous amino acid sequences with the active site of intra-alpha-trypsin inhibitor, Int. Immunol. 1:613–618.CrossRefPubMedGoogle Scholar
  90. Koot, M., Vos, A. H. V., Keet, R. P. M., DeGoede, R. E. Y., Dercksen, W., Terpstra, F. G., Coutinho, R. A., Miedema, F., and Tersmette, M., 1992, HIV-1 biological phenotype in long term infected individuals, evaluated with an MT-2 cocultivation assay, AIDS 6:49–54.CrossRefPubMedGoogle Scholar
  91. Kornbluth, R. S., 1994, Significance of T cell apoptosis for macrophages in HIV infection, J. Leuk. Biol. 56:247–256.Google Scholar
  92. Kornbluth, R. S., Oh, P. S., Munis, J. R., Cleveland, P. H., and Richman, D. D., 1989, Interferons and bacterial lipopolysaccharide protect macrophages from productive infection of human immunodeficiency virus in vitro, J. Exp. Med. 169:1137–1151.CrossRefPubMedGoogle Scholar
  93. Kotier, D. P., Reka, S., and Clayton, F., 1993, Intestinal mucosal inflammation associated with human immunodeficiency virus infection, Dig. Dis. Sci. 38:1119–1127.CrossRefGoogle Scholar
  94. Koup, R., Safrit, J., Cao, Y., Andres, C., McLeod, G., Borkowsky, G., Farthing, C., and Ho, D., 1994, Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome, J. Virol. 68:4659–4665.Google Scholar
  95. Koyanagi, Y., O’Brien, W. A., Zhao, J. Q., Golde, D. W., Gasson, J. C., and Chen, I. S. Y., 1988, Cytokines alter production of HIV-1 from primary mononuclear phagocytes, Science 241:1673–1675.CrossRefPubMedGoogle Scholar
  96. Kozlowski, P. A., Black, K. P., Shen, L., and Jackson, S., 1995, High prevalence of serum IgA HIV-1 infection-enhancing antibodies in HIV-infected persons, J. Immunol. 154:6163–6173.PubMedGoogle Scholar
  97. Krown, S. E., Niedzwiecki, D., Bhalla, R. B., Flomenberg, B., Bundow, D., and Chapman, D., 1991, Relationship and prognostic value of endogenous interferon-α, β2-microglobulin, and neopterin serum levels in patients with Kaposi’s sarcoma and AIDS, J. Acq. Immune Defic. Syndr. 4:871–880.Google Scholar
  98. Lahdevitra, J., Maury, C. P. J., Teppo, A. M., and Repo, H., 1988, Elevated levels of circulating cachectin/tumor necrosis factor in patients with acquired immunodeficiency syndrome, Am. J. Med. 85:289–291.CrossRefGoogle Scholar
  99. Lau, A. S., and Livesey, J. F., 1989, Endotoxin induction of tumor necrosis factor is enhanced by acid-labile interferon-a in acquired immunodeficiency syndrome, J. Clin. Invest. 84:738–743.CrossRefPubMedGoogle Scholar
  100. Laurent-Crawford, A. G., Krust, B., Riviere, Y., Desgranges, C., Muller, S., Kieny, M. P., Dauguet, C., and Hovanessian, A. G., 1993, Membrane expression of HIV envelope glycoproteins triggers apoptosis in CD4 cells, AIDS Res. Hum. Retrovir. 9:761–773.CrossRefPubMedGoogle Scholar
  101. Lazaro, I., Naniche, D., Signoret, N., Bernard, A. M., Marguet, D., Klatzmann, D., Dragic, T., Alizon, M., and Sattentau, Q., 1994, Factors involved in entry of the human immunodeficiency virus type 1 into permissive cells: Lack of evidence of a role for CD26, J. Virol. 68:6535–6546.PubMedGoogle Scholar
  102. Lazdins, J. K., Klimkait, T., Woods-Cook, K., Walker, M., Alteri, E., Cox, D., Cerletti, N., Shipman, R., Bilbe, G., and McMaster, G., 1991, In vitro effect of transforming growth factor-β on progression of HIV-1 infection in primary mononuclear phagocytes, J. Immunol. 147:1201–1207.PubMedGoogle Scholar
  103. Levy, J., 1993a, Pathogenesis of human immunodeficiency virus infection, Microbiol. Rev. 57:183–289.PubMedGoogle Scholar
  104. Levy, J., 1993b, HIV pathogenesis and long-term survival, AIDS 7:1401–1410.CrossRefPubMedGoogle Scholar
  105. Lotz, M., and Seth, P., 1993, TGF-β and HIV infection, Ann. N.Y. Acad. Sci. 685:501–511.CrossRefPubMedGoogle Scholar
  106. Lund, O., Hansen, J., Sorensen, A. M., Mosekilde, E., Nielsen, J. O., and Hansen, J. E. S., 1995, Increased adhesion as a mechanism of antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus infection, J. Virol. 69:2393–2400.PubMedGoogle Scholar
  107. McCartney-Francis, N., and Wahl, S. M., 1994, TGF-β: A matter of life and death, J. Leuk. Biol. 55:401–409.Google Scholar
  108. McCartney-Francis, N., Mizel, D., Wong, H., Wahl, L. M., and Wahl, S. M., 1990, TGF-β regulates production of growth factor and TGF-β by human peripheral blood monocytes, Growth Factors 4:27–35.CrossRefPubMedGoogle Scholar
  109. McNearney, T., Hornickova, Z., Markham, R., Birdwell, A., Arens, M., Saah, A., and Ratner, L., 1992, Relationship of human immunodeficiency virus type 1 sequence heterogeneity to state of disease, Proc. Natl. Acad. Sci. USA 89:10247–10251.CrossRefPubMedGoogle Scholar
  110. McNeely, T. B., Dealy, M., Dripps, D. J., Orenstein, J. M., Eisenberg, S. P., and Wahl, S. M., 1995, Secretory leukocyte protease inhibitor: A human saliva protein exhibiting anti-HIV-1 activity in vitro, J. Clin. Invest. 96:456–464.CrossRefPubMedGoogle Scholar
  111. Manbondzo, A., Le Naour, R., Raoul, H., Clayette, P., Lafuma, C., Barré-Sinoussi, Cayre, Y., and Dormont, D., 1991, In vitro infection of macrophages by HIV: Correlation with cellular activation, synthesis of tumor necrosis factor alpha and proteolytic activity, Res. Virol. 142:205.CrossRefGoogle Scholar
  112. Merrill, J. E., and Chen, I. S., 1991, HIV-1, macrophages, glial cell, and cytokines in AIDS nervous system disease, FASEB J. 5:2391–2397.PubMedGoogle Scholar
  113. Merrill, J. E., Koyanagi, Y., and Chen, I. S. Y., 1989, Interleukin-1 and TNF-α can be induced from mono-nuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor, J. Virol. 63:4404–4408.PubMedGoogle Scholar
  114. Meyaard, L., Otto, S. A., Jonker, R. R., Mijnster, M. J., Keet, R. P. M., and Miedema, F., 1992, Programmed death of T cells in HIV-1 infection, Science 257:217–219.CrossRefPubMedGoogle Scholar
  115. Meyaard, L., Schuitemaker, H., and Miedema, F., 1993, T-cell dysfunction in HIV infection: Anergy due to defective antigen presenting cell function, Immunol. Today 14:161–164.CrossRefPubMedGoogle Scholar
  116. Meylan, P. R. A., Guatelli, J. C., Munis, J. R., Richman, D. D., and Kornbluth, R. S., 1993, Mechanisms for the inhibition of HIV replication by interferons-α,-β,-γ in primary macrophages, Virology 193:138–148.CrossRefPubMedGoogle Scholar
  117. Mintz, M., Rapaport, R., Oleske, J. M., Connor, E. M., Koenigsberger, M. R., Denny, T., and Epstein, L. G., 1989, Elevated serum levels of tumor necrosis factor are associated with progressive encephalopathy in children with acquired immunodeficiency syndrome, Am. J. Dis. Child. 143:771–774.PubMedGoogle Scholar
  118. Mitsuya, H., and Yarchoan, R., 1994, Development of antiretroviral therapy for AIDS and related disorders, in: Textbook of AIDS Medicine (S. Broder, T. C. Merigan, and D. Bolognesi, eds.), Williams & Wilkins, Baltimore, pp. 721–742.Google Scholar
  119. Molina, J.-M., Scadden, D. T., Byrn, R., Dinarello, C., and Groopman, J. E., 1990a, Production of tumor necrosis factor a by monocytic cells infected with human immunodeficiency virus, J. Clin. Infect. 144:970–975.Google Scholar
  120. Molina, J. M., Scadden, D. T., Amirault, C., Woon, A., Vannier, E., Dinarello, C. A., and Groopman, J. E., 1990b, Human immunodeficiency virus does not induce interleukin 1, interleukin 6, or tumor necrosis factor a in mononuclear cells, J. Virol. 64:2901–2906.PubMedGoogle Scholar
  121. Montaner, L. J., Doyle, A. G., Collin, M., Georges, H., James, W., Minty, A., Caput, D., Ferrar, P., and Gordon, S., 1993, Interleukin 13 inhibits human immunodeficiency virus type 1 production in primary blood-derived human macrophages in vitro, J. Exp. Med. 178:743–747.CrossRefPubMedGoogle Scholar
  122. Morens, D. M., 1994, Antibody-dependent enhancement of infection and the pathogenesis of viral disease, Clin. Infect. Dis. 19:500–512.CrossRefPubMedGoogle Scholar
  123. Moore, J. P., McKeating, J. A., Norton, W. A., and Sattentau, Q. J., 1991, Direct measurement of soluble CD4 binding to human immunodeficiency virus type 1 virions: gp120 dissociation and its implications for virus-cell binding and fusion reactions and their neutralization by soluble CD4, J. Virol. 65:1133–1140.PubMedGoogle Scholar
  124. Morganti-Kossmann, M. C., Kossmann, T., and Wahl, S. M., 1992, Cytokines and neuropathology, Trends Pharmacol. 13:286–290.CrossRefGoogle Scholar
  125. Morimoto, C., Lord, C. I., Zhang, C., Duke-Cohan, J. S., Letvin, N. L., and Schlossman, S. F., 1994, Role of CD26/ dipeptidyl peptidase IV in human immunodeficiency virus type 1 infection and apoptosis, Proc. Natl. Acad. Sci. USA 91:9960–9964.CrossRefPubMedGoogle Scholar
  126. Mosca, J. D., Bednarik, D. P., Faj, N. B. K., Rosen, C. A., Sodroski, J. G., Haseltine, W. A., and Pitha, P. M. V., 1987, Herpes simplex virus type-1 can reactivate transcription of latent human immunodeficiency virus, Nature 325:67–70.CrossRefPubMedGoogle Scholar
  127. Mosier, D., and Sieburg, H., 1994, Macrophage-tropic HIV: Critical for AIDS pathogenesis? Immunol. Today 15:332–339.CrossRefPubMedGoogle Scholar
  128. Munis, J. R., Richman, D. D., and Kornbluth, R. S., 1990, Human immunodeficiency virus-1 infection of macrophages in vitro neither induces tumor necrosis factor (TNF)/cachectin gene expression or alters TNF/ cachectin induction by lipopolysaccharide, J. Clin. Invest. 85:591–596.CrossRefPubMedGoogle Scholar
  129. Murakami, T., Hattori, T., and Takatsuki, K., 1991, A principal neutralizing domain of human immunodeficiency virus type 1 interacts with proteinase-like molecule(s) at the surface of Molt-4 clone 8 cells, Biochim. Biophys. Acta 1079:279–284.CrossRefPubMedGoogle Scholar
  130. Murray, H. W., Rubin, B. Y., Masur, H., and Roberts, R. B., 1984, Impaired production of lymphokines and immune (gamma) interferon in the acquired imunodeficiency syndrome, N. Engl. J. Med. 310:883–889.CrossRefPubMedGoogle Scholar
  131. Nakajima, K., Martinez-Maza, O., Hirano, T., Breen, E. C., Nishanian, P. G., Salazar-Gonzalez, J. F., Fahey, J. L., and Kishimoto, T., 1989, Induction of IL-6 (B cell stimulatory factor-2/IFN-β2) production by HIV, J. Immunol. 142:531.PubMedGoogle Scholar
  132. Newman, G. W., Kelley, T. G., Gan, H., Kandil, O., Newman, M. J., Pinkston, P., Rose, R. M., and Remold, H. G., 1993, Concurrent infection of human macrophages with HIV-1 and Mycobacterium avium results in decreased cell viability, increased M. avium multiplication and altered cytokine production, J. Immunol. 151:2261–2272.PubMedGoogle Scholar
  133. Nottet, H. S., and Gendelman, H. E., 1995, Unraveling the neuroimmune mechanisms for the HIV-1-associated cognitive/motor complex, Immunol. Today 16:441.CrossRefPubMedGoogle Scholar
  134. Novak, R. M., Holzer, T. J., Kennedy, M. M., Heynen, C. A., and Dawson, G., 1990, The effect of interleukin 4 (BSF-1) on infection of peripheral blood monocyte-derived macrophages with HIV-1, AIDS Res. Hum. Retrovir. 6:973–976.PubMedGoogle Scholar
  135. O’Brien, W. A., Koyanagi, Y., Namazi, A., Zhao, J.-Q., Diagne, A., Idler, K., Zack, J. A., and Chen, I. S. Y., 1990, HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain, Nature 348:69–73.CrossRefPubMedGoogle Scholar
  136. O’Brien, W. A., Namazi, A., Kalhor, H., Mao, S.-H., Zack, J. A., and Chen, I. S., 1994a, Kinetics of human immunodeficiency virus type 1 reverse transcription in blood mononuclear phagocytes are slowed by limitations of nucleotide precursors, J. Virol. 68:1258–1263.PubMedGoogle Scholar
  137. O’Brien, W. A., Mao, S.-H., Cao, Y., and Moore, J. P., 1994b, Macrophage and T-cell tropic HIV-1 strains differ in their susceptibility to neutralization by soluble CD4 at different temperatures, J. Virol. 68:5264–5269.PubMedGoogle Scholar
  138. O’Leary, A. D., and Sweeney, E. C., 1986, Lymphoglandular complexes in the colon: Structure and distribution, Histopathology 10:267–283.CrossRefPubMedGoogle Scholar
  139. Oravecz, T., Roderiquez, G., Koffi, J., Wang, J., Ditto, M., Bou-Habib, D. C., Lusso, P., and Norcross, M. A., 1995, CD26 expression correlates with entry, replication and cytopathicity of monocytotropic HIV-1 strains in a T-cell line, Nature Med. 9:919.Google Scholar
  140. Orenstein, J. M., Meltzer, M. S., Phipps, T., and Gendelman, H. E., 1988, Cytoplasmic assembly and accumulation of human immunodeficiency virus type 1 and 2 in recombinant human colony-stimulating factor-1-treated human monocytes: An ultrastructural study, J. Virol. 62:2578–2586.PubMedGoogle Scholar
  141. Osborn, L., Kunkel, S., and Nabel, G. J., 1989, Tumor necrosis factor a and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kB, Proc. Natl. Acad. Sci. USA 86:2336–2340.CrossRefPubMedGoogle Scholar
  142. Pantaleo, G., and Fauci, A., 1995, New concepts in the immunopathogenesis of HIV infection, Annu. Rev. Immunol 13:487–512.CrossRefPubMedGoogle Scholar
  143. Pantaleo, G., Graziosi, C., Demarest, J. F., Butini, L., Montroni, M., Fox, C. H., Orenstein, J. M., Kotler, D. P., and Fauci, A. S., 1993, HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease, Nature 362:355–358.CrossRefPubMedGoogle Scholar
  144. Patel, M., Yanagishita, M., Roderiquez, G., Bou-Habib, D. C., Oravecz, T., Hascall, V. C., and Norcross, M. A., 1993, Cell-surface heparin sulfate proteoglycan mediates HIV-1 infection of T-cell lines, AIDS Res. Hum. Reirovir. 9:167–174.CrossRefGoogle Scholar
  145. Patience, C., McKnight, A., Clapham, P. R., Boyd, M. T., Weiss, R. A., and Schulz, T. F., 1994, CD26 antigen and HIV fusion? [Technical Comments] Science 264:1156–1162.CrossRefGoogle Scholar
  146. Pennington, J. E., Groopman, J. E., Small, G. J., Laubenstein, L., and Finberg, R., 1986, Effect of intravenous recombinant gamma-interferon on the respiratory burst of blood monocytes from patients with AIDS, J. Infect. Dis. 153:609–612.CrossRefPubMedGoogle Scholar
  147. Perno, C. F., Yarchoan, R., Cooney, D. A., Hartman, N. R., Gartner, S., Popovic, M., Hao, Z., Gerrard, T. L., Wilson, Y. A., Johns, D. G., and Broder, S., 1988, Inhibition of human immunodeficiency virus (HIV-1/HTLV-IIIBaL) replication in fresh and cultured human peripheral blood monocyte/macrophages by azidothymidine and related 2’,3’-dideoxynucleosides, J. Exp. Med. 168:1111.CrossRefPubMedGoogle Scholar
  148. Perno, C. R., Yarchoan, R., Cooney, D. A., Hartman, N. R., Webb, D. S., Hao, Z., Mitsuya, H., Dohns, D. G., and Broder, S., 1989, Replication of human immunodeficiency virus in monocytes. Granulocyte/macrophage colony-stimulating factor (GM-CSF) potentiates viral production yet enhances the antiviral effect mediated by 3’-azido-2’,3’-dideoxythymidine (AZT) and other dideoxynucleoside congeners of thymidine, J. Exp. Med. 169:933–951.CrossRefPubMedGoogle Scholar
  149. Perno, C. F., Aquaro, S., Rosenwirth, B., Balestra, E., Peichl, P., Billich, A., Villani, N., and Calio, R., 1994, In vitro activity of inhibitors of late stages of the replication of HIV in chronically infected macrophages, J. Leuk. Biol. 56:381–386.Google Scholar
  150. Peterson, P. K., Gekkar, G., Chao, C. C., Schut, R., Molitor, T. W., and Balfour, H. H., 1991, Cocaine potentiates HIV-1 replication in human peripheral blood mononuclear cell cocultures, J. Immunol. 146:81–84.PubMedGoogle Scholar
  151. Petito, C. K., and Roberts, B., 1995, Evidence of apoptotic cell death in HIV encephalitis, Am. J. Pathol. 146:1121–1130.Google Scholar
  152. Phillips, A. N., Sabin, C. A., Elford, J., Bofill, M., Emery, V., Griffiths, P. D., Janossy, G., and Lee, C. A., 1994, Viral burden in HIV infection, Nature 367:124.CrossRefPubMedGoogle Scholar
  153. Picker, L. J., and Butcher, E. C., 1992, Physiological and molecular mechanisms of lymphocyte homing, Annu. Rev. Immunol. 10:561–591.CrossRefPubMedGoogle Scholar
  154. Pluda, J. M., Yarchoan, R., McAtee, N., Smith, P. D., Thomas, R., Oette, D., Maha, M., Wahl, S. M., Myers, C., and Broder, S., 1990, A feasibility study using an alternating regimen of azidothymidine (AZT) and recombinant granulocyte-macrophage colony stimulating factor (GM-CSF) in patients with severe human immunodeficiency virus (HIV) infection and leukopenia, Blood 76:463–472.PubMedGoogle Scholar
  155. Poli, G., and Fauci, A. S., 1995, The role of cytokines in the pathogenesis of HIV disease, in: Human Cytokines: Their Role in Human Disease and Therapy (B. B. Aggarwal and R. K. Puri, eds.), Blackwell, Oxford.Google Scholar
  156. Poli, G., Pressler, P., Kinter, A., Duh, E., Timmer, W. C., Rabson, A., Justement, J. S., Stanley, S., and Fauci, A. S., 1990, Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor a by transcriptional and posttranscriptional mechanisms, J. Exp. Med. 172:151–158.CrossRefPubMedGoogle Scholar
  157. Poli, G., Kinter, A. L., Justement, J. S., Bressler, P., Kehrl, J. H., and Fauci, A. S., 1992, Retinoic acid mimics transforming growth factor β in the regulation of human immunodeficiency virus expression in monocytic cells, Proc. Natl. Acad. Sci. USA 89:2689–2693.CrossRefPubMedGoogle Scholar
  158. Pos, O., Stevenhagen, A., Meenhorst, P. L., Kroon, F P., and van Furth, R., 1992, Impaired phagocytosis of Staphylococcus aureus by granulocytes and monocytes of AIDS patients, Clin. Exp. Immunol. 88:23–28.CrossRefPubMedGoogle Scholar
  159. Richman, D. D., Kornbluth, R. S., and Carson, D. A., 1987, Failure of dideoxynucleosides to inhibit human immunodeficiency virus replication in cultured human macrophages, J. Exp. Med. 166:1144–1149.CrossRefPubMedGoogle Scholar
  160. Roderiquez, G., Oravecz, T., Yanagishita, M., Bou-Habib, D. C., Mostowski, H., and Norcross, M. A., 1995, Mediation of human immunodeficiency virus type 1 binding by interaction of cell surface heparan sulfate proteoglycans with the V3 region of envelope gp 120-gp41, J. Virol. 69:2233–2239.PubMedGoogle Scholar
  161. Rodgers, V. D., Fassett, R., and Kagnoff, M. R., 1986, Abnormalities in intestinal mucosal T cells in homosexual populations including those with lymphadenopathy syndrome and acquired immunodeficiency syndrome, Gastroenterology 90:552–558.PubMedGoogle Scholar
  162. Romagnani, S., Del Prete, G., Manetti, R., Ravina, A., Annunziato, F., De Carli, M., Mazzetti, M., Piccinni, M.-P, D’Elios, M. M., Parronchi, P., Sampognaro, S., and Maggi, E., 1994, Role of TH-1/TH-2 cytokines in HIV infection, Immunol Rev. 140:73–92.CrossRefPubMedGoogle Scholar
  163. Roos, M. T. L., Lange, J. M. A., De Goede, R. E. Y., Coutinho, R. A., Schellekens, P. T. A., Miedema, E., and Tersmette, M., 1992, Virus phenotype and immune response in primary human immunodeficiency virus type 1 (HIV-1) infection, J. Infect Dis. 165:427–432.CrossRefPubMedGoogle Scholar
  164. Roux-Lombard, P., Modoux, C., Cruchaud, A., and Dayer, J.-M., 1989, Purified blood monocytes from HIV 1-infected patients produce high levels of TNFα and IL-1, Clin. Immunol. Immunopathol. 50:374–384.CrossRefPubMedGoogle Scholar
  165. Roy. S., Fitz-Gibbon, L., Poulin, L., and Wainberg, M. A., 1988, Infection of human monocytes/macrophages by HIV-1: Effect on secretion of IL-1 activity, Immunology 64:233.PubMedGoogle Scholar
  166. Sattentau, Q. J., and Moore, J. P., 1991, Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding, J. Exp. Med. 174:407–415.CrossRefPubMedGoogle Scholar
  167. Schnittman, S. M., Psallidopoulas, M. C., Lane, H. C., Thompson, L., Baseler, M., Massari, F., Fox, C. H., Salzman, N. P., and Fauci, A. S., 1989, The reservoir for HIV in human peripheral blood is a T cell that maintains expression of CD4, Science 245:305–308.CrossRefPubMedGoogle Scholar
  168. Schragger, L. K., Young, J. M., Fowler, M. G., Mathison, B. J., and Vermund, S. T., 1994, Long-term survivors of HIV-1 infection: Definitions and research challenges, AIDS 8(Suppl. 1):S95–S108.Google Scholar
  169. Schuitemaker, H., Koot, M., Kootstra, N. A., Dereckson, M. W., De Goede, R. E. Y., Van Steenwijk, R. P., Lange, J. M. A., Eeftink Schattenkerk, J. K. M., Miedema, F., and Tersmette, M., 1992a, Biological phenotype of human immunodeficiency virus type 1 clones at different states of infection: Progression of disease is associated with a shift from monocytotrophic to T-cell-tropic virus population, J. Virol. 66:1354–1360.PubMedGoogle Scholar
  170. Schuitemaker, H., Kootstra, N. A., Koppelman, M. H. G., Bruistein, S. M., Huisman, H. G., Tersmette, M., and Miedema, F., 1992b, Proliferation dependent HIV-1 infection of monocytes occurs during differentiation into macrophages, J. Clin. Invest. 89:1154–1160.CrossRefPubMedGoogle Scholar
  171. Schwartz, O., Alizion, M., Heard, J. M., and Danos, O., 1994, Impairment of T cell receptor-dependent stimulation in CD4+ lymphocytes after contact with membrane-bound HIV-1 envelope glycoprotein, Virology 198:360–365.CrossRefPubMedGoogle Scholar
  172. Sheppard, H. W., Lang, W., Ashcer, M. S., Vittinghoff, E., and Winkelstein, W., 1993, The characterization of non-progressors: Long-term HIV-infection with stable CD4+ T-cell levels, AIDS 7:1159–1166.CrossRefPubMedGoogle Scholar
  173. Shioda, T., Levy, J. A., and Cheng-Mayer, C., 1991, Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene, Nature 349:167–169.CrossRefPubMedGoogle Scholar
  174. Sierra-Madero, J. G., Toossi, Z., Horn, D. L., Finegan, C. K., Hoenig, E., and Rich, E. A., 1994, Relationship between load of virus in alveolar macrophages from human imunodeficiency virus type-1 infected persons, production of cytokines and clinical status, J. Infect. Dis. 169:18–27.CrossRefPubMedGoogle Scholar
  175. Skinner, M. A., Langlois, A. J., McDanal, C. B., McDougal, J. S., Bolognesi, D. P., and Matthews, T. J., 1988, Neutralizing antibodies to an immunodominant envelope sequence do not prevent gp120 binding of CD4, J. Virol. 62:4195–4200.PubMedGoogle Scholar
  176. Smith, P. D., 1994, Mucosal immunopathophysiology of HIV infection, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, W. Stober, J. R., McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, pp. 719–728.Google Scholar
  177. Smith, P. D., 1995, Intestinal infections of HIV-1 disease, in: Infections of the Gastrointestinal Tract (M. J. Blaser, P. D. Smith, J. I. Ravdin, H. B. Greenberg, and R. L. Guerrant, eds.), Raven Press, New York, pp. 483–498.Google Scholar
  178. Smith, P. D., Ohura, K., Masur, H., Lane, H. C., Fauci, A. S., and Wahl, S. M., 1984, Monocyte-macrophage function in the acquired immune deficiency syndrome: Defective chemotaxis, J. Clin. Invest. 74:2121–2128.CrossRefPubMedGoogle Scholar
  179. Smith, P. D., Eisner, M. S., Manischewitz, J. F., Gill, V J., Masur, H., and Fox, C. H., 1993, Esophageal disease in AIDS is associated with pathologic processes rather than mucosal human immunodeficiency virus type 1, J. Infect. Dis. 167:547–552.CrossRefPubMedGoogle Scholar
  180. Smith, P. D., Fox, C. H., Masur, H., Winter, H. S., and Ailing, D. W., 1994, Quantitative analysis of mononuclear cells expressing human immunodeficiency virus type 1 RNA in esophageal mucosa, J. Exp. Med. 180:1541–1546.CrossRefPubMedGoogle Scholar
  181. Spira, A. L., Marx, P. A., Patterson, B. K., Mahoney, J., Koup, R. A., Wolinsky, S. M., and Ho, D. D., 1996, Cellular targets of infection and route of viral dissemination following an intravaginal inoculation of SIV into rhesus macaques, J. Exp. Med. 183:215–225.CrossRefPubMedGoogle Scholar
  182. Stamatos, L., and Cheng-Mayer, C., 1993, Evidence that the structural conformation of envelope gp120 affects human immunodeficiency virus type 1 infectivity, host range, and syncytium-forming ability, J. Virol. 67:5635–5639.Google Scholar
  183. Steffen, M., Reinecker, H. C., Petersen, J., Doehn, C., Pfluger, L., Voss, A., and Raedler, A., 1993, Differences in cytokine secretion by intestinal mononuclear cells, peripheral blood monocytes and alveolar macrophages from HIV-infected patients, Clin. Exp. Med. 91:30–36.Google Scholar
  184. Stein, G., Gowda, S., Lifson, J., Penhallow, R., Bensch, K., and Engelman, E., 1987, pH independent HIV entry into CD4+ positive T cell via virus envelope fusion to the plasma membrane, Cell 49:659–668.CrossRefPubMedGoogle Scholar
  185. Strober, W., 1992, Mechanisms of mucosal immunity in relation to AIDS, Ann. Intern. Med. 116:63–77.CrossRefPubMedGoogle Scholar
  186. Szebeni, J., Wahl, S. M., Popovic, M., Wahl, L. M., Gartner, S., Fine, R. L., Skaleric, IL, and Weinstein, J. N., 1989, Dipyridamole potentiates the inhibition of 3’-azido-3’-deoxythymidine and other dideoxynucleosides of human immunodeficiency virus replication in monocyte/macrophages, Proc. Natl. Acad. Sci. USA 86:3842–3846.CrossRefPubMedGoogle Scholar
  187. Szebeni,., Wahl, S. M., Schinazi, R. F., Popovic, M., Gartner, S., Wahl, L. M., Weislow, O. S., Betageri, G., Fine, R. L., Dahlberg, J. E., Hunter, E., and Weinstein, J. N., 1990a, Dipyridamole potentiates the activity of zidovudine and other dideoxynucleosides against HIV-1 in cultured cells, Ann. N.Y. Acad. Sci. 616:613–616.CrossRefGoogle Scholar
  188. Szebeni, J., Wahl, S. M., Wahl, L. M., Gartner, S., Popovic, M., Parker, R., Black, C. D., and Weinstein, J. N., 1990b, Inhibition of HIV-1 in monocyte/macrophage cultures by 2’,3’-dideoxycytidine-5’-triphosphate, free and in liposomes, AIDS Res. Hum. Retovir. 6:691–702.CrossRefGoogle Scholar
  189. Szebeni, J., Dieffenbach, C., Wahl, S. M., Venkateshan, C. N., Yeh, A., Wahl, L. M., Peterfy, M., Friedman, R. M., and Weinstein, J. N., 1991, Induction of interferon-a by human immunodeficiency virus type-1 in human monocyte-macrophage cultures J. Virol. 12:14–61.Google Scholar
  190. Tenner-Racz, K., Racz, P., Thome, C., Meyer, C. G., Anderson, P. J., Schlossman, S. F., and Letvin, N. L., 1993, Cytotoxic effector cell granules recognized by the monoclonal antibody TIA-1 are present in CD8+ lymphocytes in lymph nodes of human immunodeficiency virus-1-infected patients, Am. J. Pathol. 142:1750.PubMedGoogle Scholar
  191. Terai, C., and Carson, D. A., 1991, Pyrimidine nucleotide and nucleic acid synthesis in human monocytes and macrophages, Exp. Cell Res. 193:375–381.CrossRefPubMedGoogle Scholar
  192. Terai, C., Kornbluth, R. S., Pauza, C. D., Richman, D. D., and Carson, D. A., 1991, Apoptosis as mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1, J. Clin. Invest. 87:1710–1715.CrossRefPubMedGoogle Scholar
  193. Tersmette, M., De Goede, R. E. Y., Al, B. J. M., Winkel, I. N., Gruter, R. A., Cuypers, H. T. M., Huisman, H. G., and Miedema, F., 1988, Differential syncytium-inducing capacity of human immunodeficiency virus isolates: Frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex, J. Virol. 62:2026–2032.PubMedGoogle Scholar
  194. Tiemessen, C. T., Meddows-Taylor, S., and Martin, D. J., 1995, Regulation of interleukin-8 gene expression in HIV-1 and mycobacterial infection, 9th Int. Congr. Immunol. Google Scholar
  195. Trial, J., Birdall, H. H., Hallum, J. A., Crane, M. L., Rodriguez-Barradas, M. C., deJong, A. L., Kirshnan, B., Lacke, C. E., Figdor, C. G., and Rosen, R. D., 1995, Phenotypic and functional changes in peripheral blood monocytes during progression of human immunodeficiency virus infection, J. Clin. Invest. 95:1690–1701.CrossRefPubMedGoogle Scholar
  196. Twigg, H. L., Iwamoto, G. K., and Soliman, D. M., 1992, Role of cytokines in alveolar macrophage accessory cell function in HIV-infected individuals, J. Immunol. 149:1462–1469.PubMedGoogle Scholar
  197. Ullrich, R., Zeitz, M., Heise, W., L’age, M., Hoffken, G., and Riecker, E. O., 1989, Small intestinal structure and function in patients infected with human immunodeficiency virus (HIV): Evidence for HIV-induced enteropathy, Ann. Intern. Med. 111:15–21.CrossRefPubMedGoogle Scholar
  198. Valentin, A., Albeit, J., Svenson, S. B., and Åsjo, B., 1992, Blood-derived macrophages produce IL-1, but not TNF-α, after infection with HIV-1 isolates from patients at different stages of disease, Cytokine 4:185–191.CrossRefPubMedGoogle Scholar
  199. Voth, R., Rossol, S., Klein, K., Hess, G., Schutt, K. H., Schroder, H. C., Meyer Zum Buschenfelde, K. H., and Muller, W. E., 1990, Differential gene expression of IFN-α and tumor necrosis factor-a in peripheral blood mononuclear cells from patients with AIDS related complex and AIDS, J. Immunol 144:970–975.PubMedGoogle Scholar
  200. Vyakarnam, A., McKeating, J., Meager, A., and Beverley, P. C., 1990, Tumour necrosis factors (α,β) induced by HIV-1 in peripheral blood mononuclear cells potentiate virus replication, AIDS 4:21–27.CrossRefPubMedGoogle Scholar
  201. Wahl, L. M., Corcoran, M. L., Pyle, S. W., Arthur, J. D., Harel-Bellaw, A., and Farrar, W L., 1989, Human immunodeficiency virus glycoprotein (gp120) induction of monocyte arachidonic acid metabolites and interleukin 1, Proc. Natl. Acad. Sci. USA 86:621–625.CrossRefPubMedGoogle Scholar
  202. Wahl, S. M., 1992, TGF-β in inflammation. A cause and a cure, J. Clin. Immunol. 12:61–74.CrossRefPubMedGoogle Scholar
  203. Wahl, S. M., 1994, Transforming growth factor β: The good, the bad and the ugly, J. Exp. Med. 180:1587–1590.CrossRefPubMedGoogle Scholar
  204. Wahl, S. M., Allen, J. B., Gartner, S., Orenstein, J. M., Chenoweth, D. E., Popovic, M., Arthur, L. O., Farrar, W. L., and Wahl, L. M., 1989, Human immunodeficiency virus and its envelope glycoprotein down-regulate chemotactic ligand receptors and chemotactic function of peripheral blood monocytes, J. Immunol. 142:3553–3559.PubMedGoogle Scholar
  205. Wahl, S. M., Allen, J. B., McCartney-Francis, N., Morganti-Kossmann, M. C., Kossmann, T., Ellingsworth, L., Mergenhange, S. E., and Orenstein, J. M., 1991, Transforming growth factor beta. A potential macrophage and astrocyte-derived mediator of CNS dysfunction in AIDS, J. Exp. Med. 173:891–899.CrossRefGoogle Scholar
  206. Wahl, S. M., Allen, J. B., Weeks, B. S., Wong, H. L., and Klotman, P. E., 1993, TGF-β enhances integrin expression and type IV collagenase secretion in human monocytes, Proc. Natl. Acad. Sci. USA 90:4577–4581.CrossRefPubMedGoogle Scholar
  207. Wahl, S. M., McNeely, T. B., and Eisenberg, S. P., 1995, A SLPI defense against HIV, NIH Catalyst 3:8–9.Google Scholar
  208. Wain-Hobson, S., 1993, Viral burden in AIDS, Nature 366:22.CrossRefPubMedGoogle Scholar
  209. Wam-Hobson, S., 1995, Virological mayhem, Nature 373:102.CrossRefGoogle Scholar
  210. Wei, X., Ghosh, S. K., Taylor, M. E., Johnson, V. A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., Saag, M. S., and Shaw, G. M., 1995, Viral dynamics in human immunodeficiency virus type 1 infection, Nature 373:117–122.CrossRefPubMedGoogle Scholar
  211. Weinberg, J. B., Matthews, T. J., Cullen, B. R., and Malim, M. H., 1991, Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes, J. Exp. Med. 174:1477–1482.CrossRefPubMedGoogle Scholar
  212. Weinstein, J. N., Bunow, B., Welslow, O. S., Schinazi, R. F., Wahl, S. M., Wahl, L. M., and Szebeni, J., 1991, Synergistic drug combinations in AIDS therapy: Dipyridamole-azidothymidine in particular and principles of analysis in general, Ann. NY. Acad. Sci. 616:367–384.CrossRefGoogle Scholar
  213. Weiss, L., Laeffner-Cavaillon, N., Laude, M., Gilquin, J., and Kazatchkine, M. D., 1989, HIV infection is associated with the spontaneous production of interleukin-1 in vivo and with abnormal release of IL-1-alpha in vitro, AIDS 3:695–699.CrossRefPubMedGoogle Scholar
  214. Weissman, D., Poli, G., and Fauci, A. S., 1994, Interleukin-10 blocks HIV replication in macrophages by inhibiting the autocrine loop of TNF-α and IL-6 induction of virus, AIDS Res. Hum. Retrovir. 10:1199–1206.CrossRefPubMedGoogle Scholar
  215. Weissman, D., Li, Y., Orenstein, J. M., and Fauci, A. S., 1995, Both a precursor and a mature population of dendritic cells can bind HIV, J. Immunol. 155:4111–4117.PubMedGoogle Scholar
  216. Welch, G., Wong, H., and Wahl, S. M., 1990, Selective induction of FC7RJII on human monocytes by transforming growth factor-β, J. Immunol. 144:3444–3448.PubMedGoogle Scholar
  217. Weiler, S. K., Joy, A. E., and Temin, H. M., 1980, Correlation between cell killing and massive second-round superinfection by members of subgroups of avian leukosis virus, J. Virol. 33:494–506.Google Scholar
  218. Werner, A., and Levy, J. A., 1993, Human immunodeficiency virus type 1 envelope gp120 is cleaved after incubation with recombinant soluble CD4, J. Virol 67:2566–2574.PubMedGoogle Scholar
  219. Westervelt, P., Trowbridge, D. B., Epstein, L. G., Blumberg, B. M., Li, Y., Hahn, B. H., Shaw, G. M., Price, R. W., and Ratner, L., 1992a, Macrophage tropism determinants of human immunodeficiency virus type 1 in vivo, J. Virol. 66:2577–2582.PubMedGoogle Scholar
  220. Westervelt, P., Henkel, T., Trowbridge, D. B., Orenstein, J., Heuser, J., Gendelman, H. E., and Ratner, L., 1992b, Dual regulation of silent and productive infection in monocytes by distinct human immunodeficiency virus type 1 determinants, J. Virol. 66:3925–3931.PubMedGoogle Scholar
  221. Whelan, W. L., Kirsch, D. R., Kwon-Chung, K. J., Wahl, S. M., and Smith, P. D., 1990, Candida albicans in patients with the acquired immunodeficiency syndrome: Absence of a novel or hypervirulent strain, J. Infect. Dis. 162:513–518.CrossRefPubMedGoogle Scholar
  222. Willey, R. L., Ross, E. K., Buckler-White, A. J., Theodore, T. S., and Martin, M. A., 1989, Functional interactions of constant and variable domains of human immunodeficiency virus type 1 gp120, J. Virol. 63:3595–3600.PubMedGoogle Scholar
  223. Wolinsky, S., Wike, C., Korber, B., Hutto, C., Parks, W. I., Rosenblum, L., Kunstman, K., Furtado, M., and Munoz, J., 1992, Selective transmission of human immunodeficiency virus type-1 from mother to infant, Science 255:1134–1137.CrossRefPubMedGoogle Scholar
  224. Wong, H., Lotze, M. T., Wahl, L. M., and Wahl, S. M., 1992, Administration of recombinant IL-4 to humans regulates gene expression, phenotype and function in circulating monocytes, J. Immunol. 148:2118–2125.PubMedGoogle Scholar
  225. Wong, H., Costa, G. L., Lotze, M. T., and Wahl, S. M., 1993, Interleukin-4 differentially regulates monocyte IL-1 family gene expression and synthesis in vitro and in vivo, J. Exp. Med. 177:775–781.CrossRefPubMedGoogle Scholar
  226. Wright, S. C., Jewett, A., Nitsuyasu, R., and Bonavida, B., 1988, Spontaneous cytotoxicity and tumor necrosis factor production by peripheral blood monocytes from aids patients, J. Immunol. 141:99–104.PubMedGoogle Scholar
  227. Zack, J. A., Arrigo, S. J., Weitsman, S. R., Go, A. S., Haislip, A., and Chen, I. S. Y., 1990, HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure, Cell 61:213–222.CrossRefPubMedGoogle Scholar
  228. Zhang, I. Q., Mackenzie, P., Cleland, A., Holmes, E. C., Leigh-Brown, A. J., and Simmonds, P., 1993, Selection for specific sequences in the external envelope protein of HIV-1 upon primary infection, J. Virol. 67:3345–3356.PubMedGoogle Scholar
  229. Zhu, T., Mo, H., Wang, N., Nam, D. S., Cao, Y., Koup, R. A., and Ho, D. D., 1993, Genotypic and phenotypic characterization of HIV-1 in patients with primary infection, Science 261:1179–1181.CrossRefPubMedGoogle Scholar
  230. Zinkernagel, R. M., and Hengartner, H., 1994, T-cell-mediated immunopathology versus direct cytolysis by virus: Implications for HIV and AIDS, Immunol. Today 15:262–268.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Sharon M. Wahl
    • 1
  • Jan M. Orenstein
    • 2
  • Phillip D. Smith
    • 3
  1. 1.Cellular ImmunologyNational Institute of Dental Research, National Institutes of HealthBethesdaUSA
  2. 2.Department of PathologyGeorge Washington University Medical CenterUSA
  3. 3.Department of Medicine, School of MedicineUniversity of AlabamaBirminghamUSA

Personalised recommendations