Advertisement

Cytokine Cascades in HIV Infection

  • Guido Poli
  • Anthony S. Fauci

Abstract

Since the recognition of human immunodeficiency virus type 1 (HIV-1) as the causative agent of the acquired immunodeficiency syndrome (AIDS), the search to unravel the viral and cellular factors controlling its replicative ability has become an important goal of both basic and applied research. Cellular transcription factors, such as NF-κB, as well as viral proteins may activate HIV transcription in cells latently infected with HIV. In this regard, certain studies indicate that latent infection is the predominant virological state of infected cells in vivo (Embretson et al., 1993), although a fraction of cells express virus in lymphoid organs throughout the entire course of disease (Pantaleo et al., 1993). In addition, plasma viremia can be detected throughout the entire course of HIV disease (Piatak et al., 1993). Furthermore, both HIV and CD4+ T lymphocytes (the predominant target of HIV infection) rapidly turn over, particularly in the advanced stages of HIV disease. This has been ascertained from studies on patients treated with antiretroviral agents, including nucleoside analogues and inhibitors of HIV protease that can dramatically, but transiently, decrease circulating HIV until drug-resistant strains repopulate the plasma compartment (Wei et al., 1995; Ho et al., 1995). However, residual virus invariably is unaffected by antiretroviral agents, at least those currently in use. An important component of this residual HIV burden is in the form of integrated proviruses that exist in the latent state and are refractory to agents such as zidovudine that affect the preintegration steps of HIV replication (Perno et al., 1989; Poli et al., 1989). Thus, understanding the regulatory mechanisms controlling HIV replication in infected cells that are not actively expressing virus will be critical for the development of strategies aimed at eliminating or at least curtailing virus spread in the host.

Keywords

Human Immunodeficiency Virus Human Immunodeficiency Virus Type Virus Expression Cytokine Cascade Soluble Cytokine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostini, C., Zambello, R., Trentin, L., Cerutti, A., Enthammer, C., Facco, M., Milani, A., Sancetta, R., Garbisa, S., and Semenzato, G., 1995, Expression of TNF receptors by T cells and membrane TNF-α by alveolar macrophages suggests a role for TNF-α by regulation of the local immune responses in the lung of HIV-1 infected patients, J. Immunol. 154:2928–2938.PubMedGoogle Scholar
  2. Amadori, A., Zamarchi, R., Veronese, M. L., Panozzo, M., Barelli, A., Boni, A., Sironi, M., Colotta, F., Mantovani, A., and Chieco-Bianchi, L., 1991, B cell activation during HIV-1 infection, J. Immunol. 146:57–62.PubMedGoogle Scholar
  3. Aukrust, P., Liabakk, N. B., Muller, F., Lien, E., Espevik, T., and Froland, S. S., 1994, Serum levels of tumor necrosis factor-a (TNFa) and soluble TNF receptors in human immunodeficiency virus type 1 infection. Correlation to clinical, immunologic, and virologic parameters, J. Infect. Dis. 169:420–424.PubMedCrossRefGoogle Scholar
  4. Baier, M., Werner, A., Bannert, N., Metzner, K., and Kurth, R., 1995, HIV suppression by interleukin-16. Nature (London) 1995; 378:563.CrossRefGoogle Scholar
  5. Barcellini, W., Rizzardi, G. P., Marriott, B. J., Fain, C., Shattock, R. J., Meroni, P. L., Poli, G., and Dalgleish, A. G., IL-10-induced HIV-1 expression is mediated by the induction of both endogenous membrane bound TNF-α and TNF receptor type 1 in a latently infected promonocytic cell line (U1). AIDS (in press).Google Scholar
  6. Barcellini, W., Rizzardi, G. P., Poli, G., Tambussi, G., Velati, C., Meroni, P. L., and Lazzarin, A., 1996, Cytokines and soluble receptor changes in the transition from primary to early chronic HIV type 1 infection, AIDS Res. Hum. Retrovir. 12:325–330.PubMedCrossRefGoogle Scholar
  7. Biswas, P., Poli, G., Kinter, A. L., Justement, J. S., Stanley, S. K., Maury, W. J., Bressler, P., Orenstein, J. M., and Fauci, A. S., 1992, Interferon-7 modulates the expression of human immunodeficiency virus in persistently infected promonocytic cells by redirecting the production of virions to intracytoplasmic vacuoles, J. Exp. Med. 176:739–750.PubMedCrossRefGoogle Scholar
  8. Biswas, P., Poli, G., Orenstein, J. M., and Fauci, A. S., 1994, Cytokine-mediated induction of human immunodeficiency virus (HIV) expression and cell death in chronically infected U1 cells: Do tumor necrosis factor alpha and gamma interferon selectively kill HIV-infected cells? J. Virol 68:2598–2604.PubMedGoogle Scholar
  9. Biswas, P., Smith, C. A., Goletti, D., Hardy, E. C., Jackson, R. W., and Fauci, A. S., 1995, Cross-linking of CD30 induces HIV expression in chronically infected T cells, Immunity 2:587–596.PubMedCrossRefGoogle Scholar
  10. Blackbourn, D. J., Mackewicz, C., Barker, E., and Levy, J. A., 1994, Human CD8+ cell non-cytolytic anti-HIV activity mediated by a novel cytokine, Res. Immunol 145:653–659.PubMedCrossRefGoogle Scholar
  11. Buhl, R., Jaffe, H. A., Holroyd, K. J., Borok, Z., Roum, J. H., Mastrangeli, A., Wells, F. B., Kirby, M., Saltini, C., and Crystal, R. G., 1993, Activation of alveolar macrophages in asymptomatic HIV-infected individuals, J. Immunol 150:1019–1028.PubMedGoogle Scholar
  12. Bukrinsky, M. I., Stanwick, T. L., Dempsey, M. P., and Stevenson, M., 1991, Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection, Science 254:423–427.PubMedCrossRefGoogle Scholar
  13. Buonaguro, L., Buonaguro, F. M., Giraldo, G., and Ensoli, B., 1994, The human immunodeficiency virus type I Tat protein transactivates tumor necrosis factor beta gene expression through a TAR-like structure, J. Virol. 68:2677–2682.PubMedGoogle Scholar
  14. Butera, S. T., Roberts, B. D., and Folks, T. M., 1993, Regulation of HIV-1 expression by cytokine networks in a CD4+ model of chronic infection, 7. Immunol 150:625–634.Google Scholar
  15. Capobianchi, M. R., Mattana, P., Mercuri, F., Conciatori, G., Ameglio, F., Anke, H., and Dianzani, F., 1992, Acid lability is not an intrinsic property of interferon-alpha induced by HIV-infected cells, J. Interferon Res. 12:431–438.PubMedCrossRefGoogle Scholar
  16. Chehimi, J., Starr, S. E., Frank, I., D’Andrea, A., Ma, X., MacGregor, R. R., Sennelier, J., and Trinchieri, G., 1994, Impaired interleukin-12 production in human immunodeficiency virus-infected patients, J. Exp. Med. 179:1361–1366.PubMedCrossRefGoogle Scholar
  17. Clerici, M., and Shearer, G. M., 1993, A TH1→TH2 switch is a critical step in the etiology of HIV infection, Immunol Today 14:107–111.PubMedCrossRefGoogle Scholar
  18. Clouse, K. A., Powell, D., Washington, I., Poli, G., Strebel, K., Farrar, W., Barstad, P., Kovacs, J., Fauci, A. S., and Folks, T. M., 1989a, Monokine regulation of human immunodeficiency virus-1 expression in a chronically infected human T cell clone, J. Immunol 142:431–438.PubMedGoogle Scholar
  19. Clouse, K. A., Robbins, P. B., Fernie, B., Ostrove, J. M., and Fauci, A. S., 1989b, Viral antigen stimulation of the production of human monokines capable of regulating HIV-1 expression, J. Immunol 143:470–475.PubMedGoogle Scholar
  20. Cocchi, E., DeVico, A. L., Garzino-Demo, A., Arya, S.K., Gallo, R. C., and Lusso, P., 1995, Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815.PubMedCrossRefGoogle Scholar
  21. Cohen, J., 1995, Differences in HIV strains may underlie disease patterns, Science 270:30–31.PubMedCrossRefGoogle Scholar
  22. Colotta, F., Dower, S. K., Sims, J. E., and Mantovani, A., 1994, The type II “decoy” receptor: A novel regulatory pathway for interleukin-1, Immunol Today 15:562–566.PubMedCrossRefGoogle Scholar
  23. Daniel, M. D., Kirchhoff, F., Czajak, S. C., Sehgal, P. K., and Desrosiers, R. C., 1992, Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene, Science 258:1938–1941.PubMedCrossRefGoogle Scholar
  24. Dinarello, C. A., and Thompson, R. C., 1991, Blocking IL-1: Interleukin 1 receptor antagonist in vivo and in vitro, Immunol. Today 12:404–410.PubMedCrossRefGoogle Scholar
  25. Duh, E. J., Maury, W. J., Folks, T. M., Fauci, A. S., and Rabson, A. B., 1989, Tumor necrosis a activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-κB sites in the long terminal repeat, Proc. Natl. Acad. Sci. USA 86:5974–5978.PubMedCrossRefGoogle Scholar
  26. Embretson, J., Zupancic, M., Ribas, J. L., Burke, A., Racz, P., Tenner-Racz, K., and Haase, A. T., 1993, Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS, Nature 362:359–362.PubMedCrossRefGoogle Scholar
  27. Emilie, D. M., Peuchmaur, M. C., Maillot, M. C., Crevon, N., Brousee, J. F., Delfraissy, J., Dormont, P., and Galanaud, P., 1990, Production of interleukins in human immunodeficiency virus-1-replicating lymph nodes, J. Clin. Invest. 86:148–159.PubMedCrossRefGoogle Scholar
  28. Ensoli, B., Barillari, G., and Gallo, R. C., 1992, Cytokines and growth factors in the pathogenesis of AIDS-associated Kaposi’s sarcoma, Immunol Rev. 127:147–155.PubMedCrossRefGoogle Scholar
  29. Fauci, A. S., 1993, Multifactorial nature of human immunodeficiency virus disease: Implications for therapy, Science 262:1011–1018.PubMedCrossRefGoogle Scholar
  30. Foli, A., Saville, M. W., Baseler, M. W., and Yarchoan, R., 1995, Effects of the Th1 and Th2 stimulatory cytokines interleukin-12 and interleukin-4 on human immunodeficiency virus replication, Blood 85:2114–2123.PubMedGoogle Scholar
  31. Folks, T. M., Kelly, J., Benn, S., Kinter, A., Justement, J., Gold, J., Redfield, R., Sell, K., and Fauci, A. S., 1986, Susceptibility of normal human lymphocytes to infection with HTLVIII/LAV, J. Immunol. 136:4049–4053.PubMedGoogle Scholar
  32. Folks, T. M., Justement, J., Kinter, A., Dinarello, C. A., and Fauci, A. S., 1987, Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line, Science 238:800–802.PubMedCrossRefGoogle Scholar
  33. Folks, T. M., Clouse, K. A., Justement, J., Rabson, A., Duh, E., Kehrl, J. H., and Fauci, A. S., 1989, Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone, Proc. Natl. Acad. Sci. USA 86:2365–2368.PubMedCrossRefGoogle Scholar
  34. Fuchs, D., Hansen, A., Reibnegger, G., Werner, E. R., Dierich, M. P., and Wachter, H., 1988, Neopterin as a marker for activated cell-mediated immunity: Application in HIV infection, Immunol. Today 9:150–155.PubMedCrossRefGoogle Scholar
  35. Gallo, P., Sivieri, S., Rinaldi, L., Yan, X. B., Lolli, F., De Rossi, A., and Tavolato, B., 1994, Intrathechal synthesis of interleukin-10 (IL-10) in viral and inflammatory disease of the central nervous system, J. Neurol. Sci. 126:49–53.PubMedCrossRefGoogle Scholar
  36. Gartner, S., Markovits, P., Markovitz, D. M., Kaplan, M. H., Gallo, R. C., and Popovic, M., 1986, The role of mononuclear phagocytes in HTLV-III/LAV infection, Science 233:215–219.PubMedCrossRefGoogle Scholar
  37. Gendelman, H. E., Orenstein, J. M., Martin, M. A., Ferma, C., Mitra, R., Phipps, T., Wahl, L. A., Lane, H. C., Fauci, A. S., Burke, D. S., Skillman, D., and Meltzer, M. S., 1988, Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes, J. Exp. Med. 167:1428–1441.PubMedCrossRefGoogle Scholar
  38. Gendelman, H. E., Friedman, R. M., Joe, S., Baca, L. M., Turpin, J. A., Dveksler, G., Meltzer, M. S., and Dieffenbach, C., 1990, A selective defect of interferon-α production in human immunodeficiency virus-infected monocytes, J. Exp. Med. 172:1433–1442.PubMedCrossRefGoogle Scholar
  39. Goletti, D., Kinter, A. L., Hardy, E. C., Poli, G., and Fauci, A. S., 1996, Modulation of endogenous IL-1β and IL-1 receptor antagonist results in opposing effects on HIV expression in chronically infected monocytic cells. J. Immunol. 156:3501–3508.PubMedGoogle Scholar
  40. Graziosi, C., Pantaleo, G., Gantt, K. R., Fortin, J. P., Demarest, J. F., Cohen, O. J., Sekaly, R. P., and Fauci, A. S., 1994, Lack of evidence for the dichotomy of TH1 and TH2 predominance in HIV-infected individuals, Science 265:248–252.PubMedCrossRefGoogle Scholar
  41. Griffin, G. E., Leung, K., Folks, T. M., Kunkel, S., and Nabel, G. J., 1989, Activation of HIV gene expression during monocyte differentiation by induction of NF-kappa B, Nature 339:70–73.PubMedCrossRefGoogle Scholar
  42. Gruber, M. F., Weih, K. A., Boone, E. J., Smith, P. D., and Clouse, K. A., 1995, Endogenous macrophage CSF production is associated with viral replication in HIV-1-infected human monocyte-derived macrophages, J. Immunol. 154:5528–5535.PubMedGoogle Scholar
  43. Ho, D. D., Hartshorn, K. L., Rota, T. R., Andrews, C. A., Kaplan, J. C., Schooley, R. T., and Hirsch, M. S., 1985, Recombinant human interferon alpha-A suppresses HTLV-III replication in vitro, Lancet 1:602–604.PubMedCrossRefGoogle Scholar
  44. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., and Markowitz, M., 1995, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature 373:123–126.PubMedCrossRefGoogle Scholar
  45. Honda, M., Kitamura, K., Mizutani, Y., Oishi, M., Arai, M., Okura, T., Igarahi, K., Yasukawa, K., Hirano, T., Kishimoto, T., Mitsuyasu, R., Chermann, J.-C., and Tokunaga, T., 1990, Quantitative analysis of serum IL-6 and its correlation with increased levels of serum IL-2R in HIV-induced diseases, J. Immunol. 145:4059–4064.PubMedGoogle Scholar
  46. Kazazi, F., Mathijs, J. M., Chang, J., Malafiej, P., Lopez, A., Dowton, D., Sorrell, T. C., Vadas, M. A., and Cunningham, A. L., 1992, Recombinant interleukin 4 stimulates human immunodeficiency virus production by infected monocytes and macrophages, J. Gen. Virol. 73:941–949.PubMedCrossRefGoogle Scholar
  47. Kestler, H. W., Ringler, D. J., Mori, K., Panicali, D. L., Sehgal, P. K., Daniel, M. D., and Desrosiers, R. C., 1991, Importance of the nef gene for maintenance of high virus loads and for development of AIDS, Cell 65:651–662.PubMedCrossRefGoogle Scholar
  48. Kinter, A. L., Poli, G., Fox, L., Hardy, E., and Fauci, A. S., 1995a, HIV replication in IL-2-stimulated peripheral blood mononuclear cells is driven in an autocrine/paracrine manner by endogenous cytokines, J. Immunol 154:2448–2459.PubMedGoogle Scholar
  49. Kinter, A. L., Bende, S. M., Hardy, E. C., Jackson, R., and Fauci, A. S., 1995b, Interleukin-2 induces CD8-mediated suppression of HIV replication in CD4+ T cells and this effect overrides its ability to stimulate virus expression, Proc. Natl. Acad. Sci. USA 92:10985–10989.PubMedCrossRefGoogle Scholar
  50. Kobayashi, N., Hamamoto, Y., Yamamoto, N., Ishii, A., Yonehara, M., and Yonehara, S., 1990, Anti-Fas monoclonal antibody is cytocidal to human immuno-deficiency virus-infected cells without augmenting viral replication, Proc. Natl. Acad. Sci. USA 87:9620–9624.PubMedCrossRefGoogle Scholar
  51. Koostra, N. A., van’TWout, A. B., Huisman, H. G., Miedema, F., and Schuitemaker, H., 1994, Interference of interleukin-10 with human immunodeficiency virus type 1 replication in primary monocyte-derived macrophages, J. Virol 68:6967–6975.Google Scholar
  52. Kovacs, J. A., Baseler, M., Dewar, R. J., Vogel, S., Davey, R. T., Falloon, J., Polis, M. A., Walker, R. E., Stevens, R., Salzman, N. P., Metcalf, J. A., Masur, H. M., and Lane, H. C., 1995, Increases in CD4 T lymphocytes with intermittent course of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study, N. Engl. J. Med. 332:567–575.PubMedCrossRefGoogle Scholar
  53. Koyanagi, Y., O’Brien, W. A., Zhao, J. Q., Golde, D. W., Gasson, J. C., and Chen, I. S. Y., 1988, Cytokines alter production of HIV-1 from primary mononuclear phagocytes, Science 241:1673–1675.PubMedCrossRefGoogle Scholar
  54. Krown, S. E., Niedzwiecki, D., Bhalla, R., Flomenberg, B., Bundow, D., and Chapman, D., 1991, Relationship and prognostic value of endogenous interferon-α, β2-microglobulin, and neopterin serum levels in patients with Kaposi’s sarcoma and AIDS, J. Acq. Immun Defic. Syndr. 4:871–880.Google Scholar
  55. Lane, H. C., Depper, J. M., Greene, W. C., Whalen, G., Waldmann, T. A., and Fauci, A. S., 1985, Qualitative analysis of immune function in patients with the acquired immunodeficiency syndrome. Evidence for a selective defect in soluble antigen recognition, N. Engl. J. Med. 313:79–84.PubMedCrossRefGoogle Scholar
  56. Lane, H. C., Kovacs, J. A., Feinberg, J., Herpin, B., Davey, V., Walker, R., Deyton, L., Metcalf, J. A., Baseler, M., Salzman, N., Manischewitz, J., Quinnan, G., Masur, H., and Fauci, A. S., 1988, Anti-retroviral effects of interferon-a in AIDS-associated Kaposi’s sarcoma, Lancet 2:1218–1222.PubMedCrossRefGoogle Scholar
  57. Lazdins, J. K., Klimkait, T., Woods-Cook, K., Walker, M., Alten, E., Cox, D., Cerletti, N., Shipman, R., Bilbe, G., and McMaster, G., 1991, In vitro effect of transforming growth factor-β on progression of HIV-1 infection in primary mononuclear phagocytes, J. Immunol. 147:1201–1207.PubMedGoogle Scholar
  58. Macatonia, S. E., Lau, R., Patterson, S., Pinching, A. J., and Knight, S. C., 1990, Dendritic cell infection, depletion and dysfunction in HIV-infected individuals, Immunology 71:38–45.PubMedGoogle Scholar
  59. Macchia, D., Almerigogna, F., Parronchi, P., Ravina, A., Maggi, E., and Romagnani, S., 1993, Membrane tumor necrosis factor-alpha is involved in the polyclonal B-cell activation induced by HIV-infected human T cells, Nature 363:464–466.PubMedCrossRefGoogle Scholar
  60. McGowan, I., Radford-Smith, G., and Jewell, D. P., 1994, Cytokine gene expression in HIV-infected intestinal mucosa, AIDS 8:1569–1575.PubMedCrossRefGoogle Scholar
  61. Maggi, E., Mazzetti, M., Ravina, A., Annunziato, F., De Carli, M., Piccinni, M. P., Manetti, R., Carbonari, M., Pesce, A. M., Del Prete, G., and Romagnani, S., 1994, Ability of HIV to promote to TH1 to THO shift and to replicate preferentially in TH2 and THO cells, Science 265:244–248.PubMedCrossRefGoogle Scholar
  62. Maggi, E., Annunziato, F., Manetti, R., Biagiotti, R., Giudizi, M. G., Ravina, A., Almerigogna, F., Boiani, N., Alderson, M., and Romagnani, S., 1995, Activation of HIV expression by CD30 triggering in CD4+ T cells from HIV-infected individuals, Immunity 3:251–255.PubMedCrossRefGoogle Scholar
  63. Manetti, R., Annunziato, F., Biagiotti, R., Giudizi, M. G., Piccinni, M. P., Giannarini, L., Sampognaro, S., Parronchi, P., Vinante, F., Pizzolo, G., Maggi, E., and Romagnani, S., 1994, CD30 expression by CD8+ T cells producing type 2 helper cytokines. Evidence for large numbers of CD8+ CD30+ T cell clones in human immunodeficiency virus infection, 7. Exp. Med. 180:2407–2411.CrossRefGoogle Scholar
  64. Marfaing-Koka, A., Aubin, J.-T., Grangeot-Keros, L., Portier, A., Benattar, C., Merrien, D., Agut, H., Aucouturier, P., Autran, B., Wijdened, J., Galanaud, P., and Emilie, D., 1996, In vivo role of IL-6 on the viral load and on immunological abnormalities of HIV-infected patients, AIDS (in press).Google Scholar
  65. Markham, P. D., Salahuddin, S. Z., Veren, K., Orndorff, S. H., and Gallo, R. C., 1986, Hydrocortisone and some other hormones enhance the expression of HTLV-III, Int. J. Cancer 37:67–72.PubMedCrossRefGoogle Scholar
  66. Matsuyama, T., Hamamoto, Y., Soma, G.-L, Mizuno, D., Yamamoto, N., and Kobayashi, N., 1989, Cytocidal effect of tumor necrosis factor on cells chronically infected with human immunodeficiency virus (HIV): Enhancement of HIV replication, J. Virol. 63:2504–2509.PubMedGoogle Scholar
  67. Merrill, J. E., Koyanagi, Y., and Chen, I. S. Y., 1989, Interleukin-1 and tumor necrosis factor-a can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor, J. Virol. 63:4404–4408.PubMedGoogle Scholar
  68. Mikovits, J. A., Meyers, A. M., Ortaldo, J. R., Minty, A., Caput, D., Ferrara, P., and Ruscetti, F. W., 1994, IL-4 and IL-13 have overlapping but distinct effects on HIV production in monocytes, J. Leuk. Biol. 56:340–346.Google Scholar
  69. Montaner, L. J., Doyle, A. G., Collin, M., Georges, H., James, W., Minty, A., Caput, D., Ferrara, P., and Gordon, S., 1993, Interleukin 13 inhibits human immunodeficiency virus type 1 production in primary blood-derived human macrophages in vitro, J. Exp. Med. 178:743–747.PubMedCrossRefGoogle Scholar
  70. Murray, H. W., Rubin, B. Y., Masur, H., and Roberts, R. B., 1984, Impaired production of lymphokines and immune (gamma) interferon in the acquired immunodeficiency syndrome, N. Engl. J. Med. 310:883–889.PubMedCrossRefGoogle Scholar
  71. Novak, R. M., Holzer, T. J., Kennedy, M. M., Heynen, C. A., and Dawson, G., 1990, The effect of interleukin 4 (BSF-1) on infection of peripheral blood monocyte-derived macrophages with HIV-1, AIDS Res. Hum. Retrovir. 6:973–976.PubMedGoogle Scholar
  72. Osborn, L., Kunkel, S., and Nabel, G. J., 1989, Tumor necrosis factor a and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kB, Proc. Natl. Acad. Sci. USA 86:2336–2340.PubMedCrossRefGoogle Scholar
  73. Oyaizu, N., Chirmule, N., Kalyanaraman, V. S., Hall, W. W., Pahwa, R., Shuster, M., and Pahwa, S., 1990, Human immunodeficiency virus type 1 envelope glycoprotein gp120 produces immune defects in CD4+ T lymphocytes by inhibiting interleukin 2 mRNA, Proc. Natl. Acad. Sci. USA 87:2379–2383.PubMedCrossRefGoogle Scholar
  74. Paganelli, R., Scala, E., Ansotegui, I. J., Ausiello, C. M., Halapi, E., Fanales-Belasio, E., D’Offizi, G., Mezzaroma, I., Pandolfi, E., Fiorilli, M., Cassone, A., and Aiuti, R., 1995, CD8+ T lymphocytes provide helper activity for IgE synthesis in human immunodeficiency virus-infected patients with hyper-IgE, J. Exp. Med. 181:423–428.PubMedCrossRefGoogle Scholar
  75. Pantaleo, G., Graziosi, C., Demarest, J. E., Butini, L., Montroni, M., Fox, C. H., Orenstein, J. M., Kotler, D. P., and Fauci, A. S., 1993, HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease, Nature 362:355–358.PubMedCrossRefGoogle Scholar
  76. Pantaleo, G., Graziosi, C., Demarest, J., Cohen, O., Vaccarezza, M., Gantt, K., Muro-Cacho, C., and Fauci, A. S., 1994, Role of lymphoid organs in the pathogenesis of human immunodeficiency virus (HIV) infection, Immunol. Rev. 140:105–130.PubMedCrossRefGoogle Scholar
  77. Pantaleo, G., Menzo, S., Vaccarezza, M., Graziosi, C., Cohen, O. J., Demarest, J. F., Montefiori, D., Orenstein, J. M., Fox, C. H., Schrager, L. K., Margolik, J. B., Buchbinder, S., Giorgi, J. V., and Fauci, A. S., 1995, Studies in subjects with long-term nonprogressive human immunodeficiency virus infection, N. Engl. J. Med. 332:209–216.PubMedCrossRefGoogle Scholar
  78. Patterson, S., and Knight, S. C., 1987, Susceptibility of human peripheral blood dendritic cells to infection by human immunodeficiency virus, J. Gen. Virol. 68:1177–1181.PubMedCrossRefGoogle Scholar
  79. Perno, C. E., Yarchoan, R., Cooney, D. A., Hartman, N. R., Webb, D. S., Hao, Z., Mitsuya, H., Dohns, D. G., and Broder, S., 1989, Replication of human immunodeficiency virus in monocytes. Granulocyte/macrophage colony-stimulating factor (GM-CSF) potentiates viral production yet enhances the antiviral effect mediated by 3’-azido-2’3’-dideoxythymidine (AZT) and other dideoxynucleoside congeners of thymidine, J. Exp. Med. 169:933–951.PubMedCrossRefGoogle Scholar
  80. Piatak, M., Saag, M. S., Yang, L. C., Clark, S. J., Kappes, J. C., Luk, K. C., Hahn, B. H., Shaw, G. M., and Lifson, J. D., 1993, High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR, Science 259:1749–1754.PubMedCrossRefGoogle Scholar
  81. Pizzolo, G., Vinante, F., Morosato, L., Nadali, G., Chilosi, M., Gandini, G., Sinicco, A., Raiteri, R., Semenzato, G., Stein, H., and Perona, G., 1994, High serum levels of the soluble form of CD30 molecule in the early phase of HIV-1 infection as an independent predictor of progression to AIDS, AIDS 8:741–745.PubMedCrossRefGoogle Scholar
  82. Poli, G., and Fauci, A. S., 1992, The role of monocyte/macrophages and cytokines in the pathogenesis of HIV infection, Pathobiology 60:246–251.PubMedCrossRefGoogle Scholar
  83. Poli, G., Orenstein, J. M., Kinter, A., Folks, T. M., and Fauci, A. S., 1989, Interferon-α but not AZT suppresses HIV expression in chronically infected cell lines, Science 244:575–577.PubMedCrossRefGoogle Scholar
  84. Poli, G., Kinter, A. L., Justement, J. S., Kehrl, J. H., Bressler, P., Stanley, S., and Fauci, A. S., 1990a, Tumor necrosis factor a functions in an autocrine manner in the induction of human immunodeficiency virus expression, Proc. Natl. Acad. Sci. USA 87:782–785.PubMedCrossRefGoogle Scholar
  85. Poli, G., Bressler, P., Kinter, A., Duh, E., Timmer, W. C., Rabson, A., Justement, J. S., Stanley, S., and Fauci, A. S., 1990b, Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor a by transcriptional and posttranscriptional mechanisms, J. Exp. Med. 172:151–158.PubMedCrossRefGoogle Scholar
  86. Poli, G., Kinter, A. L., Justement, J. S., Bressler, P., Kehrl, J. H., and Fauci, A. S., 1991, Transforming growth factor β suppresses human immuno-deficiency virus expression and replication in infected cells of the monocyte/ macrophage lineage, J. Exp. Med. 173:589–597.PubMedCrossRefGoogle Scholar
  87. Poli, G., Kinter, A. L., Justement, J. S., Bressler, P., Kehrl, J. H., and Fauci, A. S., 1992, Retinoic acid mimics transforming growth factor β in the regulation of human immunodeficiency virus expression in monocytic cells, Proc. Natl. Acad. Sci. USA 89:2689–2693.PubMedCrossRefGoogle Scholar
  88. Poli, G., Kinter, A. L., and Fauci, A. S., 1994, Interleukin 1 induces expression of the human immunodeficiency virus alone and in synergy with interleukin 6 in chronically infected U1 cells: Inhibition of inductive effects by the interleukin 1 receptor antagonist, Proc. Natl. Acad. Sci. USA 91:108–112.PubMedCrossRefGoogle Scholar
  89. Pomerantz, R. J., Feinberg, M. B., Trono, D., and Baltimore, D., 1990, Lipopolysaccharide is a potent monocyte/macrophage-specific stimulator of human immunodeficiency virus type 1 expression, J. Exp. Med. 172:253–261.PubMedCrossRefGoogle Scholar
  90. Re, M. C., Zauli, G., Furlini, G., Ranieri, S., and La Placa, M., 1992, Progressive and selective impairment of IL-3 and IL-4 production by peripheral blood CD4+ T-lymphocytes during the course of HIV-1 infection, Virol. Immunol. 5:185–194.CrossRefGoogle Scholar
  91. Reka, S., Garro, M. L., and Kotier, D. P., 1994, Variation in the expression of human immunodeficiency virus RNA and cytokine mRNA in rectal mucosa during the progression of infection, Lymphokine Cytokine Res. 13:391–398.PubMedGoogle Scholar
  92. Rieckmann, P., Poli, G., Fox, C. H., Kehrl, J. H., and Fauci, A. S., 1991, Recombinant gp120 specifically enhances tumor necrosis factor-alpha production and Ig secretion in B lymphocytes from HIV-infected individuals but not from seronegative donors, J. Immunol. 147:2297–2922.Google Scholar
  93. Rinaldo, C. R., Armstrong, J. A., Kingsley, L. A., Zhou, S., and Ho, M., 1990, Relation of alpha and gamma interferon levels to development of AIDS in homosexual men, J. Exp. Pathol. 5:127–132.PubMedGoogle Scholar
  94. Saville, M. W., Taga, K., Foli, A., Broder, S., Tosato, G., and Yarchoan, R., 1994, Interleukin-10 suppresses human immunodeficiency virus-1 replication in vitro in cells of the monocyte/macrophage lineage, Blood 83:3591–3599.PubMedGoogle Scholar
  95. Scala, G., Ruocco, M. R., Ambrosino, C., Mallardo, M., Giordano, V., Baldassarre, F., Dragonetti, E., Quinto, I., and Venuta, S., 1994, The expression of the interleukin 6 gene is induced by the human immuno-deficiency virus 1 TAT protein, J. Exp. Med. 179:961–971.PubMedCrossRefGoogle Scholar
  96. Schuitemaker, H., Kootstra, N. A., Koppelman, M. H. G. M., Bruistein, S. M., Husiman, H. G., Tersmette, M., and Miedema, F., 1992, Proliferation dependent HIV-1 infection of monocytes occurs during differentiation into macrophages, J. Clin. Invest. 89:1154–1160.PubMedCrossRefGoogle Scholar
  97. Scott-Algara, D., Vuillier, F., Marasescu, M., De Saint Martin, J., and Dighiero, G., 1991, Serum levels of IL-2, IL-1, TNF-α, and soluble receptor of IL-2 in HIV-1 infected patients, AIDS Res. Hum. Retrovir. 7:381–386.PubMedCrossRefGoogle Scholar
  98. Sher, A., Gazzinelli, R. T., Oswald, I. P., Clerici, M., Kullberg, M., Pearch, E. J., Berzofsky, J. A., Mossman, T. R., James, S. L., and Morse, H. C., 1992, Role of T cell derived cytokines in the downregulation of immune responses in parasitic and retroviral infection, Immunol. Rev. 127:183–204.PubMedCrossRefGoogle Scholar
  99. Shirazi, Y., and Pitha, P. M., 1992, Alpha interferon inhibits early stages of the human immunodeficiency virus type 1 replication cycle, J. Virol. 66:1321–1328.PubMedGoogle Scholar
  100. Siebenlist, U., Franzoso, G., and Brown, K., 1994, Structure, regulation and function of NF-kB, Annu. Rev. Cell Biol. 10:405–455.PubMedCrossRefGoogle Scholar
  101. Tadmori, W., Mondai, D., Tadmori, I., and Prakash, O., 1991, Transactivation of human immunodeficiency virus type 1 long terminal repeats by cell surface tumor necrosis factor alpha, J. Virol. 65:6425–6429.PubMedGoogle Scholar
  102. Trinchieri, G., 1993, Interleukin-12 and its role in the generation of TH1 cells, Immunol. Today 14:335–338.PubMedCrossRefGoogle Scholar
  103. Tschachler, E., Groh, V., Popovic, M., Mann, D. L., Konrad, K., Safai, B., Eron, L., DiMarzo Veronese, R., Wolff, K., and Stingl, G., 1987, Epidermal Langerhan’s cells: A target for HTLV-III/LAV infection, J. Invest. Dermatol. 88:233–237.PubMedCrossRefGoogle Scholar
  104. Voth, R., Rossol, S., Klein, K., Hess, G., Schutt, K. H., Schroder, H. C., Meyer Zum Buschenfelde, K. H., and Muller, W. E., 1990, Differential gene expression of IFN-α and tumor necrosis factor-a in peripheral blood mononuclear cells from patients with AIDS related complex and AIDS, J. Immunol. 144:970–975.PubMedGoogle Scholar
  105. Vyakarnam, A., McKeating, J., Meager, A., and Beverley, P. C., 1990, Tumour necrosis factors (α,β) induced by HIV-1 in peripheral blood mononuclear cells potentiate virus replication, AIDS 4:21–27.PubMedCrossRefGoogle Scholar
  106. Wei, X., Ghosh, S. K., Taylor, M. E., Johnson, V A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., Saag, M. S., and Shaw, G. M., 1995, Viral dynamics in human immunodeficiency virus type 1 infection, Nature 373:117–122.PubMedCrossRefGoogle Scholar
  107. Weissman, D., Poli, G., and Fauci, A. S., 1994, Interleukin 10 blocks HIV replication in macrophages by inhibiting the autocrine loop of TNF-α and IL-6 induction of virus, AIDS Res. Hum. Retrovir. 10:1199–1206.PubMedCrossRefGoogle Scholar
  108. Weissman, D., Li, Y., Ananworanich, J., Zhou, L.-J., Adelsberg, J., Tedder, T. F., Baseler, M., and Fauci, A. S., 1995a, Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infectable with HIV 1, Proc. Natl. Acad. Sci. USA 92:826–830.PubMedCrossRefGoogle Scholar
  109. Weissman, D., Poli, G., and Fauci, A. S., 1995b, IL-10 synergizes with multiple cytokines in enhancing HIV production in cells of monocytic lineage, AIDS Res. Hum. Retrovir. 9:442–449.Google Scholar
  110. Williams, G. J., and Colby, C. B., 1989, Recombinant human interferon-beta suppresses the replication of HIV and acts synergistically with AZT, J. Interferon Res. 9:709–718.PubMedCrossRefGoogle Scholar
  111. Zack, J. A., Arrigo, S. J., Weitsman, S. R., Go, A. S., Haislip, A., and Chen, I. S. Y., 1990, HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure, Cell 61:213–222.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Guido Poli
    • 1
  • Anthony S. Fauci
    • 2
  1. 1.AIDS Immunopathogenesis UnitDIBIT, San Raffaele Scientific InstituteMilanItaly
  2. 2.Laboratory of ImmunoregulationNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations