Integrins in Wound Repair

  • Kenneth M. Yamada
  • James Gailit
  • Richard A. F. Clark


The integrin family of cell adhesion receptors consists of over 20 members, which mediate cell surface interactions with extracellular matrix or (in some cases) with other cells (Akiyama et al., 1990b; Albelda and Buck, 1990; Clark, 1990; Hemler, 1990; Hogg, 1991; Ruoslahti, 1991; Shattil and Brugge, 1991; Yamada, 1991; Damsky and Werb, 1992; Ginsberg et al., 1992; Hynes, 1992; Akiyama and Yamada, 1993; Gailit and Clark, 1993; Glukhova and Thiery, 1993; Gumbiner, 1993; Juliano and Haskill, 1993; Sastry and Horwitz, 1993; Sonnenberg, 1993; Tuckwell et al., 1993; Zetter, 1993; Springer, 1994). Each integrin is a heterodimer, consisting of one a and one β subunit in a noncovalent complex. As summarized in Fig. 1, only certain combinations of integrins are observed: major groupings include integrins of the β1 subfamily and integrins containing the αv subunit. Changes in either the α or the β subunit of integrin heterodimers alter their specificity for ligands, as summarized in Table I.


Cell Biol Cytoplasmic Domain Human Keratinocytes Wound Repair Integrin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, C., Deng, Y. J., Steiner, B., O’Toole, T., and Shattil, S. J., 1994, Determinants of specificity of a baculovirus-expressed antibody Fab fragment that binds selectively to the activated form of integrin αIIbβ3, J. Biol. Chem. 269:18781–18788.PubMedGoogle Scholar
  2. Adams, J. C., and Watt, F. M., 1991, Expression of β1, β3, β4, and β5 integrins by human epidermal keratinocytes and non-differentiating keratinocytes, J. Cell Biol. 115:829–841.PubMedGoogle Scholar
  3. Akiyama, S. K., and Yamada, K. M., 1987, Biosynthesis and acquisition of biological activity of the fibronectin receptor, J. Biol. Chem. 262:17536–17542.PubMedGoogle Scholar
  4. Akiyama, S. K., and Yamada, K. M., 1993, Introduction: Adhesion molecules in cancer. Part I, Semin. Cancer Biol. 4:215–218.PubMedGoogle Scholar
  5. Akiyama, S. K., Yamada, S. S., and Yamada, K. M., 1989, Analysis of the role of glycosylation of the human fibronectin receptor, J. Biol. Chem. 264:18011–18018.PubMedGoogle Scholar
  6. Akiyama, S. K., Larjava, H., and Yamada, K. M., 1990a, Differences in the biosynthesis and localization of the fibronectin receptor in normal and transformed cultured human cells, Cancer Res. 50:1601–1607.PubMedGoogle Scholar
  7. Akiyama, S. K., Nagata, K., and Yamada, K. M., 1990b, Cell surface receptors for extracellular matrix components, Biochim. Biophys. Acta 1031:91–110.PubMedGoogle Scholar
  8. Akiyama, S. K., Yamada, S. S., Yamada, K. M., and LaFlamme, S. E., 1994, Transmembrane signal transduction by integrin cytoplasmic domains expressed in single-subunit chimeras, J. Biol. Chem. 269:15961–15964.PubMedGoogle Scholar
  9. Albelda, S. M., and Buck, C. A., 1990, Integrins and other cell adhesion molecules, FASEB J. 4:2868–2880.PubMedGoogle Scholar
  10. Albelda, S. M., Mette, S. A., Elder, D. E., Stewart, R., Damjanovich, L., Herlyn, M., and Buck, C. A., 1990, Integrin distribution in malignant melanoma: Association of the β3 subunit with tumor progression, Cancer Res. 50:6757–6764.PubMedGoogle Scholar
  11. Bajt, M. L., Ginsberg, M. H., Frelinger, A., Berndt, M. C., and Loftus, J. C., 1992, A spontaneous mutation of integrin αIIbβ3 (platelet glycoprotein IIb-IIIa) helps define a ligand binding site, J. Biol. Chem. 267:3789–3794.PubMedGoogle Scholar
  12. Balzac, F., Belkin, A. M., Koteliansky, V. E., Balabanov, Y. V., Altruda, F., Silengo, L., and Tarone, G., 1993, Expression and functional analysis of a cytoplasmic domain variant of the β1 integrin subunit, J. Cell Biol. 121:171–178.PubMedGoogle Scholar
  13. Barrandon, Y., and Green, H., 1987, Cell migration is essential for sustained growth of keratinocytes colonies: The roles of transforming growth factor-α and epidermal growth factor, Cell 50:1131–1137.PubMedGoogle Scholar
  14. Bauer, J., Varner, J., Schreiner, C., Kornberg, L., Nicholas, R., and Juliano, R. L., 1993, Functional role of the cytoplasmic domain of the integrin α5 subunit, J. Cell Biol. 122:209–221.PubMedGoogle Scholar
  15. Betz, P., Nerlich, A., Tubel, J., Penning, R., and Eisenmenger, W., 1993, Localization of tenascin in human skin wounds: An immunohistochemical study, Int. J. Legal. Med. 105:325–328.PubMedGoogle Scholar
  16. Briesewitz, R., Kern, A., and Marcantonio, E. E., 1993, Ligand-dependent and-independent integrin focal contact localization: The role of the alpha chain cytoplasmic domain, Mol. Biol. Cell. 4:593–604.PubMedGoogle Scholar
  17. Brown, C., Stenn, K. S., Falk, R. J., Woodley, D. T., and O’Keefe, E. J., 1991, Vitronectin: Effects on keratinocyte motility and inhibition of collagen-induced motility, J. Invest. Dermatol. 96:724–728.PubMedGoogle Scholar
  18. Burns, K., Duggan, B., Atkinson, E. A., Famulski, K. S., Nemer, M., Bleackley, R. C., and Michalak, M., 1994, Modulation of gene expression by calreticulin binding to the glucocorticoid receptor, Nature 367:476–480.PubMedGoogle Scholar
  19. Calvete, J. J., Mann, K., Schäfer, W., Fernandez-Lafuente, R., and Guisan, J. M., 1994, Proteolytic degradation of the RGD-binding and non-RGD-binding conformers of human platelet integrin glycoprotein IIb/IIIa: Clues for identification of regions involved in the receptor’s activation, Biochem. J. 298:1–7.PubMedGoogle Scholar
  20. Carter, W. G., Kaur, P., Gil, S. G., Gahr, P. J., and Wayner, E. A., 1990a, Distinct functions for integrins α3β1 in focal adhesions and α6β4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: Relation to hemidesmosomes, J. Cell Biol. 111:3141–3154.PubMedGoogle Scholar
  21. Carter, W. G., Wayner, E. A., Bouchard, T. S., and Kaur, P., 1990b, The role of integrins a2βl and α3βl in cell-cell and cell-substrate adhesion of human epidermal cells, J. Cell Biol. 110:1387–1404.PubMedGoogle Scholar
  22. Carter, W. G., Ryan, M. C., and Gahr, P. A., 1991, Epiligrin, a new cell adhesion ligand for integrin α3β1 in epithelial basement membranes, Cell 65:599–610.PubMedGoogle Scholar
  23. Cavani, A., Zambruno, G., Marconi, A., Manca, V., Marchetti, M., and Giannetti, A., 1993, Distinctive integrin expression in the newly forming epidermis during wound healing in humans, J. Invest. Der-matol. 101:600–604.Google Scholar
  24. Chan, B. M., Kassner, P. D., Schiro, J. A., Byers, H. R., Kuppe, T. S., and Hemler, M. E., 1992, Distinct cellular functions mediated by different VLA integrin a subunit cytoplasmic domains, Cell 68:1051–1060.PubMedGoogle Scholar
  25. Chen, J. D., Kim, J. P., Zhang, K., Sarret, Y., Wynn, K. C., Kramer, R. H., and Woodley, D. T., 1993, Epidermal growth factor (EGF) promotes human keratinocyte locomotion on collagen by increasing the α2 integrin subunit, Exp. Cell Res. 209:216–223.PubMedGoogle Scholar
  26. Chen, Q., Kinch, M. S., Lin, T. H., Burridge, K., and Juliano, R. L., 1994, Integrin-mediated cell adhesion activates mitogen-activated protein kinases. Integrin-mediated cell adhesion activates mitogen-activated protein kinases, J. Biol. Chem. 269:26602–26605.PubMedGoogle Scholar
  27. Chen, W. T., and Singer, S. J., 1982, Immunoelectron microscopic studies of the sites of cell-substratum and cell-cell contacts in cultured fibroblasts, J. Cell Biol. 95:205–222.PubMedGoogle Scholar
  28. Chen, Y. P., O’Toole, T. E., Shipley, T., Forsyth, J., LaFlamme, S. E., Yamada, K. M., Shattil, S. J., and Ginsberg, M. H., 1994, Inside-out signal transduction inhibited by isolated integrin cytoplasmic domains, J. Biol. Chem. 269:18307–18310.PubMedGoogle Scholar
  29. Cheresh, D. A., 1991, Structure, function and biological properties of integrin αvβ3 on human melanoma cells, Cancer Metastasis Rev. 10:3–10.PubMedGoogle Scholar
  30. Cheresh, D. A., and Spiro, R. C., 1987, Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor, J. Biol. Chem. 262:17703–17711.PubMedGoogle Scholar
  31. Clark, R. A. F., 1990, Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin, J. Invest. Dermatol. 94:128S–134S.PubMedGoogle Scholar
  32. Clark, R. A. F., Lanigan, J. M., DellaPelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B., 1982, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reep-ithelialization, J. Invest. Dermatol. 70:264–269.Google Scholar
  33. Clark, R. A. F., Wikner, N. E., Doherty, D. E., and Noms, D. A., 1988, Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment, J. Biol. Chem. 263:12115–12123.PubMedGoogle Scholar
  34. Clark, R. A. F., Gailit, J., Pierschbacher, M. D., and Ruoslahti, E., 1990, Expression of fibronectin and vitronectin receptors in wound fibroblasts, Clin. Res. 38:630A.Google Scholar
  35. Clark, R. A. F., Spencer, J., Larjava, H., and Ferguson, M., 1995a, Reepithelialization of normal human excisional wounds is associated with a switch from αvβ5 to αvβ6 integrins, J. Invest. Dermatol. Google Scholar
  36. Clark, R. A. F., Tonnesen, M. G., Gailit, J., and Cheresh, D. A., 1995b, Transient functional expression of αvβ3 on vascular cells during wound repair, Am. J. Path., in press.Google Scholar
  37. Collo, G., Starr, L., and Quaranta, V., 1993, A new isoform of the laminin receptor integrin α7β1 is developmentally regulated in skeletal muscle, J. Biol. Chem. 268:19019–19024.PubMedGoogle Scholar
  38. Conforti, G., Calza, M., and Beltran-Nunez, A., 1994, αvβ5 integrin is localized at focal contacts by HT-1080 fibrosarcoma cells and human skin fibroblasts attached to vitronectin, Cell. Adhesion Commun. 1:279–293.Google Scholar
  39. Couchman, J. R., and Rees, D. A., 1979, The behaviour of fibroblasts migrating from chick heart expiants: Changes in adhesion, locomotion and growth, and in the distribution of actomyosin and fibronectin, J. Cell Sci. 39:149–165.PubMedGoogle Scholar
  40. Damsky, C. H., and Werb, Z., 1992, Signal transduction by integrin receptors for extracellular matrix: Cooperative processing of extracellular information, Curr. Opin. Cell Biol. 4:772–781.PubMedGoogle Scholar
  41. Davis, E. D., 1992, Affinity of integrins for damaged extracellular matrix: αvβ3 binds to denatured collagen type I through RGD sites, Biochem. Biophys. Res. Commun. 182:1025–1031.PubMedGoogle Scholar
  42. Dedhar, S., Ruoslahti, E., and Pierschbacher, M. D., 1987, A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence, J. Cell Biol. 104:585–593.PubMedGoogle Scholar
  43. Dedhar, S., Rennie, P. S., Shago, M., Hagesteijn, C. Y., Yang, H., Filmus, J., Hawley, R. G., Bruchovsky, N., Cheng, H., and Matusik, R. J., 1994, Inhibition of nuclear hormone receptor activity by calreticulin, Nature 367:480–483.PubMedGoogle Scholar
  44. De Luca, M., Tamura, R. N., Kajiji, S., Bondanza, S., Rossino, P., Cancedda, R., Marchisio, P. C., and Quaranta, V., 1990, Polarized integrin mediates human keratinocyte adhesion to basal lamina, Proc. Natl. Acad. Sci. USA 87:6888–6892.PubMedGoogle Scholar
  45. de Vos, A. M., Ultsch, M., and Kossiakoff, A. A., 1992, Human growth hormone and extracellular domain of its receptor: Crystal structure of the complex, Science 255:306–312.PubMedGoogle Scholar
  46. DiMilla, P. A., Stone, J. A., Quinn, J. A., Albelda, S. M., and Lauffenburger, D. A., 1993, Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength, J. Cell Biol. 122:729–737.PubMedGoogle Scholar
  47. Donaldson, D. J., Mahan, J. T., Hui, Y., and Yamada, K. M., 1994, Integrin and phosphotyrosine expression in normal and migrating newt keratinocytes, Anat. Rec. 241:49–58.Google Scholar
  48. Douglass, G. D., Zhang, K., and Kramer, R. H., 1992, The role of integrin adhesion receptors in gingival wound healing, J. Calif. Dent. Assoc. 20:37–40.PubMedGoogle Scholar
  49. D’Souza, S. E., Ginsberg, M. H., Burke, T. A., and Plow, E. F., 1990, The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its a subunit, J. Biol. Chem. 265:3440–3446.PubMedGoogle Scholar
  50. D’Souza, S. E., Ginsberg, M. H., Matsueda, G. R., and Plow, E. F., 1991, A discrete sequence in a platelet integrin is involved in ligand recognition, Nature 350:66–68.PubMedGoogle Scholar
  51. D’Souza, S. E., Haas, T. A., Piotrowicz, R. S., Byers-Ward, V., McGrath, D. E., Soule, H. R., Cierniewski, C., Plow, E. F., and Smith, J. W., 1994, Ligand and cation binding are dual functions of a discrete segment of the integrin β3 subunit: Cation displacement is involved in ligand binding, Cell 79:659–667.PubMedGoogle Scholar
  52. Du, X. P., Plow, E. F., Frelinger, A. L., O’Toole, T. E., Loftus, J. C., and Ginsberg, M. H., 1991, Ligands activate integrin αIIbβ3 (platelet GPIIb-IIIa), Cell 65:409–416.PubMedGoogle Scholar
  53. Duband, J. L., Nuckolls, G. H., Ishihara, A., Hasegawa, T., Yamada, K. M., Thiery, J. P., and Jacobson, K., 1988a, Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells, J. Cell Biol. 107:1385–1396.PubMedGoogle Scholar
  54. Duband, J. L., Dufour, S., Yamada, K. M., and Thiery, J. P., 1988b, The migratory behavior of avian embryonic cells does not require phosphorylation of the fibronectin-receptor complex, FEBS Lett. 230:181–185.PubMedGoogle Scholar
  55. Duband, J. L., Dufour, S., Yamada, S. S., Yamada, K. M., and Thiery, J. P., 1991, Neural crest cell locomotion induced by antibodies to β1 integrins. A tool for studying the roles of substratum molecular avidity and density in migration, J. Cell Sci. 98:517–532.PubMedGoogle Scholar
  56. Dustin, M. L., and Springer, T. A., 1989, T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1, Nature 341:619–624.PubMedGoogle Scholar
  57. Eble, J. A., Golbik, R., Mann, K., and Kuhn, K., 1993, The α1β1 integrin recognition site of the basement membrane collagen molecule [α1(IV)]2 α2(IV)], EMBO J. 12:4795–4802.PubMedGoogle Scholar
  58. Elemer, G. S., and Edgington, T. S., 1994, Microfilament reorganization is associated with functional activation of αMβ2 on monocytic cells, J. Biol. Chem. 269:3159–3166.PubMedGoogle Scholar
  59. Elices, M. J., Urry, L. A., and Hemler, M. E., 1991, Receptor functions for the integrin VLA-3: Fibronectin, collagen, and laminin binding are differentially influenced by Arg-Gly-Asp peptide and by divalent cations, J. Cell Biol. 112:169–181.PubMedGoogle Scholar
  60. Faull, R. J., Kovach, N. L., Harlan, J. M., and Ginsberg, M. H., 1993, Affinity modulation of integrin α5β1: Regulation of the functional response by soluble fibronectin, J. Cell Biol. 121:155–162.PubMedGoogle Scholar
  61. Gailit, J., and Clark, R. A. F., 1993, Integrins in the skin, Adv. Dermatol. 8:129–152.PubMedGoogle Scholar
  62. Gailit, J., Welch, M. P., and Clark, R. A. F., 1994, TGF-β 1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds, J. Invest. Dermatol. 103:221–227.PubMedGoogle Scholar
  63. Gehlsen, K. R., Argraves, W. S., Pierschbacher, M. D., and Ruoslahti, E., 1988, Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides, J. Cell Biol. 106:925–930.PubMedGoogle Scholar
  64. Geiger, B., 1989, Cytoskeleton-associated cell contacts, Curr. Opin. Cell Biol. 1:103–109.PubMedGoogle Scholar
  65. Geiger, B., Salomon, D., Takeichi, M., and Hynes, R. O., 1992, A chimeric N-cadherin/β1-integrin receptor which localizes to both cell-cell and cell-matrix adhesions, J. Cell Sci. 103:943–951.PubMedGoogle Scholar
  66. Ginsberg, M. H., Du, X., and Plow, E. F., 1992, Inside-out integrin signalling, Curr. Opin. Cell Biol. 4:766–771.PubMedGoogle Scholar
  67. Gipson, I. K., Spurr-Michaud, S., Tisdale, A., Elwell, J., and Stepp, M. A., 1993, Redistribution of the hemidesmosome components α6β4 integrin and bullous pemphigoid antigens during epithelial wound healing, Exp. Cell Res. 207:86–98.PubMedGoogle Scholar
  68. Glukhova, M. A., and Thiery, J. P., 1993, Fibronectin and integrins in development, Semin. Cancer Biol. 4:241–249.PubMedGoogle Scholar
  69. Grinnell, F., 1990, The activated keratinocyte: Up-regulation of cell adhesion and migration during wound healing, J. Trauma 30:S144–S149.PubMedGoogle Scholar
  70. Grinnell, F., 1992, Wound repair, keratinocyte activation and integrin modulation, J. Cell Sci. 101:1–5.PubMedGoogle Scholar
  71. Grinnell, F., and Geiger, B., 1986, Interaction of fibronectin-coated beads with attached and spread fi-broblasts. Binding, phagocytosis, and cytoskeletal reorganization, Exp. Cell Res. 162:449–461.PubMedGoogle Scholar
  72. Grinnell, F., Toda, K.-I., and Takashima, A., 1988, Role of fibronectin in epithelialization and wound healing, in: Growth Factors and Other Aspects of Wound Healing: Biological and Clinical Implications (A. Barbul, E. Pines, M. Caldwell, and T. K. Hunt, eds.), pp. 259–272, Alan R. Liss, New York.Google Scholar
  73. Guadagno, T. M., Ohtsubo, M., Roberts, J. M., and Assoian, R. K., 1993, A link between cyclin A expression and adhesion-dependent cell cycle progression, Science 262:1572–1575.PubMedGoogle Scholar
  74. Guan, J. L., and Shalloway, D., 1992, Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation, Nature 358:690–692.PubMedGoogle Scholar
  75. Guan, J. L., Trevithick, J. E., and Hynes, R. O., 1991, Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein, Cell Regul. 2:951–964.PubMedGoogle Scholar
  76. Gumbiner, B. M., 1993, Proteins associated with the cytoplasmic surface of adhesion molecules, Neuron 11:551–564.PubMedGoogle Scholar
  77. Guo, M., Toda, K., and Grinnell, F., 1990, Activation of human keratinocyte migration on type I collagen and fibronectin, J. Cell Sci. 96:197–205.PubMedGoogle Scholar
  78. Guo, M., Kim, L. T., Akiyama, S. K., Gralnick, H. R., Yamada, K. M., and Grinnell, F., 1991, Altered processing of integrin receptors during keratinocyte activation, Exp. Cell Res. 195:315–322.PubMedGoogle Scholar
  79. Haapasalmi, K., Zhang, K., Tonnesen, M. G., Olerud, J., Sheppard, D., Kramer, R., Clark, R. A. F., Uitto, V.-J., and Larjava, H., 1995, Keratinocytes in human wounds express avβ6 integrin, J. Invest. Dermatol. submitted.Google Scholar
  80. Han, E. K., Guadagno, T. M., Dalton, S. L., and Assoian, R. K., 1993, A cell cycle and mutational analysis of anchorage-independent growth: Cell adhesion and TGF-β1 control G1/S transit specifically, J. Cell Biol. 122:461–471.PubMedGoogle Scholar
  81. Hay, E., 1991, Cell Biology of Extracellular Matrix, Plenum Press, New York.Google Scholar
  82. Hayashi, Y., Haimovich, B., Reszka, A., Boettige, D., and Horwitz, A., 1990, Expression and function of chicken integrin β1 subunit and its cytoplasmic domain mutants in mouse NIH 3T3 cells, J. Cell Biol. 110:175–184.PubMedGoogle Scholar
  83. Heino, J., Ignotz, R. A., Hemler, M. E., Crouse, C., and Massague, J., 1989, Regulation of cell adhesion receptors by transforming growth factor-β. Concomitant regulation of integrins that share a common β1 subunit, J. Biol. Chem. 264:380–388.PubMedGoogle Scholar
  84. Hemler, M. E., 1990, VLA proteins in the integrin family: Structures, functions, and their role on leukocytes, Annu. Rev. Immunol. 8:365–400.PubMedGoogle Scholar
  85. Hergott, G. J., Nagai, H., and Kalnins, V. I., 1993, Inhibition of retinal pigment epithelial cell migration and proliferation with monoclonal antibodies against the β1 integrin subunit during wound healing in organ culture, Invest. Ophthalmol. Vis. Sci. 34:2761–2768.PubMedGoogle Scholar
  86. Hertle, M. D., Kubier, M. D., Leigh, I. M., and Watt, F. M., 1992, Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis, J. Clin. Invest. 89:1892–1901.PubMedGoogle Scholar
  87. Hogg, N., 1991, An integrin overview, Chem. Immunol. 50:1–12.PubMedGoogle Scholar
  88. Horton, M., 1990, Vitronectin receptor: Tissue specific expression or adaptation to culture? Int. J. Exp. Pathol. 71:741–759.PubMedGoogle Scholar
  89. Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C., and Burridge, K., 1986, Interaction of plasma membrane fibronectin receptor with talin—A transmembrane linkage, Nature 320:531–533.PubMedGoogle Scholar
  90. Howlett, A. R., and Bissell, M. J., 1993, The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium, Epithelial Cell. Biol. 2:79–89.PubMedGoogle Scholar
  91. Huhtala, P., Humphries, M. J., McCarthy, J. B., Tremble, P. M., Werb, Z., and Damsky, C. H., 1995, Cooperative signaling by α5β1 and α4β1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin, J. Cell Biol 129:867–879.PubMedGoogle Scholar
  92. Hyatt, S. L., Klauck, T., and Jaken, S., 1990, Protein kinase C is localized in focal contacts of normal but not transformed fibroblasts, Mol. Carcinog. 3:45–53.PubMedGoogle Scholar
  93. Hynes, R. O., 1992, Integrins: Versatility, modulation, and signaling in cell adhesion, Cell 69:11–25.PubMedGoogle Scholar
  94. Jones, J. C. R., Kurpakus, M. A., Cooper, H. M., and Quaranta, V., 1991, A function for the integrin α6β4 in the hemidesmosome, Cell Regul. 2:427–438.PubMedGoogle Scholar
  95. Juhasz, I., Murphy, G. F., Yan, H. C., Herlyn, M., and Albelda, S. M., 1993. Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo, Am. J. Pathol. 143(5): 1458–1469.PubMedGoogle Scholar
  96. Juliano, R. L., and Haskill, S., 1993, Signal transduction from the extracellular matrix, J. Cell Biol. 120:577–585.PubMedGoogle Scholar
  97. Kamata, T., and Takada, Y., 1994, Direct binding of collagen to the I domain of integrin α2βl (VLA-2, CD49b/CD29) in a divalent cation-independent manner, J. Biol. Chem. 269(42):26006–26010.PubMedGoogle Scholar
  98. Kapron-Bras, C., Fitz-Gibbon, L., Jeevaratnam, P., Wilkins, J., and Dedhar, S., 1993, Stimulation of tyrosine phosphorylation and accumulation of GTP-bound p21ras upon antibody-mediated α2β1 integrin activation in T-lymphoblastic cells, J. Biol. Chem. 268:20701–20704.PubMedGoogle Scholar
  99. Kassner, P. D., and Hemler, M. E., 1993, Interchangeable a chain cytoplasmic domains play a positive role in control of cell adhesion mediated by VLA-4, a β1 integrin, J. Exp. Med. 178:649–660.PubMedGoogle Scholar
  100. Kassner, P. D., Kawaguchi, S., and Hemler, M. E., 1994, Minimum a chain cytoplasmic tail sequence needed to support integrin-mediated adhesion, J. Biol. Chem. 269:19859–19867.PubMedGoogle Scholar
  101. Kaufmann, R., Frosch, D., Westphal, C., Weber, L., and Klein, C. E., 1989, Integrin VLA-3: Ultrastructural localization at cell-cell contact sites of human cell cultures, J. Cell Biol. 109:1807–1815.PubMedGoogle Scholar
  102. Kern, A., Briesewitz, R., Bank, I., and Marcantonio, E. E., 1994, The role of the I domain in ligand binding of the human integrin α1β1, J. Biol. Chem. 269:22811–22816.PubMedGoogle Scholar
  103. Kim, J. P., Chen, J. D., and Woodley, D. T., 1992a, Mechanism of human keratinocyte migration on fibronectin: Unique roles of RGD site and integrins, J. Cell. Physiol. 151:443–450.PubMedGoogle Scholar
  104. Kim, J. P., Zhang, K., Kramer, R. H., Schall, T. J., and Woodley, D. T., 1992b, Integrin receptors and RGD sequences in human keratinocyte migration: Unique antimigratory function of α3β1, J. Invest. Dermatol. 98:764–770.PubMedGoogle Scholar
  105. Kim, J. P., Zhang, K., Chen, J. D. Kramer, R. H., and Woodley, D. T., 1994, Vitronectin-driven human keratinocyte locomotion is mediated by the αvβ5 integrin receptor, J. Biol. Chem. 269:26926–26932.PubMedGoogle Scholar
  106. Kim, L. T., Ishihara, S., Lee, C. C., Akiyama, S. K., Yamada, K. M., and Grinnell, F., 1992, Altered glycosylation and cell surface expression of β1 integrin receptors during keratinocyte activation, J. Cell Sci. 103:743–753.PubMedGoogle Scholar
  107. Klebe, R. J., 1974, Isolation of a collagen-dependent cell attachment factor, Nature 250:248–251.PubMedGoogle Scholar
  108. Koivisto, L., Heino, J., Hakkinen, L., and Larjava, H., 1994, The size of the intracellular β1-integrin precursor pool regulates maturation of β1-integrin subunit and associated α-subunits, Biochem. J. 300:771–779.PubMedGoogle Scholar
  109. Kornberg, L. J., Earp, H. S., Turner, C. E., Prockop, C., and Juliano, R. L., 1991, Signal transduction by integrins: Increased protein tyrosine phosphorylation caused by clustering of βl integrins, Proc. Natl. Acad. Sci. USA 88:8392–8396.PubMedGoogle Scholar
  110. Kornberg, L., Earp, H. S., Parsons, J. T., Schaller, M., and Juliano, R. L., 1992, Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase, J. Biol. Chem. 267:23439–23442.PubMedGoogle Scholar
  111. Kurpakus, M. A., Quaranta, V., and Jones, J. C., 1991, Surface relocation of α6β4 integrins and assembly of hemidesmosomes in an in vitro model of wound healing, J. Cell Biol. 115:1737–1750.PubMedGoogle Scholar
  112. LaFlamme, S. E., Akiyama, S. K., and Yamada, K. M., 1992, Regulation of fibronectin receptor distribution, J. Cell Biol. 117:437–447.PubMedGoogle Scholar
  113. LaFlamme, S. E., Thomas, L. A., Yamada, S. S., and Yamada, K. M., 1994, Single-subunit chimeric integrins as mimics and inhibitors of endogenous integrin functions. J. Cell Biol. 126:1287–1298.PubMedGoogle Scholar
  114. Larjava, H., 1991, Expression of β1 integrins in normal human keratinocytes. Am. J. Med. Sci. 301:63–68.PubMedGoogle Scholar
  115. Larjava, H., Peltonen, J., Akiyama, S. K., Yamada, S. S., Gralnick, H. R., Uitto, J., and Yamada, K. M., 1990, Novel function for β1 integrins in keratinocyte cell-cell interactions, J. Cell Biol. 110:803–815.PubMedGoogle Scholar
  116. Larjava, H., Salo, T., Haapasalmi, K., Kramer, R. H., and Heino, J., 1993, Expression of integrins and basement membrane components by wound keratinocytes, J. Clin. Invest. 92:1425–1435.PubMedGoogle Scholar
  117. Lee, E. C., Lotz, M. M., Stelle, G. D., and Mercurio, A. M., 1992, The integrin α6β4 is a laminin receptor, J. Cell Biol. 117:671–678.PubMedGoogle Scholar
  118. Lenter, M., and Vestweber, D., 1994, The integrin chains β1 and α6 associate with the chaperone calnexin prior to integrin assembly, J. Biol. Chem. 269:12263–12268.PubMedGoogle Scholar
  119. Leung-Hagesteijn, C. Y., Milankov, K., Michalak, M., Wilkins, J., and Dedhar, S., 1994, Cell attachment to extracellular matrix substrates is inhibited upon down-regulation of expression of calreticulin, an intracellular integrin α-subunit-binding protein, J. Cell Sci. 107:589–600.PubMedGoogle Scholar
  120. Lewis, J. M., and Schwartz, M. A., 1995, Mapping in vivo associations of cytoplasmic proteins with integrin βl cytoplasmic domain mutants, Mol. Biol. Cell 6:151–160.PubMedGoogle Scholar
  121. Lin, C. Q., and Bissell, M. J., 1993, Multi-faceted regulation of cell differentiation by extracellular matrix, FASEB J. 7:737–743.PubMedGoogle Scholar
  122. Lindberg, F. P., Gresham, H. D., Schwarz, E., and Brown, E. J., 1993, Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in αvβ3-dependent ligand binding, J. Cell Biol. 123:485–496.PubMedGoogle Scholar
  123. Loftus, J. C., O’Toole, T. E., Plow, E. F., Glass, A., Frelinger, A. L., and Ginsberg, M. H., 1990, A β3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation, Science 249:915–918.PubMedGoogle Scholar
  124. Lukashev, M. E., Sheppard, D., and Pytela, R., 1994, Disruption of integrin function and induction of tyrosine phosphorylation by the autonomously expressed βl integrin cytoplasmic domain, J. Biol. Chem. 269:18311–18314.PubMedGoogle Scholar
  125. Mackie, E. J., Halfter, W., and Liverani, D., 1988, Induction of tenascin in healing wounds, J. Cell Biol. 107:2757–2767.PubMedGoogle Scholar
  126. Marchisio, P. C., Bondanza, S., Cremona, O., Cancedda, R., and De Luca, M., 1991, Polarized expression of integrin receptors (α6β4, α2βl, α3β1, and αvβ5) and their relationship with the cytoskeleton and basement membrane matrix in cultured human keratinocytes, J. Cell Biol. 112:761–773.PubMedGoogle Scholar
  127. Marinkovich, M. P., Keene, D. R., Rimberg, C. S., and Burgeson, R. E., 1993, Cellular origin of the dermal-epidermal basement membrane, Dev. Dynam. 197:255–267.Google Scholar
  128. McNamee, H. P., Ingber, D. E., and Schwartz, M. A., 1993, Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown, J. Cell Biol. 121:673–678.PubMedGoogle Scholar
  129. Metzger, H., 1992, Transmembrane signaling: The joy of aggregation, J. Immunol. 149:1477–1487.PubMedGoogle Scholar
  130. Miyamoto, S., Akiyama, S. K., and Yamada, K. M., 1995a, Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function, Science 267:883–885.PubMedGoogle Scholar
  131. Miyamoto, S., Teramoto, H., Coso, O. A., Gutkind, J. S., Burbelo, P. D., Akiyama, S. K., and Yamada, K. M., 1995b, Integrin function: Molecular hierarchies of cytoskeletal and signaling molecules, J. Cell Biol., 131:791–805.PubMedGoogle Scholar
  132. Morino, N., Mimura, T., Hamasaki, K., Tobe, K., Ueki, K., Kikuchi, K., Takehara, K., Kadowaki, T., Yazaki, Y., and Nojima, Y., 1995, Matrix/integrin interaction activates the mitogen-activated protein kinase, p44erk-l and p42erk-2, J. Biol. Chem. 270:269–273.PubMedGoogle Scholar
  133. Mueller, S. C., Kelly, T., Dai, M. Z., Dai, H. N., and Chen, W. T., 1989, Dynamic cytoskeleton-integrin associations induced by cell binding to immobilized fibronectin, J. Cell Biol. 109:3455–3464.PubMedGoogle Scholar
  134. Murakami, J., Nishida, T., and Otori, T., 1992, Coordinated appearance of β1 integrins and fibronectin during corneal wound healing, J. Lab. Clin. Med. 120:86–93.PubMedGoogle Scholar
  135. Nermut, M. V., Green, N. M., Eason, P., Yamada, S. S., and Yamada, K. M., 1988, Electron microscopy and structural model of human fibronectin receptor, EMBO J. 7:4093–4099.PubMedGoogle Scholar
  136. Ödland, G., and Ross, R., 1968, Human wound repair. I. Epidermal regeneration, J. Cell Biol. 39:135–157.PubMedGoogle Scholar
  137. O’Keefe, E. J., Payne, Jr., R. E., Russell, N., and Woodley, D. T., 1985, Spreading and enhance motility of human keratinocytes on fibronectin, J. Invest. Dermatol. 85:125–130.PubMedGoogle Scholar
  138. Otey, C. A., Pavalko, F. M., and Burridge, K., 1990, An interaction between α-actinin and the β1 integrin subunit in vitro, J. Cell Biol 111:721–729.PubMedGoogle Scholar
  139. Otey, C. A., Vasquez, G. B., Burridge, K., and Erickson, B. W., 1993, Mapping of the α-actinin binding site within the β1 integrin cytoplasmic domain, J. Biol. Chem. 268:21193–21197.PubMedGoogle Scholar
  140. O’Toole, T. E., Katagiri, Y., Faull, R. J., Peter, K., Tamura, R., Quaranta, V., Loftus, J. C., Shattil, S. J., and Ginsberg, M. H., 1994, Integrin cytoplasmic domains mediate inside-out signal transduction, J. Cell Biol. 124(6): 1047–1059.PubMedGoogle Scholar
  141. O’Toole, T. E., Mandelman, D., Forsyth, J., Shattil, S. J., Plow, E. F., and Ginsberg, M. H., 1991, Modulation of the affinity of integrin αIIbβ3 (GPIIb-IIIa) by the cytoplasmic domain of αIIb, Science 254:845–847.PubMedGoogle Scholar
  142. Paallysaho, T., Tervo, T., Virtanen, I., and Tervo, K., 1992, Integrins in the normal and healing corneal epithelium, Acta Ophthalmol. Suppl. 202:22–25.PubMedGoogle Scholar
  143. Pardi, R., Inverardi, L., Rugarli, C., and Bender, J. R., 1992, Antigen-receptor complex stimulation triggers protein kinase C-dependent CD11a/CD18-cytoskeleton association in T lymphocytes, J. Cell Biol. 116:1211–1220.PubMedGoogle Scholar
  144. Pasqualini, R., and Hemler, M. E., 1994, Contrasting roles for integrin β1 and β5 cytoplasmic domains in subcellular localization, cell proliferation, and cell migration, J. Cell Biol. 125:447–460.PubMedGoogle Scholar
  145. Pavalko, F. M., and LaRoche, S. M., 1993, Activation of human neutrophils induces an interaction between the integrin β2-subunit (CD18) and the actin binding protein alpha-actinin, J. Immunol. 151:3795–3807.PubMedGoogle Scholar
  146. Pavalko, F. M., and Otey, C. A., 1994, Role of adhesion molecule cytoplasmic domains in mediating interactions with the cytoskeleton, Proc. Soc. Exp. Biol. Med. 205:282–293.PubMedGoogle Scholar
  147. Pfaff, M., Aumailley, M., Specks, U., Knolle, J., Zerwes, H. G., and Timpl, R., 1993, Integrin and Arg-Gly-Asp dependence of cell adhesion to the native and unfolded triple helix of collagen type VI, Exp. Cell Res. 206(1):167–176.PubMedGoogle Scholar
  148. Plopper, G., and Ingber, D. E., 1993, Rapid induction and isolation of focal adhesion complexes, Biochem. Biophys. Res. Commun. 193:571–578.PubMedGoogle Scholar
  149. Plow, E. F., D’Souza, S. E., and Ginsberg, M. H., 1992, Ligand binding to GPIIb-IIIa: A status report, Semin. Thromb. Hemost. 18:324–332.PubMedGoogle Scholar
  150. Ramaswamy, H., and Hemler, M. E., 1990, Cloning, primary structure and properties of a novel human integrin β subunit, EMBO J. 9:1561–1568.PubMedGoogle Scholar
  151. Randi, A. M., and Hogg, N., 1994, I domain of β2 integrin lymphocyte function-associated antigen-1 contains a binding site for ligand intercellular adhesion molecule-1, J. Biol. Chem. 269:12395–12398.PubMedGoogle Scholar
  152. Rojiani, M. V., Finlay, B. B., Gray, V., and Dedhar, S., 1991, In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin α subunits, Biochemistry 30:9859–9866.PubMedGoogle Scholar
  153. Rousselle, P., Lunstrum, G. P., Keene, D. R., and Burgeson, R. E., 1991, Kalinin: An epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments, J. Cell Biol. 114:567–576.PubMedGoogle Scholar
  154. Ruoslahti, E., 1991, Integrins, J. Clin. Invest. 87:1–5.PubMedGoogle Scholar
  155. Sastry, S. K., and Horwitz, A. F., 1993, Integrin cytoplasmic domains: Mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signaling, Curr. Opin. Cell Biol. 5:819–831.PubMedGoogle Scholar
  156. Schaller, M. D., Otey, C. A., Hildebrand, J. D., and Parsons, J. T., 1995, Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains, J. Cell Biol. 130:1181–1187.PubMedGoogle Scholar
  157. Schiro, J. A., Chan, B. M., Roswit, W. T., Kassner, P. D., Pentland, A. P., Hemler, M. E., Eisen, A. Z., and Kupper, T. S., 1991, Integrin α2β1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells, Cell 67:403–410.PubMedGoogle Scholar
  158. Schlessinger, J., 1988, Signal transduction by allosteric receptor oligomerization, Trends Biochem. Sci. 13:443–447.PubMedGoogle Scholar
  159. Schmidt, C. E., Horwitz, A. F., Lauffenburger, D. A., and Sheetz, M. P., 1993, Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated, J. Cell Biol. 123:977–991.PubMedGoogle Scholar
  160. Schwartz, M. A., 1993, Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium, J. Cell Biol. 120:1003–1010.PubMedGoogle Scholar
  161. Schwartz, M. A., and Denninghoff, K., 1994, αv Integrins mediate the rise in intracellular calcium in endothelial cells on fibronectin even though they play a minor role in adhesion, J. Biol. Chem. 269:11133–11137.PubMedGoogle Scholar
  162. Schwartz, M. A., and Lechene, C., 1992, Adhesion is required for protein kinase C-dependent activation of the Na+/H+ antiporter by platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 89:6138–6141.PubMedGoogle Scholar
  163. Schwartz, M. A., Ingber, D. E., Lawrence, M., Springer, T., and Lechene, C., 1991a, Multiple integrins share the ability to induce elevation of intracellular pH, Exp. Cell Res. 195:533–535.PubMedGoogle Scholar
  164. Schwartz, M. A., Lechene, C., and Ingber, D. E., 1991b, Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin α1β5, independent of cell shape, Proc. Natl. Acad. Sci. USA 88:7849–7853.PubMedGoogle Scholar
  165. Shattil, S. J., and Brugge, J. S., 1991, Protein tyrosine phosphorylation and the adhesive functions of platelets, Curr. Opin. Cell Biol. 3:869–879.PubMedGoogle Scholar
  166. Shimizu, Y., Van Seventer, G. A., Horgan, K. J., and Shaw, S., 1990, Regulated expression and binding of three VLA (β1) integrin receptors on T cells, Nature 345:250–253.PubMedGoogle Scholar
  167. Singer, I.I., 1979, The fibronexus: A transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts, Cell 16:675–685.PubMedGoogle Scholar
  168. Singer, I.I., Kawka, D. W., Kazazis, D. M., and Clark, R. A. F., 1984, In vivo codistribution of fibronectin and actin fibers in granulation tissue: Immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface, J. Cell Biol. 98:2091–2106.PubMedGoogle Scholar
  169. Smith, J. W., and Cheresh, D. A., 1990, Integrin (αvβ3)-ligand interaction. Identification of a heterodimeric RGD binding site on the vitronectin receptor, J. Biol. Chem. 265:2168–2172.PubMedGoogle Scholar
  170. Song, W. K., Wang, W., Sato, H., Bielser, D. A., and Kaufman, S. J., 1993, Expression of α7 integrin cytoplasmic domains during skeletal muscle development: Alternate forms, conformational change, and homologies with serine/threonine kinases and tyrosine phosphatases, J. Cell Sci. 106:1139–1152.PubMedGoogle Scholar
  171. Sonnenberg, A., 1993, Integrins and their ligands, Curr. Top. Microbiol. Immunol. 184:7–35.PubMedGoogle Scholar
  172. Sonnenberg, A., Linders, C. J. T., Modderman, P. W., Damsky, C. H., Aumailley, M., and Timpl, R., 1990, Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that α6β1 but not α6β4 functions as a major receptor for fragment E8, J. Cell Biol. 110:2145–2155.PubMedGoogle Scholar
  173. Springer, T. A., 1994, Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm, Cell 76:301–314.PubMedGoogle Scholar
  174. Staatz, W. D., Fok, K. F., Zutter, M. M., Adams, S. P., Rodriguez, B. A., and Santoro, S. A., 1991, Identification of a tetrapeptide recognition sequence for the α2β1 integrin in collagen, J. Biol. Chem. 266:7363–7367.PubMedGoogle Scholar
  175. Stanley, J. R., Alvarez, O. M., Bere, E. W., Eaglstein, W. H., and Katz, S. I., 1981, Detection of membrane zone antigens during epidermal wound healing in pigs, J. Invest. Dermatol. 7:240–243.Google Scholar
  176. Stanley, P., Bates, P. A., Harvey, J., Bennett, R. I., and Hogg, N., 1994, Integrin LFA-1 alpha subunit contains an ICAM-1 binding site in domains V and VI, EMBO J. 13:1790–1798.PubMedGoogle Scholar
  177. Staquet, M. J., Levarlet, B., Dezutter-Dambuyant, C., Schmitt, D., and Thivolet, J., 1990, Identification of specific human epithelial cell integrin receptors as VLA proteins, Exp. Cell Res. 187:277–283.PubMedGoogle Scholar
  178. Stenn, K. S., 1981, Epibolin: A protein of human plasma that supports epithelial cell movement, Proc. Natl. Acad. Sci. USA 78:6907–6911.PubMedGoogle Scholar
  179. Stenn, K. S., 1987, Coepibolin, the activity of human serum that enhances the cell-spreading properties of epibolin, associates with albumin, J. Invest. Dermatol. 89:59–63.PubMedGoogle Scholar
  180. Stepp, M. A., Spurr-Michaud, S., Tisdale, A., Elwell, J., and Gipson, I. K., 1990, α6β4 Integrin heterodimer is a component of hemidesmosomes, Proc. Natl. Acad. Sci. USA 87:8970–8974.PubMedGoogle Scholar
  181. Stepp, M. A., Spurr-Michaud, S., and Gipson, I. K., 1993, Integrins in the wounded and unwounded stratified squamous epithelium of the cornea, Invest. Ophthalmol. Vis. Sci. 34:1829–1844.PubMedGoogle Scholar
  182. Streuli, C. H., Bailey, N., and Bissell, M. J., 1991, Control of mammary epithelial differentiation: Basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity, J. Cell Biol. 115:1383–1395.PubMedGoogle Scholar
  183. Suzuki, S., Huang, Z.-S., and Tanihara, H., 1990, Cloning of an integrin β subunit exhibiting high homology with integrin β3 subunit, Proc. Natl. Acad. Sci. USA 87:5354–5358.PubMedGoogle Scholar
  184. Symington, B. E., 1990, Fibronectin receptor overexpression and loss of transformed phenotype in a stable variant of the K562 cell line, Cell. Regul. 1:637–648.PubMedGoogle Scholar
  185. Symington, B. E., 1992, Fibronectin receptor modulates cyclin-dependent kinase activity, J. Biol. Chem. 267:25744–25747.PubMedGoogle Scholar
  186. Symington, B. E., Takada, Y., and Carter, W. G., 1993, Interaction of integrins α3βl and α2β1: Potential role in keratinocyte intercellular adhesion, J. Cell Biol. 120:523–535.PubMedGoogle Scholar
  187. Takada, Y., Ylanne, J., Mandelman, D., Puzon, W., and Ginsberg, M. H., 1992, A point mutation of integrin β1 subunit blocks binding of α5β1 to fibronectin and invasin but not recruitment to adhesion plaques, J. Cell Biol. 119:913–921.PubMedGoogle Scholar
  188. Tamura, R. N., Rozzo, C., Starr, L., Chambers, J., Reichardt, L. F., Cooper, H. M., and Quaranta, V., 1990, Epithelial integrin α6β4: Complete primary structure of α6 and variant forms of β4, J. Cell Biol. 111:1593–1604.PubMedGoogle Scholar
  189. Tapley, P., Horwitz, A., Buck, C., Duggan, K., and Rohrschneider, L., 1989, Integrins isolated from Rous sarcoma virus-transformed chicken embryo fibroblasts, Oncogene 4:325–333.PubMedGoogle Scholar
  190. Tenchini, M. L., Adams, J. C., Gilbert, C., Steel, J., Hudson, D. L., Malcovati, M., and Watt, R M., 1993, Evidence against a major role for integrins in calcium-dependent intercellular adhision of epidermal keratinocytes, Cell Adhesion Commun. 1:55–66.Google Scholar
  191. Tervo, T., van Setten, G. B., Paallysaho, T., Tarkkanen, A., and Tervo, K., 1992, Wound healing of the ocular surface, Ann. Med. 24:19–27.PubMedGoogle Scholar
  192. Toda, K.-I., Tuan, T.-L., Brown, P. J., and Grinnell, F., 1987, Fibronectin receptors of human keratinocytes and their expression during cell culture, J. Cell Biol. 105:3097–3104.PubMedGoogle Scholar
  193. Tuckwell, D. S., Brass, A., and Humphries, M. J., 1992, Homology modelling of integrin EF-hands. Evidence for widespread use of a conserved cation-binding site, Biochem. J. 285:325–331.PubMedGoogle Scholar
  194. Tuckwell, D. S., Weston, S. A., and Humphries, M. J., 1993, Integrins: A review of their structure and mechanisms of ligand binding, Symp. Soc. Exp. Biol. 47:107–136.PubMedGoogle Scholar
  195. Tuckwell, D. S., Ayad, S., Grant, M. E., Takigawa, M., and Humphries, M. J., 1994, Conformation dependence of integrin-type II collagen binding. Inability of collagen peptides to support α2β1 binding, and mediation of adhesion to denatured collagen by a novel α5β1-fibronectin bridge, J. Cell Sci. 107(Pt 4):993–1005.PubMedGoogle Scholar
  196. Turner, C. E., and Burridge, K., 1991, Transmembrane molecular assemblies in cell-extracellular matrix interactions, Curr. Opin. Cell. Biol. 3:849–853.PubMedGoogle Scholar
  197. Wayner, E. A., Orlando, R. A., and Cheresh, D. A., 1991, Integrins αvβ3 and αvβ5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface, J. Cell Biol. 113:919–929.PubMedGoogle Scholar
  198. Welch, M. P., Odland, G. F., and Clark, R. A. F., 1990, Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction, J. Cell Biol. 110:133–145.PubMedGoogle Scholar
  199. Wenczak, B. A., Lynch, J. B., and Nanney, L. B., 1992, Epidermal growth factor receptor distribution in bum wounds. Implications for growth factor-mediated repair, J. Clin. Invest. 90:2392–2401.PubMedGoogle Scholar
  200. Werb, Z., Tremble, P. M., Behrendtsen, O., Crowley, E., and Damsky, C. H., 1989, Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression, J. Cell Biol. 109:877–889.PubMedGoogle Scholar
  201. Wilke, M. S., and Skubitz, A. P. N., 1991, Human keratinocytes adhere to multiple distinct peptide sequences of laminin, J. Invest. Dermatol. 97:141–146.PubMedGoogle Scholar
  202. Yamada, K. M., 1991, Adhesive recognition sequences, J. Biol. Chem. 266:12809–12812.PubMedGoogle Scholar
  203. Yamada, K. M., Aota, S., Akiyama, S. K., and LaFlamme, S. E., 1992, Mechanisms of fibronectin and integrin function during cell adhesion and migration, Cold Spring Harb. Symp. Quant. Biol. 57:203–212.PubMedGoogle Scholar
  204. Ylanne, J., Chen, Y., O’Toole, T. E., Loftus, J. C., Takada, Y., and Ginsberg, M. H., 1993, Distinct functions of integrin a and β subunit cytoplasmic domains in cell spreading and formation of focal adhesions, J. Cell Biol. 122(1):223–233.PubMedGoogle Scholar
  205. Zambruno, G., Marchisio, P. C., Marconi, A., Vaschieri, C., Melchiori, A., Giannetti, A., and De Luca M., 1995, Transforming growth factor-β1 modulates β1 and β5 integrin receptors and induces the de novo expression of the αvβ6 heterodimer in normal human keratinocytes: Implications for wound healing, J. Cell Biol. 129:853–865.PubMedGoogle Scholar
  206. Zetter, B. R., 1993, Adhesion molecules in tumor metastasis, Semin. Cancer Biol. 4:219–229.PubMedGoogle Scholar
  207. Zheng, M., Fang, H., and Hakomori, S., 1994, Functional role of N-glycosylation in α5β1 integrin receptor. De-N-glycosylation induces dissociation or altered association of α5β1 subunits and concomitant loss of fibronectin binding activity, J. Biol. Chem. 269:12325–12331.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Kenneth M. Yamada
    • 1
  • James Gailit
    • 2
  • Richard A. F. Clark
    • 2
  1. 1.Laboratory of Developmental Biology, National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA
  2. 2.Department of Dermatology, Health Sciences CenterState University of New York at Stony BrookStony BrookUSA

Personalised recommendations