Advertisement

Modulation of Wound Repair by Members of the Fibroblast Growth Factor Family

  • Judith A. Abraham
  • Michael Klagsbrun

Abstract

The fibroblast growth factors (FGFs) comprise a family of at least nine structurally homologous polypeptides that are found in a variety of cells and tissues (Baird and Böhlen, 1990; Brem and Klagsbrun, 1993; Burgess and Maciag, 1989; Folkman and Klagsbrun, 1987; Klagsbrun, 1989; Klagsbrun and D’Amore, 1991; Klagsbrun and Folkman, 1990; Rifkin and Moscatelli, 1989; Tanaka et al., 1992; Miyamoto et al., 1993). This family includes acidic FGF (aFGF), basic FGF (bFGF), int-2 protein, HST/K-FGF, FGF-5, FGF-6, keratinocyte growth factor (KGF), androgen-induced growth factor (AIGF), and glia-activating factor (GAF) (see Table I). These growth factors have been enumerated as FGF-1 through FGF-9, respectively, in order to simplify the nomenclature (Baird and Klagsbrun, 1991). However, since the name KGF is still widely used, the designation “KGF/FGF-7” will be used here in referring to this factor. The aFGF (FGF-1) and bFGF (FGF-2) proteins are the most extensively characterized FGF family members in terms of detailed knowledge concerning structure and biological activity.

Keywords

Fibroblast Growth Factor Granulation Tissue Wound Closure Fibroblast Growth Factor Receptor Basic Fibroblast Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, J. A., Mergia, A., Whang, J. L., Tumolo, A., Friedman, J., Hjerrild, K. A., Gospodarowicz, D., and Fiddes, J. C., 1986, Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor, Science 233:545–548.PubMedCrossRefGoogle Scholar
  2. Ahn, S. T., and Mustoe, T. A., 1990, Effects of ischemia on ulcer wound healing: A new model in the rabbit ear, Ann. Plast. Surg. 24:17–23.PubMedCrossRefGoogle Scholar
  3. Albertson, S., Hummel, R. P., Breeden, M., and Greenhalgh, D. G., 1993, PDGF and FGF reverse the healing impairment in protein-malnourished diabetic mice, Surgery 114:368–373.PubMedGoogle Scholar
  4. Avivi, A., Zimmer, Y., Yayon, A., Yarden, Y., and Givol, D., 1991, Flg-2, a new member of the family of fibroblast growth factor receptors, Oncogene 6:1089–1092.PubMedGoogle Scholar
  5. Avivi, A., Yayon, A., and Givol, D., 1993, A novel form of FGF receptor-3 using an alternative exon in the immunoglobulin domain III, FEBS Lett. 330:249–252.PubMedCrossRefGoogle Scholar
  6. Baird, A., and Böhlen, P., 1990, Fibroblast growth factors, in: Handbook of Experimental Pharmacology, Volume 95: Peptide Growth Factors and Their Receptors I (M. B. Sporn and A. B. Roberts, eds.), pp. 369–418, Springer-Verlag, Berlin.Google Scholar
  7. Baird, A., and Klagsbrun, M., 1991, Nomenclature meeting report and recommendations, Ann. NY Acad. Sci. 638:xiii–xvi.CrossRefGoogle Scholar
  8. Baird, A., and Ling, N., 1987, Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: Implication for a role of heparinase-like enzymes in the neovascular response, Biochem. Biophys. Res. Commun. 142:428–435.PubMedCrossRefGoogle Scholar
  9. Baird, A., Mormede, P., and Böhlen, P., 1985, Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor, Biochem. Biophys. Res. Commun. 126:358–364.PubMedCrossRefGoogle Scholar
  10. Bashkin, P., Doctrow, S., Klagsbrun, M., Svahn, C. M., Folkman, J., and Vlodavsky, I., 1989, Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules, Biochemistry 28:1737–1743.PubMedCrossRefGoogle Scholar
  11. Basilico, C., Newman, K. M., Curatola, A. M., Talarico, D., Mansukhani, A., Velchich, A., and Delli-Bovi, P., 1989, Expression and activation of the K-fgf oncogene, Ann. NY Acad. Sci. 567:95–103.PubMedCrossRefGoogle Scholar
  12. Bates, B., Hardin, J., Zhan, X., Drickamer, K., and Goldfarb, M., 1991, Biosynthesis of human fibroblast growth factor-5, Mol. Cell. Biol. 11:1840–1845.PubMedGoogle Scholar
  13. Bellosta, P., Talarico, D., Rogers, D., and Basilico, C., 1993, Cleavage of K-FGF produces a truncated molecule with increased biological activity and receptor binding affinity, J. Cell Biol. 121:705–713.PubMedCrossRefGoogle Scholar
  14. Bernfield, M., Kokenyesi, R., Kato, M., Hinkes, M. T., Spring, J., Gallo, R. L., and Lose, E. J., 1994, Biology of the syndecans, Annu. Rev. Cell Biol. 8:1–39.Google Scholar
  15. Blotnick, S., Peoples, G. E., Freeman, M. R., Eberlein, T. J., and Klagsbrun, M., 1994, T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: Differential production and release by CD4+ and CD8+ T cells, Proc. Natl. Acad. Sci. USA 91:2890–2894.PubMedCrossRefGoogle Scholar
  16. Bottaro, D. P., Rubin, J. S., Ron, D., Finch, P. W., Florio, C., and Aaronson, S. A., 1990, Characterization of the receptor for keratinocyte growth factor: Evidence for multiple fibroblast growth factor receptors, J. Biol. Chem. 265:12767–12770.PubMedGoogle Scholar
  17. Brem, H., and Klagsbrun, M., 1993, The role of fibroblast growth factors and related oncogenes in tumor growth, in: Oncogenes and Tumor Suppressor Genes in Human Malignancies (C. C. Benz and E. T. Liu, eds.), pp. 211–231, Kluwer Academic Publishers, Norwell, Massachusetts.CrossRefGoogle Scholar
  18. Broadley, K. N., Aquino, A. M., Hicks, B., Ditesheim, J. A., McGee, G. S., Demetriou, A. A., Woodward, S. C., and Davidson, J. M., 1988, Growth factors bFGF and TGFβ accelerate the rate of wound repair in normal and in diabetic rats, Int. J. Tissue React. X:345–353.Google Scholar
  19. Broadley, K. N., Aquino, A. M., Woodward, S. C., Buckley-Sturrock, A., Sato, Y., Rifkin, D. B., and Davidson, J. M., 1989a, Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair, Lab. Invest. 61:571–575.PubMedGoogle Scholar
  20. Broadley, K. N., Aquino, A. M., Hicks, B., Ditesheim, J. A., McGee, G. S., Demetriou, A. A., Woodward, S. C., and Davidson, J. M., 1989b, The diabetic rat as an impaired wound healing model: Stimulatory effects of transforming growth factor-beta and basic fibroblast growth factor, Biotechnol. Ther. 1:55–68.PubMedGoogle Scholar
  21. Briistle, O., Aguzzi, A., Talarico, D., Basilico, C., and Kleihues, P., 1992, Angiogenic activity of the K-fgf/hst oncogene in neural transplants, Oncogene 7:1177–1183.Google Scholar
  22. Buckley-Sturrock, A., Woodward, S. C., Senior, R. M., Griffin, G. L., Klagsbrun, M., and Davidson, J. M., 1989, Differential stimulation of collagenase and chemotactic activity in fibroblasts derived from rat wound repair tissue and human skin by growth factors, J. Cell. Physiol. 138:70–78.PubMedCrossRefGoogle Scholar
  23. Buntrock, P., Jentzsch, K. D., and Heder, G., 1982a, Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. I. Quantitative and biochemical studies into formation of granulation tissue, Exp. Pathol. 21:46–53.PubMedCrossRefGoogle Scholar
  24. Buntrock, P., Jentzsch, K. D., and Heder, G., 1982b, Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. II. Histological and morphometric examination of cells and capillaries, Exp. Pathol. 21:62–67.PubMedCrossRefGoogle Scholar
  25. Buntrock, P., Buntrock, M., Marx, I., Kranz, D., Jentzsch, K. D., and Heder, G., 1984, Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. III. Electron microscopy, autoradiography, and ultrastructural autoradiography of granulation tissue, Exp. Pathol. 26:247–254.PubMedCrossRefGoogle Scholar
  26. Burgess, W., and Maciag, T., 1989, The heparin-binding (fibroblast) growth factor family of proteins, Annu. Rev. Biochem. 58:575–606.PubMedCrossRefGoogle Scholar
  27. Burrus, L. W., Zuber, M. E., Lueddecke, B. A., and Olwin, B. B., 1992, Identification of a cysteine-rich receptor for fibroblast growth factors, Mol. Cell. Biol. 12:5600–5609.PubMedGoogle Scholar
  28. Chedid, M., Rubin, J. S., Csaky, K. G., and Aaronson, S. A., 1994, Regulation of keratinocyte growth factor gene expression by interleukin 1, J. Biol. Chem. 269:10753–10757.PubMedGoogle Scholar
  29. Chen, W. Y. J., Rogers, A. A., and Lydon, M. J., 1992, Characterization of biologic properties of wound fluid collected during early stages of wound healing, J. Invest. Dermatol. 99:559–564.PubMedCrossRefGoogle Scholar
  30. Cooper, D. M., Yu, E. Z., Hennessey, P., Ko, F., and Robson, M. C., 1994, Determination of endogenous cytokines in chronic wounds, Ann. Surg. 219:688–692.PubMedCrossRefGoogle Scholar
  31. Cooper, M. L., Hansbrough, J. F., Foreman, T. J., Sakabu, S. A., and Laxer, J. A., 1991, The effects of epidermal growth factor and basic fibroblast growth factor on epithelialization of meshed skin graft interstices, in: Clinical and Experimental Approaches to Dermal and Epidermal Repair: Normal and Chronic Wounds (A. Barbul, M. Caldwell, W. Eaglstein, T. Hunt, D. Marshall, E. Pines, and G. Skover, eds.), pp. 429–442, Alan R. Liss, New York.Google Scholar
  32. Coulier, F., Batoz, M., Maries, I., deLapeyriere, O., and Birnbaum, D., 1991, Putative structure of the FGF6 protein and role of the signal peptide, Oncogene 6:1437–1444.PubMedGoogle Scholar
  33. Coulier, F., Pizette, S., Ollendorff, V., deLapeyriere, O., and Birnbaum, D., 1994, The human and mouse fibroblast growth factor 6 (FGF6) genes and their products: Possible implication in muscle development, Prog. Growth Factor Res. 5:1–14.PubMedCrossRefGoogle Scholar
  34. Davidson, J. M., and Broadley, K. N., 1991, Manipulation of the wound-healing process with basic fibroblast growth factor, Ann. NY Acad. Sci. 638:306–315.PubMedCrossRefGoogle Scholar
  35. Davidson, J. M., Klagsbrun, M., Hill, K. E., Buckley, A., Sullivan, R., Brewer, P. S., and Woodward, S. C., 1985, Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor, J. Cell Biol. 100:1219–1227.PubMedCrossRefGoogle Scholar
  36. Davidson, J., Buckley, A., Woodward, S., Nichols, W., McGee, G., and Demetriou, A., 1988, Mechanisms of accelerated wound repair using epidermal growth factor and basic fibroblast growth factor, in: Growth Factors and Other Aspects of Wound Healing: Biological and Clinical Implications (A. Barbul, E. Pines, M. Caldwell, and T. K. Hunt, eds.), pp. 63–75, Alan R. Liss, New York.Google Scholar
  37. de Lapeyriere, O., Rosnet, O., Benharroch, D., Raybaud, F., Marchetto, S., Planche, J., Galland, F., Mattei, M.-G., Copeland, N. G., Jenkins, N. A., Coulier, F., and Birnbaum, D., 1990, Structure, chromosome mapping and expression of the murine FGF-6 gene, Oncogene 5:823–831.PubMedGoogle Scholar
  38. Delli-Bovi, P., Curatola, A. M., Kern, F. G., Greco, A., Ittman, M., and Basilico, C., 1987, An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is a member of the FGF family, Cell 50:729–737.PubMedCrossRefGoogle Scholar
  39. Delli-Bovi, P., Curatola, A. M., Newman, K. M., Sato, Y., Moscatelli, D., Hewick, R. M., Rifkin, D. B., and Basilico, C., 1988, Processing, secretion, and biological properties of a novel growth factor of the fibroblast growth family with oncogenic potential, Mol. Cell. Biol. 8:2933–2941.PubMedGoogle Scholar
  40. Delli-Bovi, P., Mansukhani, A., Ziff, E. B., and Basilico, C., 1989, Expression of the K-fgf protooncogene is repressed during differentiation of F9 cells, Oncogene Res. 5:31–37.PubMedGoogle Scholar
  41. Dickson, C., and Peters, G., 1987, Potential oncogene product related to growth factors, Nature 326:833.PubMedCrossRefGoogle Scholar
  42. Dickson, G., Acland, P., Smith, R., Dixon, M., Deed, R., MacAllan, D., Walther, W., Fuller-Pace, F., Kiefer, P., and Peters, G., 1990, Characterization of int-2: A member of the fibroblast growth factor family, J. Cell Sci. (Suppl.) 13:87–96.CrossRefGoogle Scholar
  43. Dionne, C. A., Crumley, G., Bellot, F., Kaplow, J. M., Searfoss, G., Ruta, M., Burgess, W. H., Jaye, M., and Schlessinger, J., 1990, Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors, EMBO J. 9:2685–2692.PubMedGoogle Scholar
  44. Dixon, M., Deed, R., Acland, P., Moore, R., Whyte, A., Peters, G., and Dickson, G., 1989, Detection and characterization of the fibroblast growth factor-related oncoprotein INT-2, Mol. Cell. Biol. 9:4896–4902.PubMedGoogle Scholar
  45. Elenius, K., Vainio, S., Laato, M., Salmivirta, M., Thesleff, R., and Jalkanen, M., 1991, Induced expression of syndecan in healing wounds, J. Cell Biol. 114:585–595.PubMedCrossRefGoogle Scholar
  46. Elenius, K., Maatta, A., Salmivirta, M., and Jalkanen, M., 1992, Growth factors induce 3T3 cells to express bFGF binding syndecan, J. Biol. Chem. 9:6435–6441.Google Scholar
  47. Eriksson, E., Breuing, K., Johansen, L. B., and Miller, D. R., 1989, Growth factor solutions for wound treatment in pigs, Surg. Forum 40:618–620.Google Scholar
  48. Esch, F., Baird, A., Ling, N., Ueno, N., Hill, F., Denoroy, L., Klepper, R., Gospodarowicz, D., Böhlen, P., and Guillemin, R., 1985, Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF, Proc. Natl. Acad. Sci. USA 82:6507–6511.PubMedCrossRefGoogle Scholar
  49. Fiddes, J. C., Hebda, P. A., Hayward, P., Robson, M. C., Abraham, J. A., and Klingbeil, C. K., 1991, Preclinical wound-healing studies with recombinant human basic fibroblast growth factor, Ann. NY Acad. Sci. 638:316–328.PubMedCrossRefGoogle Scholar
  50. Finch, P. W., Rubin, J. S., Miki, T., Ron, D., and Aaronson, S. A., 1989, Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth, Science 245:752–755.PubMedCrossRefGoogle Scholar
  51. Flaumenhaft, R., and Rifkin, D. B., 1991, Extracellular matrix regulation of growth factor and protease activity, Curr. Opin. Cell Biol. 3:817–823.PubMedCrossRefGoogle Scholar
  52. Florkiewicz, R. Z., and Sommer, A., 1989, Human basic fibroblast growth factor gene encodes four polypeptides: Three initiate translation from non-AUG codons, Proc. Natl. Acad. Sci. USA 86:3978–3981.PubMedCrossRefGoogle Scholar
  53. Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors, Science 235:442–447.PubMedCrossRefGoogle Scholar
  54. Folkman, J., Klagsbrun, M., Sasse, J., Wadzinski, M., Ingber, D., and Vlodavsky, I., 1988, A heparin-binding and angiogenic protein—basic fibroblast growth factor—is stored within basement membrane, Am. J. Pathol. 130:393–400.PubMedGoogle Scholar
  55. Gallo, R. L., Ono, M., Povsic, T., Page, C., Eriksson, E., Klagsbrun, M., and Bernfield, M., 1994, Syndecans, cell surface heparan sulfate proteoglycans are induced by a proline-rich antimicrobial peptide from wounds, Proc. Natl. Acad. Sci. USA 91:11035–11039.PubMedCrossRefGoogle Scholar
  56. Gibran, N. S., Isik, F. F., Heimbach, D. M., and Gordon, D., 1994, Basic fibroblast growth factor in the early human burn wound, J. Surg. Res. 56:226–234.PubMedCrossRefGoogle Scholar
  57. Gimenez-Gallego, G., Rodkey, K., Bennett, C., Rios-Candelore, M., DiSalvo, J., and Thomas, K. A., 1985, Brain-derived acidic fibroblast growth factor: Complete amino acid sequence and homologies, Science 230:1385–1388.PubMedCrossRefGoogle Scholar
  58. Gospodarowicz, D., and Cheng, J., 1986, Heparin protects basic and acidic FGF from inactivation, J. Cell. Physiol. 128:475–484.PubMedCrossRefGoogle Scholar
  59. Grayson, L. S., Hansbrough, J. F., Zapata-Sirvent, R. L., Dore, C. A., Morgan, J. L., and Nicolson, M. A., 1993, Quantitation of cytokine levels in skin graft donor site wound fluid, Burns 19:401–405.PubMedCrossRefGoogle Scholar
  60. Greenhalgh, D. G., and Rieman, M., 1994, Effects of basic fibroblast growth factor on the healing of partial-thickness donor sites: A prospective, randomized, double-blind trial, Wound Repair Regen. 2:113–121.PubMedCrossRefGoogle Scholar
  61. Greenhalgh, D. G., Sprugel, K. H., Murray, M. J., and Ross, R., 1990, PDGF and FGF stimulate wound healing in the genetically diabetic mouse, Am. J. Pathol. 136:1235–1246.PubMedGoogle Scholar
  62. Gross, J. L., Moscatelli, D., and Rifkin, D. B., 1983, Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro, Proc. Natl. Acad. Sci. USA 80:2623–2627.PubMedCrossRefGoogle Scholar
  63. Haub, O., Drucker, B., and Goldfarb, M., 1990, Expression of the murine fibroblast growth factor 5 gene in the adult central nervous system, Proc. Natl. Acad. Sci. USA 87:8022–8026.PubMedCrossRefGoogle Scholar
  64. Hayward, P., Hokanson, J., Heggars, J., Fiddes, J., Klingbeil, C., Goeger, M., and Robson, M., 1992, Fibroblast growth factor reverses the bacterial retardation of wound contraction, Am. J. Surg. 163:288–293.PubMedCrossRefGoogle Scholar
  65. Hebda, P. A., Klingbeil, C. K., Abraham, J. A., and Fiddes, J. C., 1990a, Basic fibroblast growth factor stimulation of epidermal wound healing in pigs, J. Invest. Dermatol. 95:626–631.PubMedCrossRefGoogle Scholar
  66. Hebda, P. A., Brady, E. P., Wolfman, N., Stoudemire, J., and Rogers, D., 1990b, Stimulation of epidermal and dermal wound healing by Kaposi sarcoma-derived fibroblast growth factor, J. Invest. Dermatol. 94:534.Google Scholar
  67. Hebda, P. A., Colaiacovo, L., Kruse, S. A., Rodgers, R., Morris, C. F., and Pierce, G. F., 1993, Keratinocyte growth factor: Stimulation of epidermal regeneration in partial thickness wounds in pig skin, J. Invest. Dermatol. 100:557.Google Scholar
  68. Hébert, J. M., Basilico, C., Goldfarb, M., Haub, O., and Martin, G. R., 1990, Isolation of cDNAs encoding four mouse FGF family members and characterization of their expression patterns during embry-ogenesis, Dev. Biol. 138:454–463.PubMedCrossRefGoogle Scholar
  69. Hébert, J. M., Rosenquist, T., Götz, J., and Martin, G. R., 1994, FGF5 as a regulator of the hair growth cycle: Evidence from targeted and spontaneous mutations, Cell 78:1017–1025.PubMedCrossRefGoogle Scholar
  70. Houssaint, E., Blanquet, P. R., Champion-Arnaud, P., Gesnel, M. C., Torriglia, A., Courtois, Y., and Breath-nach, R., 1990, Related fibroblast growth factor receptor genes exist in the human genome, Proc. Natl. Acad. Sci. USA 87:8180–8184.PubMedCrossRefGoogle Scholar
  71. Huang, Y. Q., Li, J. J., Moscatelli, D., Basilico, C., Nicolaides, A., Zhang, W. G., Polesz, B. J., and Friedman-Kien, A. E., 1993, Expression of INT-2 oncogene in Kaposi’s sarcoma lesions, J. Clin. Invest. 91:1191–1197.PubMedCrossRefGoogle Scholar
  72. Hughes, R. A., Sendtner, M., Goldfarb, M., Lindholm, D., and Thoenen, H., 1993, Evidence that fibroblast growth factor 5 is a major muscle-derived survival factor for cultured spinal motoneurons, Neuron 10:369–377.PubMedCrossRefGoogle Scholar
  73. Jackson, A., Friedman, S., Zhan, X., Engleka, K. A., Forough, R., and Maciag, T., 1992, Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells, Proc. Natl. Acad. Sci. USA 89:10691–10695.PubMedCrossRefGoogle Scholar
  74. Jaye, M., Howk, R., Burgess, W., Ricca, G. A., Chiu, I. M., Ravara, M. W., O’Brien, S. J., Modi, W. S., Maciag, T., and Drohan, W. N., 1986, Human endothelial cell growth factor: Cloning, nucleotide sequence, and chromosome localization, Science 233:541–545.PubMedCrossRefGoogle Scholar
  75. Jaye, M., Burgess, W. H., Shaw, A. B., and Drohan, W. N., 1987, Biological equivalence of natural bovine and recombinant human α-endothelial cell growth factors, J. Biol. Chem. 262:16612–16617.PubMedGoogle Scholar
  76. Johnson, D. E., Lee, P. L., Lu, J., and Williams, L. T., 1990, Diverse forms of a receptor for acidic and basic fibroblast growth factors, Mol. Cell. Biol. 10:4728–4736.PubMedGoogle Scholar
  77. Johnson, D. E., Lu, J., Chen, H., Werner, S., and Williams, L. T., 1991, The human fibroblast growth factor receptor genes: A common structural arrangement underlies the mechanism for generating receptor forms that differ in their third immunoglobulin domain, Mol. Cell. Biol. 11:4627–46234.PubMedGoogle Scholar
  78. Kan, M., Wang, F., Xu, J., Crabb, J. W., Hou, J., and McKeehan, W. L., 1993, An essential heparin-binding domain in the fibroblast growth factor receptor kinase, Science 259:1918–1921.PubMedCrossRefGoogle Scholar
  79. Kandel, J., Bossy-Wetzel, E., Radvany, F., Klagsbrun, M., Folkman, J., and Hanahan, D., 1991, Neovascular-ization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma, Cell 66:1095–1104.PubMedCrossRefGoogle Scholar
  80. Keegan, K., Johnson, D. E., Williams, L. T., and Hayman, M. J., 1991, Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3, Proc. Natl. Acad. Sci. USA 88:1095–1099.PubMedCrossRefGoogle Scholar
  81. Kiefer, P., Mathieu, M., Close, M. J., Peters, G., and Dickson, C., 1993, FGF3 from Xenopus laevis, EMBO J. 12:4159–4168.PubMedGoogle Scholar
  82. Klagsbrun, M., 1989, The fibroblast growth factor family: Structural and biological properties, Prog. Growth Factor Res. 1:207–235.PubMedCrossRefGoogle Scholar
  83. Klagsbrun, M., 1990, The affinity of fibroblast growth factors (FGF’s) for heparin: FGF-heparan sulfate interactions in cells and extracellular matrix, Curr. Opin. Cell Biol. 2:857–863.PubMedCrossRefGoogle Scholar
  84. Klagsbrun, M., and Baird, A., 1991, A dual receptor system is required for basic fibroblast growth factor activity, Cell 67:1–20.CrossRefGoogle Scholar
  85. Klagsbrun, M., and D’Amore, P. A., 1991, Regulators of angiogenesis, Annu. Rev. Physiol. 53:217–239.PubMedCrossRefGoogle Scholar
  86. Klagsbrun, M., and Folkman, J., 1990, Angiogenesis, in: Handbook of Experimental Pharmacology, Volume 95: Peptide Growth Factors and Their Receptors II (M. B. Sporn and A. B. Roberts, eds.), pp. 549–586, Springer-Verlag, Berlin.Google Scholar
  87. Klagsbrun, M., and Shing, Y., 1985, Heparin affinity of anionic and cationic capillary endothelial cell growth factors: Analysis of hypothalamus-derived growth factors and fibroblast growth factors, Proc. Natl. Acad. Sci. USA 82:805–809.PubMedCrossRefGoogle Scholar
  88. Klingbeil, C. K., Cesar, L. B., and Fiddes, J. G., 1991, Basic fibroblast growth factor accelerates tissue repair in models of impaired wound healing, in: Clinical and Experimental Approaches to Dermal and Epidermal Repair: Normal and Chronic Wounds (A. Barbul, M. Caldwell, W. Eaglstein, T. Hunt, D. Marshall, E. Pines, and G. Skover, eds.), pp. 443–458, Alan R. Liss, New York.Google Scholar
  89. Kornbluth, S., Paulson, K. E., and Hanafusa, H., 1988, Novel tyrosine kinase identified by phosphotyrosine antibody screening of cDNA libraries, Mol. Cell. Biol. 8:5541–5544.PubMedGoogle Scholar
  90. Kuchler, K., and Thorner, J., 1992, Secretion of peptides and proteins lacking hydrophobic signal sequences: The role of adenosine triphosphate-driven membrane translocators, Endocr. Rev. 13:499–514.PubMedGoogle Scholar
  91. Kurita, Y., Tsuboi, R., Ueki, R., Rifkin, D. B., and Ogawa, H., 1992, Immunohistochemical localization of basic fibroblast growth factor in wound healing sites of mouse skin, Arch. Dermatol. Res. 284:193–197.PubMedCrossRefGoogle Scholar
  92. Lasa, C. I., Kidd, R. R., Nunez, H. A., and Drohan, W. N., 1993, Effect of fibrin glue and Opsite on open wounds in db/db mice, J. Surg. Res. 54:202–206.PubMedCrossRefGoogle Scholar
  93. Lazarou, S. A., Efron, J. E., Shaw, T., Wasserkrug, H. L., and Barbul, A., 1989, Fibroblast growth factor inhibits wound collagen synthesis, Surg. Forum 40:627–629.Google Scholar
  94. Lee, P. L., Johnson, D. E., Cousens, L. S., Fried, V. A., and Williams, L. T., 1989, Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor, Science 245:57–60.PubMedCrossRefGoogle Scholar
  95. LeGrand, E. K., Burke, J. F., Costa, D. E., and Kiorpes, T. C., 1993, Dose responsive effects of PDGF-BB, PDGF-AA, EGF, and bFGF on granulation tissue in a guinea pig partial thickness skin excision model, Growth Factors 8:307–314.PubMedCrossRefGoogle Scholar
  96. Linemeyer, D. L., Kelly, L. J., Menke, J. G., Gimenez-Gallego, G., DiSalvo, J., and Thomas, K. A., 1987, Expression in Escherichia coli of a chemically synthesized gene for biologically active bovine acidic fibroblast growth factor, Bio/Technology 5:960–965.CrossRefGoogle Scholar
  97. Lobb, R. R., Alderman, E. M., and Fett, J. W., 1985, Induction of angiogenesis by bovine brain derived class I heparin binding growth factor, Biochemistry 24:4969–4973.PubMedCrossRefGoogle Scholar
  98. Lynch, S. E., Colvin, R. B., and Antoniades, H. N., 1989, Growth factors in wound healing: Single and synergistic effects on partial thickness porcine skin wounds, J. Clin. Invest. 84:640–646.PubMedCrossRefGoogle Scholar
  99. Maciag, T., Mehlman, T., Friesel, R., and Schreiber, A. B., 1984, Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain, Science 225:932–935.PubMedCrossRefGoogle Scholar
  100. Mansukhani, A., Moscatelli, D., Talarico, D., Levytska, V., and Basilico, C., 1990, A murine fibroblast growth factor (FGF) receptor expressed in CHO cells is activated by basic FGF and Kaposi FGF, Proc. Natl. Acad. Sci. USA 87:4378–4382.PubMedCrossRefGoogle Scholar
  101. Marchese, C., Rubin, J., Ron, D., Faggioni, A., Torrisi, M. R., Messina, A., Frati, L., and Aaronson, S. A., 1990, Human keratinocyte growth factor activity on proliferation and differentiation of human keratino-cytes: Differentiation response distinguishes KGF from EGF family, J. Cell. Physiol. 144: 326–332.PubMedCrossRefGoogle Scholar
  102. Maries, I., Adelaide, J., Raybaud, F., Mattei, M.-G., Coulier, F., Planche, J., de Lapeyriere, O., and Birnbaum, D., 1989, Characterization of the HST-related FGF.6 gene, a new member of the fibroblast growth factor gene family, Oncogene 4:335–340.Google Scholar
  103. Matuszewska, B., Keogan, M., Fisher, D. M., Soper, K. A., Hoe, C.-M., Huber, A. C., and Bondi, J. V., 1994, Acidic fibroblast growth factor: Evaluation of topical formulations in a diabetic mouse wound healing model, Pharm. Res. 11:65–71.PubMedCrossRefGoogle Scholar
  104. Mazué, G., Bertolero, F., Jacob, C., Sarmientos, P., and Boncucci, R., 1991, Preclinical and clinical studies with recombinant human basic fibroblast growth factor, Ann. NY Acad. Sci. 638:329–340.PubMedCrossRefGoogle Scholar
  105. McGee, G. S., Davidson, J. M., Buckley, A., Sommer, A., Woodward, S. C., Aquino, A. M., Barbour, R., and Demetriou, A. A., 1988, Recombinant basic fibroblast growth factor accelerates wound healing, J. Surg. Res. 45:145–153.PubMedCrossRefGoogle Scholar
  106. McNeil, P. L., 1993, Cellular and molecular adaptations to injurious mechanical stress, Trends Cell Biol. 3:302–307.PubMedCrossRefGoogle Scholar
  107. McNeil, P. L., Muthukrishnan, L., Warder, E., and D’Amore, P., 1989, Growth factors are released by mechanically wounded endothelial cells, J. Cell Biol. 109:811–822.PubMedCrossRefGoogle Scholar
  108. Mellin, T. N., Mennie, R. J., Cashen, D. E., Ronan, J. J., Capparella, J., James, M. L., Di Salvo, J., Frank, J., Linemeyer, D., Gimenez-Gallego, G., and Thomas, K. A., 1992, Acidic fibroblast growth factor accelerates dermal wound healing, Growth Factors 7:1–14.PubMedCrossRefGoogle Scholar
  109. Mellin, T. N., Cashen, D. E., Ronan, J. J., Murphy, B.S., Di Salvo, J., and Thomas, K. A., 1995, Acidic fibroblast growth factor accelerates dermal wound healing in diabetic mice, J. Invest. Dermatol. 104:850–855.PubMedCrossRefGoogle Scholar
  110. Meyers, S. L., O’Brien, M. T., Smith, T., and Dudley, J. P., 1990, Analysis of the int-1, int-2, c-myc, and neu oncogenes in human breast carcinomas, Cancer Res. 50:5911–5918.PubMedGoogle Scholar
  111. Mignatti, P., Tsuboi, R., Robbins, W., and Rifkin, D. B., 1989, In vitro angiogenesis on the human amniotic membrane: Requirement for basic fibroblast growth factor-induced proteinases, J. Cell Biol. 108: 671–682.PubMedCrossRefGoogle Scholar
  112. Mignatti, P., Morimoto, T., and Rifkin, D. B., 1992, Basic fibroblast growth factor, a protein devoid of a secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex, J. Cell. Physiol. 151:81–93.PubMedCrossRefGoogle Scholar
  113. Miki, T., Fleming, T. P., Bottaro, D. P., Rubin, J. S., Ron, D., and Aaronson, S. A., 1991, Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop, Science 251:72–75.PubMedCrossRefGoogle Scholar
  114. Miki, T., Bottaro, D. P., Fleming, T. P., Smith, C. L., Burgess, W. H., Chan, A. M.-L., and Aaronson, S. A., 1992, Determination of ligand-binding specificity by alternative splicing: Two distinct growth factor receptors encoded by a single gene, Proc. Natl. Acad. Sci. USA 89:246–250.PubMedCrossRefGoogle Scholar
  115. Miyamoto, M., Naruo, K.-I., Seko, C., Matsumoto, S., Kondo, T., and Kurokawa, T., 1993, Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property, Mol. Cell. Biol. 13:4251–4259.PubMedGoogle Scholar
  116. Moscatelli, D., 1987, High and low affinity binding sites for basic fibroblast growth factor on cultured cells: Absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells, J. Cell. Physiol. 131:123–130.PubMedCrossRefGoogle Scholar
  117. Moscatelli, D., and Quarto, N., 1989, Transformation of NIH 3T3 cells with basic fibroblast growth factor or the hst/K-fgf oncogene causes down-regulation of the fibroblast growth factor receptor: Reversal of morphological transformation and restoration of receptor number by suramin, J. Cell Biol. 109:2519–2527.PubMedCrossRefGoogle Scholar
  118. Muller, W. J., Lee, F. S., Dickson, C., Peters, G., Pattengale, P., and Leder, P., 1990, The int-2 gene product acts as an epithelial growth factor in transgenic mice, EMBO J. 9:907–913.PubMedGoogle Scholar
  119. Mustoe, T. A., Pierce, G. F., Morishima, C., and Deuel, T. F., 1991, Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model, J. Clin. Invest. 87:694–703.PubMedCrossRefGoogle Scholar
  120. Mustoe, T. A., Ahn, S. T., Tarpley, J. E., and Pierce, G. F., 1994, Role of hypoxia in growth factor responses: Differential effects of basic fibroblast growth factor and platelet-derived growth factor in an ischemic wound model, Wound Repair Regen. 2:277–283.PubMedCrossRefGoogle Scholar
  121. Muthukrishnan, L., Warder, E., and McNeil, P. L., 1991, Basic fibroblast growth factor is efficiently released from a cytosolic storage site through plasma membrane disruptions of endothelial cells, J. Cell. Physiol. 148:1–16.PubMedCrossRefGoogle Scholar
  122. Nabel, E. G., Yang, Z.-Y., Plautz, G., Forough, R., Zhan, X., Haudenschild, C. C., Maciag, T., and Nabel, G. J., 1993, Recombinant fibroblast growth factor-1 promotes intimai hyperplasia and angiogenesis in arteries in vivo, Nature 362:844–846.PubMedCrossRefGoogle Scholar
  123. Niswander, L., and Martin, G. R., 1992, FGF-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse, Development 114:755–768.PubMedGoogle Scholar
  124. Nurcombe, V., Ford, D. M., Wildschut, J. A., and Bartlett, P. F., 1993, Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan, Science 260:103–106.PubMedCrossRefGoogle Scholar
  125. O’Keefe, E. J., Chiu, M. L., and Payne, R. E., 1988, Stimulation of growth of keratinocytes by basic fibroblast growth factor, J. Invest. Dermatol. 90:767–769.PubMedCrossRefGoogle Scholar
  126. Olwin, B. B., Hannon, K., and Kudla, A. J., 1994, Are fibroblast growth factors regulators of myogenesis in vivo? Prog. Growth Factor Res. 5:145–158.PubMedCrossRefGoogle Scholar
  127. Ornitz, D. M., Moreadith, R. W., and Leder, P., 1991, Binary system for regulating transgene expression in mice: Targeting int-2 gene expression with yeast GAL4/UAS control elements, Proc. Natl. Acad. Sci. USA 88:698–702.PubMedCrossRefGoogle Scholar
  128. Ornitz, D. M., Yayon, A., Flanagan, J. G., Svahn, C. M., Levi, E., and Leder, P., 1992, Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells, Mol. Cell. Biol. 12:240–247.PubMedGoogle Scholar
  129. Partanen, J., Makela, T. P., Eerola, E., Korhonen, J., Hirvonen, H., Claesson-Welsh, L., and Alitalo, K., 1991, FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern, EMBO J. 10:1347–1354.PubMedGoogle Scholar
  130. Partanen, J., Vainikka, S., Korhonen, J., Armstrong, E., and Alitalo, K., 1992, Diverse receptors for fibroblast growth factors, Prog. Growth Factor Res. 4:69–83.PubMedCrossRefGoogle Scholar
  131. Pasquale, E. B., 1990, A distinctive family of embryonic protein-tyrosine kinase receptors, Proc. Natl. Acad. Sci. USA 87:5812–5816.PubMedCrossRefGoogle Scholar
  132. Phillips, L. G., Geldner, P., Brou, J., Dobbins, S., Hokanson, J., and Robson, M. C., 1990, Correction of diabetic incisional healing impairment with basic fibroblast growth factor, Surg. Forum 41:602–603.Google Scholar
  133. Phillips, L. G., Abdullah, K. M., Geldner, P. D., Dobbins, S., Ko, F., Linares, H. A., Broemeling, L. D., and Robson, M. C., 1993, Application of basic fibroblast growth factor may reverse diabetic wound healing impairment, Ann. Plast. Surg. 31:331–334.PubMedCrossRefGoogle Scholar
  134. Pierce, G. F., Tarpley, J. E., Yanagihara, D., Mustoe, T. A., Fox, G. M., and Thomason, A., 1992, Platelet-derived growth factor (BB homodimer), transforming growth factor-βl, and basic fibroblast growth factor in dermal wound healing: Neovessel and matrix formation and cessation of repair, Am. J. Pathol. 140:1375–1388.PubMedGoogle Scholar
  135. Pierce, G. F., Yanagihara, D., Klopchin, K., Danilenko, D. M., Hsu, E., Kenney, W. C., and Morris, C. F., 1994, Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor, J. Exp. Med. 179:831–840.PubMedCrossRefGoogle Scholar
  136. Prats, H., Kaghad, M., Prats, A. C., Klagsbrun, M., Lelias, J. M., Liauzun, P., Chalon, P., Tauber, J. P., Amalric, F., Smith, J. A., and Caput, D., 1989, High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons, Proc. Natl Acad. Sci. USA 86:1836–1840.PubMedCrossRefGoogle Scholar
  137. Rapraeger, A. C., Krufka, A., and Olwin, B. B., 1991, Requirement of heparan sulfate for bFGF mediated fibroblast growth and myoblast differentiation, Science 252:1705–1708.PubMedCrossRefGoogle Scholar
  138. Reiland, J., and Rapraeger, A. C., 1993, Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations, J. Cell Sci. 105:1085–1093.PubMedGoogle Scholar
  139. Rifkin, D. B., and Moscatelli, D., 1989, Recent developments in the cell biology of basic fibroblast growth factor, J. Cell Biol. 109:1–6.PubMedCrossRefGoogle Scholar
  140. Robson, M. C., Phillips, L. G., Lawrence, W. T., Bishop, J. B., Youngerman, J. S., Hayward, P. G., Broemeling, L. D., and Heggers, J. P., 1992, The safety and effect of topically applied recombinant basic fibroblast growth factor on the healing of chronic pressure sores, Ann. Surg. 216:401–408.PubMedCrossRefGoogle Scholar
  141. Roghani, M., Mansukhani, A., Dell’Era, P., Bellosta, P., Basilico, C., Rifkin, D. B., and Moscatelli, D., 1994, Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding, J. Biol. Chem. 269:3976–3984.PubMedGoogle Scholar
  142. Rosengart, T. K., Johnson, W. V., Friesel, R., Clark, R., and Maciag, T., 1988, Heparin protects heparin-binding growth factor-1 from proteolytic inactivation in vitro, Biochem. Biophys. Res. Commun. 152:432–440.PubMedCrossRefGoogle Scholar
  143. Ross, R., 1993, The pathogenesis of atherosclerosis: A perspective for the 1990s, Nature 362:801–809.PubMedCrossRefGoogle Scholar
  144. Rubin, J. S., Osada, H., Finch, P. W., Taylor, W. G., Rudikoff, S., and Aaronson, S. A., 1989, Purification and characterization of a newly identified growth factor specific for epithelial cells, Proc. Natl. Acad. Sci. USA 86:802–806.PubMedCrossRefGoogle Scholar
  145. Ruta, M., Burgess, W., Givol, D., Epstein, J., Neiger, N., Kaplow, J., Crumley, G., Dionne, C., Jaye, M., and Schlessinger, J., 1989, Receptor for acidic fibroblast growth factor is related to the tyrosine kinase encoded by the fms-like gene (FLG), Proc. Natl. Acad. Sci. USA 86:8722–8726.PubMedCrossRefGoogle Scholar
  146. Sakaguchi, K., Yanagashita, M., Takeuchi, Y., and Aurbach, G. D., 1991, Identification of heparan sulfate proteoglycan as a high affinity receptor for acidic fibroblast growth factor (aFGF) in a parathyroid cell line, J. Biol. Chem. 266:7270–7278.PubMedGoogle Scholar
  147. Saksela, O., Moscatelli, D., Sommer, A., and Rifkin, D. B., 1988, Endothelial-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation, J. Cell Biol. 107:743–751.PubMedCrossRefGoogle Scholar
  148. Sato, Y., and Rifkin, D. B., 1988, Autocrine activities of basic fibroblast growth factor: Regulation of endothelial cell movement, plasminogen activator synthesis and DNA analysis, J. Cell Biol. 107:1199–1205.PubMedCrossRefGoogle Scholar
  149. Schreier, T., Degen, E., and Baschong, W., 1993, Fibroblast migration and proliferation during in vitro wound healing, Res. Exp. Med. 193:195–205.CrossRefGoogle Scholar
  150. Schweigerer, L., Neufeld, G., Friedman, J., Abraham, J. A., Fiddes, J. C., and Gospodarowicz, D., 1987, Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth, Nature 325:257–259.PubMedCrossRefGoogle Scholar
  151. Seno, M., Sasada, R., Iwane, M., Sudo, K., Kurokawa, T., Ito, K., and Igarashi, K., 1988, Stabilizing basic fibroblast growth factor using protein engineering, Biochem. Biophys. Res. Commun. 151:701–708.PubMedCrossRefGoogle Scholar
  152. Shing, Y., Folkman, J., Sullivan, R., Butterfield, C., Murray, J., and Klagsbrun, M., 1984, Heparin affinity: Purification of a tumor-derived capillary endothelial cell growth factor, Science 223:1296–1299.PubMedCrossRefGoogle Scholar
  153. Shing, Y., Folkman, J., Haudenschild, C., Lund, D., Crum, R., and Klagsbrun, M., 1985, Angiogenesis is stimulated by a tumor-derived capillary endothelial cell growth factor, J. Cell. Biochem. 29:275–287.PubMedCrossRefGoogle Scholar
  154. Shipley, G. D., Keeble, W. W., Hendrickson, J. E., Coffey, R. J., and Pittelkow, M. R., 1989, Growth of normal human keratinocytes and fibroblasts in serum-free medium is stimulated by acidic and basic fibroblast growth factor, J. Cell. Physiol. 138:511–518.PubMedCrossRefGoogle Scholar
  155. Slavin, J., Hunt, J. A., Nash, J. R., Williams, D. F., and Kingsnorth, A. N., 1992, Recombinant basic fibroblast growth factor in red blood cell ghosts accelerates incisional wound healing, Br. J. Surg. 79:918–921.PubMedCrossRefGoogle Scholar
  156. Somers, K. D., Cartwright, S. L., and Schechter, G. L., 1990, Amplification of the int-2 gene in human head and neck squamous cell carcinomas, Oncogene 5:915–920.PubMedGoogle Scholar
  157. Sommer, A., and Rifkin, D. B., 1989, Interaction of heparin with human basic fibroblast growth factor: Protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan, J. Cell. Physiol. 138:215–220.PubMedCrossRefGoogle Scholar
  158. Sprugel, K. H., McPherson, J. M., Clowes, A. W., and Ross, R., 1987, Effects of growth factors in vivo. I. Cell ingrowth into porous subcutaneous chambers, Am. J. Pathol. 129:601–613.PubMedGoogle Scholar
  159. Staiano-Coico, L., Krueger, J. G., Rubin, J. S., D’limi, S., Vallat, V. P., Valentino, L., Fahey, T., Hawes, A., Kingston, G., Madden, M. R., Mathwich, M., Gottlieb, A. B., and Aaronson, S. A., 1993, Human keratinocyte growth factor effects in a porcine model of epidermal wound healing, J. Exp. Med. 178:865–878.PubMedCrossRefGoogle Scholar
  160. Stenberg, B. D., Phillips, L. G., Hokanson, J. A., Heggars, J. P., and Robson, M. C., 1989, Effect of bFGF on the inhibition of contraction caused by bacterial contamination, Surg. Forum 40:629–631.Google Scholar
  161. Stenberg, B. D., Phillips, L. G., Hokanson, J. A., Heggers, J. P., and Robson, M. C., 1991, Effect of bFGF on the inhibition of contraction caused by bacteria, J. Surg. Res. 50:47–50.PubMedCrossRefGoogle Scholar
  162. Talarico, D., Ittmann, M. M., Bronson, R., and Basilico, C., 1993, A retrovirus carrying the K-fgf oncogene induces diffuse meningeal tumors and soft-tissue fibrosarcomas, Mol. Cell. Biol. 13:1998–2010.PubMedGoogle Scholar
  163. Tanaka, A., Miyamoto, K., Minamino, N., Takeda, M., Sato, B., Matsuo, H., and Matsumoto, K., 1992, Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells, Proc. Natl. Acad. Sci. USA 89:8928–8932.PubMedCrossRefGoogle Scholar
  164. Thompson, J. A., Haudenschild, C., Anderson, K. D., DiPietro, J. M., Anderson, W. F., and Maciag, T., 1989, Heparin-binding growth factor 1 induces the formation of organoid neovascular structures in vivo, Proc. Natl. Acad. Sci. USA 86:7928–7932.PubMedCrossRefGoogle Scholar
  165. Tsuboi, R., and Rifkin, D. B., 1990, Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice, J. Exp. Med. 172:245–251.PubMedCrossRefGoogle Scholar
  166. Tsuboi, R., Shi, C.-M., Rifkin, D. B., and Ogawa, H., 1992, A wound healing model using healing-impaired diabetic mice, J. Dermatol. 19:673–675.PubMedGoogle Scholar
  167. Tsuboi, R., Sato, C., Kurita, Y., Ron, D., Rubin, J. S., and Ogawa, H., 1993, Keratinocyte growth factor (FGF-7) stimulates migration and plasminogen activator activity of normal human keratinocytes, J. Invest. Dermatol. 101:49–53.PubMedCrossRefGoogle Scholar
  168. Uhl, E., Barker, J. H., Bondàr, I., Galla, T. J., Leiderer, R., Lehr, H.-A., and Messmer, K., 1993, Basic fibroblast growth factor accelerates wound healing in chronically ischaemic tissue, Br. J. Surg. 80:977–980.PubMedCrossRefGoogle Scholar
  169. Vlodavsky, I., Friedman, R., Sullivan, R., Sasse, J., and Klagsbrun, M., 1987a, Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell-associated and platelet-derived growth factor-like protein which is secreted, J. Cell. Physiol. 131:402–408.PubMedCrossRefGoogle Scholar
  170. Vlodavsky, I., Folkman, J., Sullivan, R., Friedman, R., Ishai-Michaeli, R., Sasse, J., and Klagsbrun, M., 1987b, Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into suben-dothelial extracellular matrix, Proc. Natl. Acad. Sci. USA 84:2292–2296.PubMedCrossRefGoogle Scholar
  171. Vlodavsky, I., Fuks, Z., Ishai-Michaeli, R., Bashkin, P., Levi, E., Korner, G., Bar-Shavit, R., and Klagsbrun, M., 1991, Extracellular matrix-resident basic fibroblast growth factor: Implication for the control of angiogenesis, J. Cell. Biochem. 45:167–176.PubMedCrossRefGoogle Scholar
  172. Werner, S., Roth, W. K., Bates, B., Goldfarb, M., and Hans, P., 1991, Fibroblast growth factor 5 proto-oncogene is expressed in normal human fibroblasts and induced by serum growth factors, Oncogene 6:2137–2144.PubMedGoogle Scholar
  173. Werner, S., Peters, K. G., Longaker, M. T., Fuller-Pace, F., Banda, M. J., and Williams, L. T., 1992a, Large induction of keratinocyte growth factor expression in the dermis during wound healing, Proc. Natl. Acad. Sci. USA 89:6896–6900.PubMedCrossRefGoogle Scholar
  174. Werner, S., Duan, D.-S. R., deVries, C., Peters, K. G., Johnson, D. E., and Williams, L. T., 1992b, Differential splicing in the extracellular region of fibroblast growth factor receptor-1 generates receptor variants with different ligand-binding specificities, Mol. Cell. Biol. 12:82–88.PubMedGoogle Scholar
  175. Werner, S., Breeden, M., Hübner, G., Greenhalgh, D. G., and Longaker, M. T., 1994a, Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse, J. Invest. Dermatol. 103:469–473.PubMedCrossRefGoogle Scholar
  176. Werner, S., Smola, H., Liao, X., Longaker, M. T., Krieg, T., Hofschneider, P. H., and Williams, L. T., 1994b, The function of KGF in morphogenesis of epithelium and reepithelialization of wounds, Science 266:819–822.PubMedCrossRefGoogle Scholar
  177. Whitby, D. J., and Ferguson, M. W. J., 1991a, Immunohistochemical localization of growth factors in fetal wound healing, Dev. Biol. 147:207–215.PubMedCrossRefGoogle Scholar
  178. Whitby, D. J., and Ferguson, M. W. J., 1991b, The extracellular matrix of lip wounds in fetal, neonatal, and adult mice, Development 112:651–668.PubMedGoogle Scholar
  179. Wilkinson, D. G., Peters, G., Dickson, C., and McMahon, A. P., 1988, Expression of the FGF-related proto-oncogene int-2 during gastrulation and neurulation in the mouse, EMBO J 7:691–695.PubMedGoogle Scholar
  180. Wilkinson, D. G., Bhatt, S., and McMahon, A. P., 1989, Expression pattern of the FGF-related proto-oncogene int-2 suggests multiple roles in fetal development, Development 105:131–136.PubMedGoogle Scholar
  181. Wu, L., and Mustoe, T. A., 1995, Effect of ischemia upon growth factor enhancement of incisional wound healing, Surgery, 117:570–576.PubMedCrossRefGoogle Scholar
  182. Wu, L., Pierce, G. F., Ladin, D. A., Zhao, L. L., and Mustoe, T. A., 1993, KGF accelerates ischemie dermal ulcer healing in the rabbit ear, Surg. Forum 44:704–706.Google Scholar
  183. Wu, L., Pierce, G. F., Ladin, D. A., Zhao, L. L., Rogers, D., and Mustoe, T. A., 1995, Effects of oxygen on wound responses to growth factors: Kaposi’s FGF, but not basic FGF, stimulates repair in ischemic wounds, Growth Factors, in press.Google Scholar
  184. Yanagisawa-Miwa, A., Uchida, Y., Nakamura, F., Tomaru, T., Kido, H., Kaimjo, T., Sugimoto, T., Kaji, K., Utsuyama, M., Kurashima, C., and Ito, H., 1992, Salvage of infected myocardium by angiogenic action of basic fibroblast growth factor, Science 257:1401–1403.PubMedCrossRefGoogle Scholar
  185. Yayon, A., and Klagsbrun, M., 1990, Autocrine transformation by chimeric signal peptide-basic fibroblast growth factor: Reversal by suramin, Proc. Natl. Acad. Sci. USA 87:5346–5350.PubMedCrossRefGoogle Scholar
  186. Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M., 1991, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 64:841–848.PubMedCrossRefGoogle Scholar
  187. Yoshida, T., Miyagawa, K., Odagiri, H., Sakamoto, H., Little, P. F. R., Terada, M., and Sugimura, T., 1987, Genomic sequence of hst, a transforming gene encoding a protein homologous to fibroblast growth factors and the int-2 encoded protein, Proc. Natl. Acad. Sci. USA 84:7305–7309.PubMedCrossRefGoogle Scholar
  188. Zhan, X., Bates, B., Hu, X., and Goldfarb, M., 1988, The human FGF-5 oncogene encodes a novel protein related to fibroblast growth factors, Mol. Cell. Biol. 8:3487–3495.PubMedGoogle Scholar
  189. Zhou, D. J., Casey, G., and Cline, M. J., 1988, Amplification of human int-2 in breast cancers and squamous carcinomas, Oncogene 2:279–282.PubMedGoogle Scholar
  190. Zhu, X., Komiya, H., Chirino, A., Faham, S., Hsu, B. T., and Rees, D. C., 1991, Three-dimensional structures of acidic and basic fibroblast growth factors, Science 251:90–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Judith A. Abraham
    • 1
  • Michael Klagsbrun
    • 2
  1. 1.Scios Nova Inc.Mountain ViewUSA
  2. 2.Departments of Surgery and PathologyChildren’s Hospital, and Harvard Medical SchoolBostonUSA

Personalised recommendations