Advertisement

Macrophage Involvement in Wound Repair, Remodeling, and Fibrosis

  • David W. H. Riches

Abstract

The process of wound repair has as its ultimate goal the restoration of normal aseptic-tissue structure and function following injury. Although injury can take many forms, e.g., surgical trauma, burns, immunologically mediated injury, and so forth, the general sequence of events that are activated in response to injury and that lead to successful wound repair show striking similarity irrespective of the initial injurious insult. The sequence comprises (1) the activation of the coagulation system, leading to a cessation of blood flow and the formation of a provisional matrix; (2) the local generation of a variety of soluble chemotactic factors formed from preformed plasma proteins that attract inflammatory cells to the site of injury; (3) the sequential influx of neutrophils and monocytes, leading to wound sterilization; (4) the debridement of damaged connective tissue matrix; (5) the initiation of neovascularization; and (6) the stimulation of mesenchymal cell proliferation and connective tissue matrix remodeling. However, while in many tissues and situations, this generalized sequence of events leads to the restoration of normal tissue structure and functions, in some tissues, such as in adult skin, repair is invariably associated with scarring caused as a result of abundant collagen synthesis by fibroblasts that proliferate and differentiate within the provisional matrix. While this is generally acceptable in the case of the skin, excessive tissue fibrosis during repair of other tissues, for example, as a consequence of injury to the lung or liver parenchyma, results in a dramatic and frequently fatal loss of function as a consequence of scarring. Thus, understanding what distinguishes these two outcomes may allow treatment strategies to be developed to ameliorate tissue fibrosis in susceptible or “at-risk” individuals.

Keywords

Hyaluronic Acid Alveolar Macrophage Idiopathic Pulmonary Fibrosis Wound Repair Mononuclear Phagocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoniades, H. N., Bravo, M. A., Avila, R. E., Galanopoulos, T., Neville-Golden, J., Maxwell, M., and Selman, M., 1990, Platelet-derived growth factor in idiopathic pulmonary fibrosis, J. Clin. Invest. 86:1055–1064.PubMedCrossRefGoogle Scholar
  2. Appling, W. D., O’Brien, W. R., Johnston, D. A., and Duvic, M., 1989, Synergistic enhancement of type I and III collagen production in cultured fibroblasts by transforming growth factor-beta and ascorbate, FEBS Lett. 250:541–544.PubMedCrossRefGoogle Scholar
  3. Assoian, R. K., Fleurdelys, B. E., Stevenson, H. C., Miller, P. J., Madtes, D. K., Raines, E. W., Rooss, R., and Sporn, M. B., 1987, Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc. Natl. Acad. Sci. USA 84:6020–6024.PubMedCrossRefGoogle Scholar
  4. Baggiolini, M., Dewald, B., and Moser, B., 1994, Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines, Adv. Immunol. 55:97–179.PubMedCrossRefGoogle Scholar
  5. Baird, A., Mormede, P., and Böhlen, P., 1985, Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor, Biochem. Biophys. Res. Commun. 126:358–364.PubMedCrossRefGoogle Scholar
  6. Banda, M. J., Knighton, D. R., Hunt, D. R., and Werb, Z., 1982, Isolation of a nonmitogenic angiogenesis factor from wound fluid, Proc. Natl. Acad. Sci. USA 79:7773–7777.PubMedCrossRefGoogle Scholar
  7. Banda, M. J., Clark, E. J., and Wegrb, Z., 1983, Selective proteolysis of immunoglobulins by mouse macrophage elastase, J. Exp. Med. 157:1184–1196.PubMedCrossRefGoogle Scholar
  8. Banda, M. J., Clark, E. J., and Werb, Z., 1985, Macrophage elastase: Regulatory consequences of the proteolysis of non-elastin substrates, in: Mononuclear Phagocytes: Characteristics, Physiology and Function, (R. van Furth, ed.) pp. 295–300, Martinus Nijhoff, Holland, Dordrecht.CrossRefGoogle Scholar
  9. Bar-Shavit, R., Kahn, A., Fenton, J. W., and Wilner, G. D., 1983, Chemotactic response of monocytes to thrombin, J. Cell Biol. 96:282–285.PubMedCrossRefGoogle Scholar
  10. Bermudez, L. E., 1993, Production of transforming growth factor-beta by Mycobacterium avium-infected human macrophages is associated with unresponsiveness to IFN-gamma, J. Immunol. 150:1838–1845.PubMedGoogle Scholar
  11. Bermudez, L. E., Covaro, G., and Remington, J., 1993, Infection of murine macrophages with Toxoplasma gondii is associated with release of transforming growth factor beta and down-regulation of expression of tumor necrosis factor receptors, Infect. Immun. 61:4126–4130.PubMedGoogle Scholar
  12. Bianco, C., 1983, Fibrin, fibronectin and macrophages, Ann. NY Acad. Sci. 408:602–609.PubMedCrossRefGoogle Scholar
  13. Bjermer, L., Lundgren, R., and Hallgen, R., 1989, Hyaluron and type III procollagen peptide concentrations in bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis, Thorax 44:126–131.PubMedCrossRefGoogle Scholar
  14. Blair, H. C., Kahn, A. J., Crouch, E. C., Jeffrey, J. J., and Teitelbaum, S. L., 1986, Isolated osteoclasts resorb the organic and inorganic components of bone, J. Cell Biol. 102:1164–1172.PubMedCrossRefGoogle Scholar
  15. Blair, H. C., Teitelbaum, S. L., Schimke, P. A., Konsek, J. D., Koziol, C. M., and Schlesinger, P. H., 1988, Receptor-mediated uptake of a mannose-6-phosphate bearing glycoprotein by isolated chicken osteoclasts, J. Cell Physiol. 137:476–482.PubMedCrossRefGoogle Scholar
  16. Blair, H. C., Teitelbaum, S. L., Ghiselli, R., and Gluck, S., 1989, Osteoclastic bone resorption by a polarized vacuolar proton pump, Science 245:855–857.PubMedCrossRefGoogle Scholar
  17. Blusse van Oud Alblas, A., van der Linden-Schrever, B., and van Furth, R., 1983, Origin and kinetics of pulmonary macrophage during an inflammatory reaction induced by intra-alveolar administration of aerosolized heat-killed BCG, Am. Rev. Respir. Dis. 128:276–281.PubMedGoogle Scholar
  18. Bouwens, L., and Wisse, E., 1985, Proliferation, kinetics, and fate of monocytes in rat liver during a zymosan-induced inflammation, J. Leukocyte Biol. 37:531–544.PubMedGoogle Scholar
  19. Brogi, E., Winkles, J. A., Underwood, R., Clinton, S. K., Alberts, G. F., and Libby, P., 1993, Distinct patterns of expression of fibroblast growth factors and their receptors in human atheroma and nonatherosclerotic arteries. Association of acidic FGF with plaque microvessels and macrophages, J. Clin. Invest. 92:2408–2418.PubMedCrossRefGoogle Scholar
  20. Campbell, E. J., Cury, J. D., Lazarus, C. J., and Wegus, H. G., 1987, Monocyte procollagenase and tissue inhibitor of metalloproteinases. Identification, characterization, and regulation of secretion, J. Biol. Chem. 262:15862–15868.PubMedGoogle Scholar
  21. Campbell, E. J., Silverman, E. K., and Campbell, M. A., 1989, Elastase and cathepsin G of human mono-cytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity, J. Immunol. 143:2961–2970.PubMedGoogle Scholar
  22. Campbell, E. J., Cury, J. D., Shapiro, S. D., Goldberg, G. I., and Welgus, H. G., 1991, Neutral proteinases of human mononuclear phagocytes. Cellular differentiation markedly alters cell phenotype for serine proteinases, metalloproteinases, and tissue inhibitor of metalloproteinases, J. Immunol. 146:1286–1293.PubMedGoogle Scholar
  23. Carre, P. C., Mortensen, R. L., King, Jr., T. E., Noble, P. W., Sable, C. L., and Riches, D. W. H., 1991, Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fibrosis, J. Clin. Invest. 88:1802–1810.PubMedCrossRefGoogle Scholar
  24. Carre, P. C., King, Jr., T. E., Mortensen, R., and Riches, D. W. H., 1994, Cryptogenic organizing pneumonia: Increased expression of interleukin-8 and fibronectin genes by alveolar macrophages, Am. J. Resp. Cell Mol. Biol. 10:100–105.CrossRefGoogle Scholar
  25. Chu, C. Q., Field, M., Allard, S., Abney, E., Feldmann, M., and Maini, R. N., 1992, Detection of cytokines at the cartilage/pannus junction in patients with rheumatoid arthritis: Implications for the role of cytokines in cartilage destruction and repair, Br. J. Rheumatol. 31:653–661.PubMedCrossRefGoogle Scholar
  26. Chua, C. A., and Chua, B. H., 1990, Tumor necrosis factor-alpha induces mRNA for collagenase and TIMP in human skin fibroblasts, Connect. Tissue Res. 25:161–170.PubMedCrossRefGoogle Scholar
  27. Cianciolo, G. J., and Snyderman, R., 1981, Monocyte responsiveness to chemotactic stimuli is a property of a subpopulation of cells that can respond to multiple chemoattractants, J. Clin. Invest. 67:60–68.PubMedCrossRefGoogle Scholar
  28. Circolo, A., Welgus, H. G., Pierce, G. F., Kramer, J., and Strunk, R. C., 1991, Differential regulation of the expression of proteinases/antiproteinases in fibroblasts. Effects of interleukin-1 and platelet-derived growth factor, J. Biol. Chem. 266:12283–12288.PubMedGoogle Scholar
  29. Clark, R. A. F., Lanigan, J. M., and Dellepella, P., 1982, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization, J. Invest. Dermatol. 70:264–269.CrossRefGoogle Scholar
  30. Coggle, J. E., and Tarling, J. D., 1984, The proliferation kinetics of pulmonary alveolar macrophages, J. Leukoc. Biol. 35:317–327.PubMedGoogle Scholar
  31. Cox, G. W., Mathieson, B. J., Giardina, S. L., and Varesio, L., 1990, Characterization of IL-2 receptor expression and function on murine macrophages, J. Immunol. 145:1719–1726.PubMedGoogle Scholar
  32. Daems, W. T., 1980, Peritoneal macrophages, in: The Reticuloendothelial System. A Comprehensive Treatise, Morphology, Vol. 1: Morphology. (I. Carr and W. Th. Daems) pp. 57–127, Plenum Press, New York.Google Scholar
  33. Davies, D., Farmer, S., and Alexander, P., 1990, Synthesis and release of TGF alpha from the myeloid leukemia cells h 160 treated with phorbol ester (meeting abstract), Br. J. Cancer 62:490.Google Scholar
  34. De Whalley, C. V., and Riches, D. W. H., 1991, Influence of the cytocidal macrophage phenotype on the degradation of acetylated low density lipoproteins: Dual regulation of scavenger receptor activity and of intracellular degradation of endocytosed ligand, Exp. Cell Res. 192:460–468.PubMedCrossRefGoogle Scholar
  35. Deimann, W., and Fahimi, H. D., 1980, Hepatic granulomas induced by glucan: An ultrastructural and peroxidase-cytochemical study, Lab. Invest. 43:172–181.PubMedGoogle Scholar
  36. Deuel, T. F., Senior, R. M., Chang, D., Griffin, G. L., Heinrikson, R. L., and Kaiser, E. T., 1981, Platelet factor 4 is chemotactic for neutrophils and monocytes, Proc. Natl. Acad. Sci. USA 78:4584–4587.PubMedCrossRefGoogle Scholar
  37. Ding, A. H., Nathan, C. F., and Stuehr, D. J., 1988, Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production, J. Immunol. 141:2407–2412.PubMedGoogle Scholar
  38. Dingle, J. T., 1975, The secretion of enzymes into the pericellular environment, Phil. Trans. R. Soc. Lond. Biol. 271:315–324.CrossRefGoogle Scholar
  39. Doherty, D. E., Haslett, C., Tonneson, M. G., and Henson, P. M., 1987, Human monocyte adherence: A primary effect of chemotactic factors on the monocyte to stimulate adherence to human endothelium, J. Immunol. 138:1762–1771.PubMedGoogle Scholar
  40. Donaldson, D. J., and Mahan, J. T., 1983, Fibrinogen and fibronectin as substrates for epidermal cell migration during wound closure, J. Cell Sci. 39:117–127.CrossRefGoogle Scholar
  41. Dvorak, A. M., Tepper, R. I., Weller, P. F., Morgan, E. S., Estrella, P., Monahan, E. R., and Galli, S. J., 1994, Piecemeal degranulation of mast cells in the inflammatory eyelid lesions of interleukin-4 transgenic mice. Evidence of mast cell histamine release in vivo by diamine oxidase-gold enzyme-affinity ultra-structural cytochemistry, Blood 83:3600–3612.PubMedGoogle Scholar
  42. Etherington, D. J., 1976, Bovine spleen cathepsin B1 and collagenolytic cathepsin: A comparative study of the properties of the two enzymes in the degradation of native collagen, Biochem. J. 153:100–109.Google Scholar
  43. Etherington, D. J., 1979, Proteinases in connective tissue breakdown, Ciba Found. Symp. 1979:87–103.Google Scholar
  44. Etherington, D. J., Pugh, D., and Silver, I. A., 1981, Collagen degradation in an experimental inflammatory lesion: Studies on the role of the macrophage, Acta Biol. Med. 40:1625–1636.Google Scholar
  45. Etherington, D. J., Taylor, M. A., and Henderson, B., 1988, Elevation of cathepsin L levels in the synovial lining of rabbits with antigen-induced arthritis, Br. J. Exp. Pathol. 69:281–289.PubMedGoogle Scholar
  46. Falcone, D. J., McCaffrey, T. A., Haimovitz, F. A., and Garcia, M., 1993a, Transforming growth factor-beta 1 stimulates macrophage urokinase expression and release of matrix-bound basic fibroblast growth factor, J. Cell. Physiol. 155:595–605.PubMedCrossRefGoogle Scholar
  47. Falcone, D. J., McCaffrey, T. A., Haimovitz, F. A., Vergilio, J. A., and Nicholson, A. C., 1993b, Macrophage and foam cell release of matrix-bound growth factors. Role of plasminogen activation, J. Biol. Chem. 268:11951–11958.PubMedGoogle Scholar
  48. Falk, W., and Leonard, E. J., 1980, Human monocyte chemotaxis: Migrating cells are a subpopulation with multiple chemotaxin specificities on each cell, Infec. Immun. 29:953–959.Google Scholar
  49. Falk, W., and Leonard, E. J., 1981, Specificity and reversibility of chemotactic deactivation of human monocytes, Infect. Immun. 32:464–468.PubMedGoogle Scholar
  50. Fine, A., and Goldstein, R. H., 1987, The effect of transforming growth factor-beta on cell proliferation and collagen formation by lung fibroblasts, J. Biol. Chem. 262:3897–3902.PubMedGoogle Scholar
  51. Fine, A., Poliks, C. F., Smith, B. D., and Goldstein, R. H., 1990, The accumulation of type I collagen mRNAs in human embryonic lung fibroblasts stimulated by transforming growth factor-beta, Connect. Tissue Res. 24:237–247.PubMedCrossRefGoogle Scholar
  52. Flynn, R. M., and Palladino, M. A., 1992, TNF and TGF-b: The opposite sides of the avenue? in: Tumor Necrosis Factors. The Molecules and Their Emerging Role in Medicine, (B. Beutler, ed.), pp. 131–144, Raven Press, New York.Google Scholar
  53. Ford, H. A., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J., 1980, Leukotriene B., a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes, Nature 286:264–265.CrossRefGoogle Scholar
  54. Glenn, K. C., and Ross, R., 1981, Human monocyte-derived growth factor(s) for mesenchymal cells: Activation of secretion by endotoxin and concanavalin A, Cell 25:603–615.PubMedCrossRefGoogle Scholar
  55. Goud, T. J. L. M., and van Furth, R., 1975, Proliferative characteristics of monoblasts grown in vitro, J. Exp. Med. 142:1200–1217.PubMedCrossRefGoogle Scholar
  56. Goud, T. J. L. M., Schotte, C., and van Furth, R., 1975, Identification and characterization of the monoblast in mononuclear phagocyte colonies grown in vitro, J. Exp. Med. 142:1180–1198.PubMedCrossRefGoogle Scholar
  57. Greenberg, G. B., and Hunt, T. K., 1978, The proliferative response in vitro of vascular endothelial and smooth muscle cells exposed to wound fluid and macrophages, J. Cell. Physiol. 97:353–360.CrossRefGoogle Scholar
  58. Henke, C., Marineili, W., Jessurun, J., Fox, J., Harms, D., Peterson, M., Chiang, L., and Doran, P., 1993, Macrophage production of basic fibroblast growth factor in the fibroproliferative disorder of alveolar fibrosis after lung injury, Am. J. Pathol. 143:1189–1199.PubMedGoogle Scholar
  59. Heremans, H., and Billiau, A., 1989, The potential role of interferons and interferon antagonists in inflammatory disease, Drugs 38:957–972.PubMedCrossRefGoogle Scholar
  60. Heremans, H., Billiau, A., Coutelier, J. P., and De, S. P., 1987a, The inhibition of endotoxin-induced local inflammation by LDH virus or LDH virus-infected tumors is mediated by interferon, Proc. Soc. Exp. Biol. Med. 185:6–15.PubMedCrossRefGoogle Scholar
  61. Heremans, H., Dijkmans, R., Sobis, H., Vandekerckhove, F., and Billiau, A., 1987b, Regulation by interferons of the local inflammatory response to bacterial lipopolysaccharide, J. Immunol. 138:4175–4179.PubMedGoogle Scholar
  62. Hibbs, M. S., Hoidal, J. R., and Kang, A. H., 1987, Expression of a metalloproteinase that degrades native type V collagen and denatured collagens by cultured human alveolar macrophages, J. Clin. Invest. 80:1644–1650.PubMedCrossRefGoogle Scholar
  63. Hiraoka, K., Sasaguri, Y., Komiya, S., Inoue, A., and Morimatsu, M., 1992, Cell proliferation-related production of matrix matalloproteinases 1 (tissue collagenase) and 3 (stromelysin) by cultured human rheumatoid synovial fibroblasts, Biochem. Int. 27:1083–1091.PubMedGoogle Scholar
  64. Hosein, B., Mosesson, M. W., and Bianco, C., 1985, Monocyte receptors for fibronectin, in: Mononuclear Phagocytes: Characteristics, Physiology and Function (R. van Furth, ed.), pp. 723–730, Martinus Nijhoff, Dordrecht, Holland.CrossRefGoogle Scholar
  65. Hu, H., and Stein-Streilein, J., 1993, Hapten-immune pulmonary interstitial fibrosis (HIPIF) in mice requires both CD4+ and CD8+ T lymphocytes, J. Leukocyte Biol. 54:414–422.PubMedGoogle Scholar
  66. Hunt, T. K., Knighton, D. R., Thakral, K. K., Goodson, W. H., and Andrews, W. S., 1984, Studies on inflammation and wound healing: Angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages, Surgery 96:48–54.PubMedGoogle Scholar
  67. Huybrechts-Godin, G., Hauser, P., and Vaes, G., 1979, Macrophage-fibroblast interaction in collagenase production and cartilage degradation, Biochem. J. 184:643–650.PubMedGoogle Scholar
  68. Huybrechts-Godin, G., Peeters-Joris, C., and Vaes, G., 1985, Partial characterization of the macrophage factor that stimulates fibroblasts to produce collagenase and to degrade collagen, Biochim. Biophys. Acta 846:51–54.PubMedCrossRefGoogle Scholar
  69. Hyde, D. M., and Giri, S. N., 1990, Polyinosinic-polycytidylic acid, an interferon inducer, ameliorates bleomycin-induced lung fibrosis in mice, Exp. Lung Res. 16:533–546.PubMedCrossRefGoogle Scholar
  70. Hyde, D. M., Henderson, T. S., Giri, S. N., Tyler, N. K., and Stovall, M. Y., 1988, Effect of murine gamma interferon on the cellular response to bleomycin in mice, Exp. Lung Res. 14:687–704.PubMedCrossRefGoogle Scholar
  71. Iijima, Y., Fukushima, T., and Kosaka, F., 1989, Involvement of transforming growth factor-alpha secreted by macrophages in metallothionein induction by endotoxin, Biochem. Biophys. Res. Commun. 164:114–118.PubMedCrossRefGoogle Scholar
  72. Imber, M. J., Pizzo, S. V., Johnson, W. J., and Adams, D. O., 1982, Selective diminution of the binding of mannose by murine macrophages in the late stages of activation, J. Biol. Chem. 257:5129–5135.PubMedGoogle Scholar
  73. Inagaki, Y., Truter, S., and Ramirez, F., 1994, Transforming growth factor-beta stimulates alpha 2(1) collagen gene expression through a cis-acting element that contains an Spl-binding site, J. Biol. Chem. 269:14828–14834.PubMedGoogle Scholar
  74. Ishida, M., Honda, M., and Hayashi, H., 1978, In vitro macrophage chemotactic generation from serum immunoglobulin G by neutrophil neutral seryl protease, Immunology 35:167–176.PubMedGoogle Scholar
  75. Ito, A., Goshowaki, H., Sato, T., Mori, Y., Yamashita, K., Hayakawa, T., and Nagase, H., 1988, Human recombinant interleukin-1 alpha-mediated stimulation of procollagenase production and suppression of biosynthesis of tissue inhibitor of metalloproteinases in rabbit uterine cervical fibroblasts, FEBS Lett. 234:326–330.PubMedCrossRefGoogle Scholar
  76. Ito, A., Sato, T., Iga, T., and Mori, Y., 1990, Tumor necrosis factor bifunctionally regulates matrix metalloproteinases and tissue inhibitor of metalloproteinases (TIMP) production by human fibroblasts, FEBS Lett. 269:93–95.PubMedCrossRefGoogle Scholar
  77. Ito, A., Itoh, Y., Sasaguri, Y., Morimatsu, M., and Mori, Y., 1992, Effects of interleukin-6 on the metabolism of connective tissue components in rheumatoid snovial fibroblats, Arthritis Rheum. 35:1197–1201.PubMedCrossRefGoogle Scholar
  78. Jones, P. A., and Scott-Burden, T., 1979, Activated macrophages digest the extracellular matrix proteins produced by cultured cells, Biochem. Biophys. Res. Commun. 86:71–77.PubMedCrossRefGoogle Scholar
  79. Jones, P. A., and Werb, Z., 1980, Degradation of connective tissue matrices by macrophages. II. Influence of matrix composition on proteolysis of glycoproteins, elastin and collagen by macrophages in culture, J. Exp.Med. 152:1527–1536.PubMedCrossRefGoogle Scholar
  80. Joseph-Silverstein, J., Moscatelli, D., and Rifkin, D. B., 1988, The development of a quantitative RIA for basic fibroblast growth factor using polyclonal antibodies against the 157 amino acid form of human bFGF. The identification of bFGF in adherent elicited murine peritoneal macrophages, J. Immunol. Methods 110:183–192.PubMedCrossRefGoogle Scholar
  81. Kay, A. B., Pepper, D.S., and Ewart, M. R., 1973, Generation of chemotactic activity for leukocytes by the action of thrombin of human fibrinogen, Nature 243:56–57.CrossRefGoogle Scholar
  82. Kehrl, J. H., Wakefield, L. M., Roberts, A. B., Jakowlew, S., Alvarez, M. M., Derynck, R., Sporn, M. B., and Fauci, A. S., 1986, Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth, J. Exp. Med. 163:1037–1050.PubMedCrossRefGoogle Scholar
  83. Khalil, N., Bereznay, O., Sporn, M., and Greenberg, A. H., 1989, Macrophage production of transforming growth factor beta and fibroblast collagen synthesis in chronic pulmonary inflammation, J. Exp. Med. 170:727–737.PubMedCrossRefGoogle Scholar
  84. Khalil, N., O’Connor, R. N., Unruh, H. W., Warren, P. W., Flanders, K. C., Kemp, A., Bereznay, O. H., and Greenberg, A. H., 1991, Increased production and immunohistochemical localization of transforming growth factor-beta in idiopathic pulmonary fibrosis, Am. J. Respir. Cell Mol. Biol. 5:155–162.PubMedCrossRefGoogle Scholar
  85. Knighton, D. R., Silver, I. A., and Hunt, T. K., 1981, Regulation of wound-healing angiogenesis—Effect of oxygen gradients and inspired oxygen concentration, Surgery 90:262–270.PubMedGoogle Scholar
  86. Knighton, D. R., Hunt, T. K., Scheuenstuhl, H., Halliday, B. J., Werb, Z., and Banda, M. J., 1983, Oxygen tension regulates the expression of angiogenesis factor by macrophages, Science 221:1283–1285.PubMedCrossRefGoogle Scholar
  87. Koch, A. E., Polverini, P. J., and Leibovitch, S. J., 1986, Induction of neovascularization by activated human monocytes, J. Leukoc. Biol. 39:233–238.PubMedGoogle Scholar
  88. Koch, A. E., Kunkel, S. L., Harlow, L. A., Johnson, B., Evanoff, H. L., Haines, G. K., Burdick, M. D., Pope, R. M., and Strieter, R. M., 1992, Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis, J. Clin. Invest. 90:772–779.PubMedCrossRefGoogle Scholar
  89. Koch, A. E., Kunkel, S. L., Harlow, L. A., Mazarakis, D. D., Haines, G. K., Burdick, M. D., Pope, R. M., and Strieter, R. M., 1994, Macrophage inflammatory protein-1 alpha. A novel chemotactic cytokine for macrophages in rheumatoid arthritis, J. Clin. Invest. 93:921–928.PubMedCrossRefGoogle Scholar
  90. Kunkel, S. L., Standiford, T., Kasahara, K., and Strieter, R. M., 1991, Stimulus specific induction of monocyte chemotactic protein-1 (MCP-1) gene expression, Adv. Exp, Med. Biol. 305:65–71.CrossRefGoogle Scholar
  91. Lake, F. R., Noble, P. W., Henson, P. M., and Riches, D. W. H., 1994, Functional switching of macrophage responses to TNFα by interferons. Implications for the pleiotropic activities of TNFα, J. Clin. Invest. 93:1661–1669.PubMedCrossRefGoogle Scholar
  92. Lang, R. A., Metcalf, D., Cuthbertson, R. A., et al., 1987, Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage, Cell 51:675–686.PubMedCrossRefGoogle Scholar
  93. Laszlo, D. J., Henson, P. M., Weinstein, L., Remigio, L. K., Sable, C., Noble, P. W., and Riches, D. W. H., 1993, Development of functional diversity in mouse macrophages. Mutual exclusion of two phenotypic states, Am. J. Pathol. 143:587–597.PubMedGoogle Scholar
  94. Leibovitch, S. J., and Ross, R., 1975, The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum, Am. J. Pathol. 78:71–91.Google Scholar
  95. Leibovitch, S. J., and Ross, R., 1976, A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro, Am. J. Pathol. 84:5001–5013.Google Scholar
  96. Leibovitch, S. J., Polverini, P. J., Shepard, H. M., Wiseman, D. M., Shively, V., and Nuseir, N., 1987, Macrophage-induced angiogenesis is mediated by tumour necrosis factor-a, Nature 329:630–632.CrossRefGoogle Scholar
  97. Leslie, C. C., Musson, R. A., and Henson, P. M., 1984, Production of growth factor activity for fibroblasts by human nonocyte-derived macrophages, J. Leukoc. Biol. 36:143–160.PubMedGoogle Scholar
  98. Lew, D. B., Leslie, C. C., Riches, D. W. H., and Henson, P. M., 1986, Induction of macrophage lysosomal hydrolase synthesis and secretion by beta-1,3-glucan, Cell. Immunol. 100:340–350.PubMedCrossRefGoogle Scholar
  99. Lew, D. B., Leslie, C. C., Henson, P. M., and Riches, D. W. H., 1991, Role of endogenously derived leukotrienes in the regulation of lysosomal enzyme expression in macrophages exposed to beta 1,3-glucan, J. Leukoc. Biol. 49:266–276.PubMedGoogle Scholar
  100. Lin, H., Kuhn, C., and Chen, D., 1982, Effects of hydrocortisone acetate on pulmonary alveolar macrophage colony-forming cells, Am. Rev. Respir. Dis. 125:712–715.PubMedGoogle Scholar
  101. Lotz, M., Ranheim, E., and Kipps, T. J., 1994, Transforming growth factor beta as endogenous growth inhibitor of chronic lymphocytic leukemia B cells, J. Exp. Med. 179:999–1004.PubMedCrossRefGoogle Scholar
  102. Lowenstein, C. J., Glatt, C. S., Bredt, D. S., and Snyder, S. H., 1992, Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme, Proc. Natl. Acad. Sci. USA 89:6711–6715.PubMedCrossRefGoogle Scholar
  103. Lyons, R. M., Keski-Oja, J., and Moses, H. L., 1988, Proteolytic activation of latent transforming growth factor-b from fibroblast conditioned medium, J. Cell Biol. 106:1659–1665.PubMedCrossRefGoogle Scholar
  104. Madtes, D. K., Raines, E. W., Sakariassen, K. S., Assoian, R. K., Sporn, M. B., Bell, G. I., and Ross, R., 1988, Induction of transforming growth factor-alpha in activated human alveolar macrophages, Cell 53:285–293.PubMedCrossRefGoogle Scholar
  105. Manthey, C. L., Allen, J. B., Ellingworth, L. R., and Wahl, S. M., 1990, In situ expression of transforming growth factor beta in streptococcal cell wall-induced granulomatous inflammation and hepatic fibrosis, Growth Factors 4:17–26.PubMedCrossRefGoogle Scholar
  106. Marder, S. R., Chenoweth, D. E., Goldstein, I. M., and Perez, H. D., 1985, Chemotactic responses of human peripheral blood monocytes to the complement-derived peptides C5a and C5a des Arg, J. Immunol. 134:3325–3331.PubMedGoogle Scholar
  107. Martin, B. M., Gimbrone, M. A., Unanue, E. R., and Cotran, R. S., 1981, Stimulation of nonlymphoid mesenchymal cell proliferation by a macrophage-derived growth factor, J. Immunol. 126:1510–1515.PubMedGoogle Scholar
  108. Martin, B. M., Gimbrone, M. A., Majeau, G. R., Unanue, E. R., and Otran, R. S., 1983, Stimulation of human monocyte/macrophage-derived growth factor (MDGF) production by plasma fibronectin, Am. J. Pathol. 111:367–373.PubMedGoogle Scholar
  109. McDonald, J. A., and Kelley, D. G., 1980, Degradation of fibronectin by human leukocyte elastase, J. Biol. Chem. 255:8848–8858.PubMedGoogle Scholar
  110. Mecs, I., and Koltai, M., 1982, In vivo hyporesponsiveness induced by Sendai virus in CFLP mice, Acta Virol. (Praha) 26:346–352.Google Scholar
  111. Meister, H., Heyman, B., Schafer, H., and Haferkamp, O., 1977, Role of Candida albicans in granulomatous reactions. II. In vivo degradation of C. albicans in hepatic macrophages in mice, J. Infect. Dis. 135:235–242.PubMedCrossRefGoogle Scholar
  112. Metcalf, D., 1989, The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells, Nature 339:27–30.PubMedCrossRefGoogle Scholar
  113. Miyazono, K., and Heldin, C.-H., 1989, Interaction between TGF-b1 and carbohydrate structures in its precursor renders TGF-bl latent, Nature 338:158–160.PubMedCrossRefGoogle Scholar
  114. Morris, D. R., Kuepfer, C. A., Ellingsworth, L. R., Ogawa, Y., and Rabinovitch, P. S., 1989, Transforming growth factor-beta blocks proliferation but not early mitogenic signaling events in T-lymphocytes, Exp. Cell Res. 185:529–534.PubMedCrossRefGoogle Scholar
  115. Murphy, G., Reynolds, J. J., Bretz, U., and Baggiolini, M., 1977, Collagenase is a component of the specific granules of human neutrophil leucocytes, Biochem. J. 162:195–197.PubMedGoogle Scholar
  116. Musson, R. A., 1983, Human serum induces maturation of human monocytes in vitro, Am. J. Pathol. 111:331–340.PubMedGoogle Scholar
  117. Nagaoka, I., Trapnell, B. C., and Crystal, R. G., 1990, Up-regulation of platelet-derived growth factor-A and-B gene expression in alveolar macrophages of individuals with idiopathic pulmonary fibrosis, J. Clin. Invest. 85:2023–2027.PubMedCrossRefGoogle Scholar
  118. Nakatsukasa, H., Nagy, P., Evarts, R. P., Hsia, C. C., Marsden, E., and Thorgeirsson, S. S., 1990, Cellular distribution of transforming growth factor-b1 and procollagen types I, III, and IV transcripts in carbon tetrachloride-induced rat liver fibrosis, J. Clin. Invest. 85:1833–1843.PubMedCrossRefGoogle Scholar
  119. Nathan, C. F., 1991, Coordinate actions of growth factors in monocytes/macrophages, in: Peptide Growth Factors and Their Receptors II (M. B. Sporn and A. B. Roberts, eds.), pp. 427–462, Springer-Verlag, New York.Google Scholar
  120. Nelson, B. J., Ralph, P., Green, S. J., and Nacy, C. A., 1991, Differential susceptibility of activated macrophage cytotoxic effector reactions to the suppressive effects of transforming growth factor-beta 1, J. Immunol. 146:1849–1857.PubMedGoogle Scholar
  121. Nettelbladt, O., Bergh, J., Schenholm, M., Tengblad, A., and Hallgren, R., 1988, Accumulation of hyaluronic acid in the alveolar interstitial tissue in bleomycin-induced alveolitis in the rat, Am. Rev. Respir. Dis. 140:1028–1032.CrossRefGoogle Scholar
  122. Nettlbladt, O., and Hallgren, R., 1989, Hyaluron (hyaluronic acid) in bronchoalveolar lavage fluid during the development of bleomycin-induced alveolitis in the rat, Am. Rev. Respir. Dis. 140:1028–1032.CrossRefGoogle Scholar
  123. Noble, P. W., Henson, P. M., Carre, P. C., and Riches, D. W. H., 1993a, TGFβ primes macrophages to express inflammatory gene products in response to particulate stimuli by an autocrine/paracrine mechanism, J. Immunol. 151:979–989.PubMedGoogle Scholar
  124. Noble, P. W., Lake, F. R., Henson, P. M., and Riches, D. W. H., 1993b, Hyaluronate activation of CD44 induces insulin-like growth factor-1 expression by a tumor necrosis factor-alpha-dependent mechanism in murine macrophages, J. Clin. Invest. 91:2368–2377.PubMedCrossRefGoogle Scholar
  125. Noms, D. A., Clark, R. A. F., Swigart, L. M., Huff, J. C., Weston, W. L., and Howell, S. E., 1982, Fibronectin fragment(s) are chemotactic for human peripheral blood monocytes, J. Immunol. 129:1612–1618.Google Scholar
  126. Ogawa, T., Kotani, S., Kusumoto, S., and Shiba, T., 1983, Possible chemotaxis of human monocytes by N-acetylmuramyl-l-ananyl-D-isoglutamine, Infec. Immun. 39:449–451.Google Scholar
  127. Overall, C. M., Wrana, J. L., and Sodek, J., 1989, Transforming growth factor-beta regulation of collagenase, 72 kDa-progelatinase, TIMP and PAI-1 expression in rat bone cell populations and human fibroblasts, Connec. Tissue Res. 20:289–294.CrossRefGoogle Scholar
  128. Overall, C. M., Wrana, J. L., and Sodek, J., 1991, Transcriptional and posttranscriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression, J. Biol. Chem. 266:14064–14071.PubMedGoogle Scholar
  129. Parakkal, P. F., 1972, Macrophages: The time course and sequence of their distribution in the post-partum uterus, J. Ultrastruct. Res. 40:284–291.PubMedCrossRefGoogle Scholar
  130. Phan, S. H., and Kunkel, S. L., 1992, Lung cytokine production in bleomycin-induced pulmonary fibrosis, Exp. Lung Res. 18:29–43.PubMedCrossRefGoogle Scholar
  131. Pierce, G. F., Mustoe, T. A., Lingelbach, J., Masakowski, V. R., Griffin, G. L., Senior, R. M., and Deuel, T. F., 1989, Platelet-derived growth factor and transforming growth factor-b enhance tissue repair activities by unique mechanisms, J. Cell Biol. 109:429–440.PubMedCrossRefGoogle Scholar
  132. Pierce, G. F., Tarpley, J. E., Yanagihara, D., Mustoe, T. A., Fox, G. M., and Thomason, A., 1992, Platelet-derived growth factor (BB homodimer), transforming growth factor-b1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair, Am. J. Pathol. 140:1375–1388.PubMedGoogle Scholar
  133. Piguet, P. F., Collait, M. A., Grau, G. E., Kapanci, Y., and Vassalli, P., 1989, Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis, J. Exp. Med. 170:655–663.PubMedCrossRefGoogle Scholar
  134. Piguet, P. F., Collait, M. A., Grau, G. E., Sappino, A. P., and Vassalli, P., 1990, Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis, Nature 344:245–247.PubMedCrossRefGoogle Scholar
  135. Pinson, D. M., LeClaire, R. D., Lorsbach, R. B., Parmely, M. J., and Russell, S. W., 1992, Regulation by transforming growth factor-beta 1 of expression and function of the receptor for IFN-gamma on mouse macrophages, J. Immunol. 149:2028–2034.PubMedGoogle Scholar
  136. Polverini, P. J., and Leibovitch, S. J., 1984, Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages, Lab. Invest. 51:635–642.PubMedGoogle Scholar
  137. Polverini, P. J., Cotran, R. S., Gimbrone, M. A., and Unanue, E. R., 1977, Activated macrophages induce vascular proliferation, Nature 269:804–806.PubMedCrossRefGoogle Scholar
  138. Postlethwaite, A. E., and Kang, A. H., 1976, Collagen-and collagen peptide-induced chemotaxis of human blood monocytes, J. Exp. Med. 143:1299–1307.PubMedCrossRefGoogle Scholar
  139. Postlethwaite, A. E., Seyer, J. M., and Kang, A. H., 1978, Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides, Proc. Natl. Acad. Sci. USA 75:871–875.PubMedCrossRefGoogle Scholar
  140. Proveddini, D. M., Deftos, L. J., and Manolagas, S. C., 1986, 1,25-dihydroxyvitamin D3 promotes in vitro morphologic and enzymatic changes in normal human monocytes consistent with their differentiation into macrophages, Bone 7:23–28.CrossRefGoogle Scholar
  141. Raghow, R., Postlethwaite, A. E., Keski, O. J., Moses, H. L., and Kang, A. H., 1987, Transforming growth factor-beta increases steady state levels of type I procollagen and fibronectin messenger RNAs post-transcriptionally in cultured human dermal fibroblasts, J. Clin. Invest. 79:1285–1288.PubMedCrossRefGoogle Scholar
  142. Raines, E. W., Dower, S. K., and Ross, R., 1989, Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA, Science 243:393–396.PubMedCrossRefGoogle Scholar
  143. Rappolee, D. A., Mark, D., Banda, M. J., and Werb, Z., 1988, Wound macrophages express TGF-alpha and other growth factors in vivo: Analysis by mRNA phenotyping, Science 241:708–712.PubMedCrossRefGoogle Scholar
  144. Reuterdahl, C., Sundberg, C., Rubin, K., Funa, K., and Gerdin, B., 1993, Tissue localization of b receptors for platelet-derived growth factor and platelet-derived growth factor B chain during wound repair in humans, J. Clin. Invest. 91:2065–2075.PubMedCrossRefGoogle Scholar
  145. Riches, D. W. H., 1988, The multiple roles of macrophages in wound healing, in: The Molecular and Cellular biology of Wound Repair, lsted. (R. A. F. Clark and P. M. Henson, eds.), pp. 213–239, Plenum Press, New York.CrossRefGoogle Scholar
  146. Riches, D. W. H., and Henson, P. M., 1986, Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages, J. Cell Biol. 102:1606–1614.PubMedCrossRefGoogle Scholar
  147. Riches, D. W. H., and Stanworth, D. R., 1980, Primary amines induce selective release of lysosomal enzymes from mouse macrophages, Biochem. J. 188:933–936.PubMedGoogle Scholar
  148. Riches, D. W. H., and Stanworth, D. R., 1982a, Evidence for a mechanism for the initiation of acid hydrolase secretion by macrophages that is functionally independent of alternative pathway complement activation, Biochem. J. 202:639–645.PubMedGoogle Scholar
  149. Riches, D. W. H., and Stanworth, D. R., 1982b, Weak-base-induced lysosomal secretion by macrophages: An alternative trigger mechanism that is independent of complement activation, Adv. Exp. Med. Biol. 155:313–323.PubMedCrossRefGoogle Scholar
  150. Riches, D. W. H., and Underwood, G. A., 1991, Expression of IFNβ during the triggering phase of macrophage cytocidal activation. Evidence for an autocrine/paracrine role in the regulation of this state, J. Biol. Chem. 266:24785–24792.PubMedGoogle Scholar
  151. Riches, D. W. H., Watkins, J. L., and Stanworth, D. R., 1983, Biochemical differences in the mechanism of macrophage lysosomal exocytosis initiated by zymosan particles and weak bases, Biochem. J. 212:869–874.PubMedGoogle Scholar
  152. Riches, D. W. H., Watkins, J. L., Henson, P. M., and Stanworth, D. R., 1985, Regulation of macrophage lysosomal secretion by adenosine, adenosine phosphate esters, and related structural analogues of adenosine, J. Leukoc. Biol. 37:545–557.PubMedGoogle Scholar
  153. Riches, D. W. H., Henson, P. M., Remigio, L. K., Catterall, J. F., and Strunk, R. C., 1988, Differential regulation of gene expression during macrophage activation with a polyribonucleotide. The role of endogenously derived IFN, J. Immunol. 141:180–188.PubMedGoogle Scholar
  154. Roberts, A. B., and Sporn, M. B., 1991, The transforming growth factor-bs, in: Peptide Growth Factors and Their Receptors I, (M. B. Sporn and A. B. Roberts, ed.), pp. 419–472, Springer-Verlag, New York.CrossRefGoogle Scholar
  155. Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, N. S., Wakefield, L. M., Heine, U. I., Liotta, L. A., Falanga, V., Kehrl, J. H., and Fauci, A. S., 1986, Transforming growth factor b: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc. Natl. Acad. Sci. USA 83:4167–4171.PubMedCrossRefGoogle Scholar
  156. Robertson, P. B., Ryel, R. B., Taylor, R. E., Shyu, K. W., and Fullmer, H. M., 1972, Collagenase: Localization in polymorphonuclear leukocyte granules in the rabbit, Science 177:64–65.PubMedCrossRefGoogle Scholar
  157. Rollins, B. J., Watz, A., and Baggiolini, M., 1991, Recombinant human MCP-1/JE induces chemotaxis, calcium flux and the respiratory burst in human monocytes, Blood 78:1112–1122.PubMedGoogle Scholar
  158. Rom, W. N., Basset, P., Fells, G. A., Nukiwa, T., Trapnell, B. C., and Crystal, R. G., 1989, Alveolar macrophages release an insulin-like growth factor-1-type molecule, J. Clin. Invest. 82:1685–1693.CrossRefGoogle Scholar
  159. Rossi, P., Karsenty, G., Roberts, A. B., Roche, N. S., Sporn, M. B., and de Crombrugghe, B., 1988, A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-beta, Cell 52:405–414.PubMedCrossRefGoogle Scholar
  160. Ruco, L. P., and Meltzer, M. S., 1978, Macrophage activation for tumor cytotoxicity: Development of macrophage cytotoxic activity requires completion of a sequence of short-lived intermediary reactions, J. Immunol. 121:2035–2042.PubMedGoogle Scholar
  161. Ruegemer, J. J., Ho, S. N., Augustine, J. A., Schlager, J. W., Bell, M. P., McKean, D. J., and Abraham, R. T., 1990, Regulatory effects of transforming growth factor-beta on IL-2-and IL-4-dependent T cell-cycle progression, J. Immunol. 144:1767–1776.PubMedGoogle Scholar
  162. Russell, S.W., Doe, W. F., and McIntosh, A. T., 1977, Functional characterization of a stable, non-cytolytic stage of macrophage activation in tumors, J. Exp. Med. 146:1511–1520.PubMedCrossRefGoogle Scholar
  163. Sandhaus, R. A., McCarthy, K. M., Musson, R. A., and Henson, P. M., 1983, Elastinolytic proteinases of the human macrophage, Chest 83S:60S–62S.Google Scholar
  164. Sawyer, R. T., 1986, The ontogeny of pulmonary alveolar macrophages in parabiotic mice, J. Leukoc. Biol. 40:347–354.PubMedGoogle Scholar
  165. Sawyer, R. T., Strausbauch, P. H., and Volkman, A., 1982, Resident macrophage proliferation in mice depleted of blood monocytes by Strontium-89, Lab. Invest. 46:165–170.PubMedGoogle Scholar
  166. Schall, T. J., Bacon, K., Toy, K. J., and Goeddel, D. V., 1990, Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES, Nature 347:669–671.PubMedCrossRefGoogle Scholar
  167. Schmidt, J. A., Oliver, C. N., Lepe-Zuniga, J. L., Green, I., and Gery, I., 1984, Silica-stimulated macrophages release fibroblast proliferation factors identical to interleukin 1, J. Clin. Invest. 73:1461–1472.CrossRefGoogle Scholar
  168. Schorlemmer, H. U., Davies, P., Hylton, W., Gugig, M., and Allison, A. C., 1977, The selective release of lysosomal acid hydrolases from mouse peritoneal macrophages by stimuli of chronic inflammation, Br. J. Exp. Pathol. 58:315–326.PubMedGoogle Scholar
  169. Senior, R. M., Griffin, G. L., and Mecham, R. P., 1980, Chemotactic activity of elastin-derived peptides, J. Clin. Invest. 66:859–862.PubMedCrossRefGoogle Scholar
  170. Senior, R. M., Griffin, G. L., Mecham, R. P., Wrenn, D. S., Prasad, K. U., and Urry, D. W., 1984, Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes, J. Cell Biol. 99:870–874.PubMedCrossRefGoogle Scholar
  171. Senior, R. M., Connolly, N. L., Cury, J. D., Welgus, H. G., and Campbell, E. J., 1989, Elastin degradation by human alveolar macrophages. A prominent role of metalloproteinase activity, Am. Rev. Respir. Dis. 139:1251–1256.PubMedCrossRefGoogle Scholar
  172. Shapiro, S. D., Campbell, E. J., Welgus, H. G., and Senior, R. M., 1991, Elastin degradation by mononuclear phagocytes, Ann. NY Acad. Sci. 624:69–80.PubMedCrossRefGoogle Scholar
  173. Shapiro, S. D., Griffin, G. L., Gilbert, D. J., Jenkins, N. A., Copeland, N. G., Welgus, H. G., Senior, R. M., and Ley, T. J., 1992, Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase, J. Biol. Chem. 267:4664–4671.PubMedGoogle Scholar
  174. Shapiro, S. D., Kobayashi, D. K., and Ley, T. J., 1993, Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages, J. Biol. Chem. 268:23824–23829.PubMedGoogle Scholar
  175. Shaw, R. J., Doherty, D. E., Ritter, A. G., Benedict, S. H., and Clark, R. A. F., 1990, Adherence-dependent increase in human monocyte PDGF(B) mRNA as associated with increases in c-fos, c-jun and EGR2 mRNA, J. Cell Biol. 111:2139–2148.PubMedCrossRefGoogle Scholar
  176. Shaw, R. J., Benedict, S. H., Clark, R. A. F., and King, Jr., T. E., 1991, Pathogenesis of pulmonary fibrosis in interstitial lung disease: Alveolar macrophage PDGF(B) gene activation an up-regulation by interferon gamma, Am. Rev. Respir. Dis. 143:167–173.PubMedCrossRefGoogle Scholar
  177. Sherry, B., Tekamp, O. P., Gallegos, C., Bauer, D., Davatelis, G., Wolpe, S. D., Masiarz, F., Coit, D., and Cerami, A., 1988, Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1 beta, J. Exp. Med. 168:2251–2259.PubMedCrossRefGoogle Scholar
  178. Shimokado, K., Raines, E. W., Madtes, D. K., Barrett, T. B., Benditt, E. P., and Ross, R., 1985, A significant part of macrophage-derived growth factor consists of at least two forms of PDGF, Cell 43:277–288.PubMedCrossRefGoogle Scholar
  179. Shiozawa, S., Shiozawa, K., Kita, M., Kishida, T., Fujita, T., and Imura, S., 1992, A preliminary study on the effect of alpha-interferon treatment on the joint inflammation and serum calcium in rheumatoid arthritis, Br. J. Rheumatol. 31:405–408.PubMedCrossRefGoogle Scholar
  180. Silva, J. S., Twardzik, D. R., and Reed, S. G., 1991, Regulation of Trypanosoma cruzi infections in vitro and in vivo by transforming growth factor beta (TGF-beta), J. Exp. Med. 174:549–545.CrossRefGoogle Scholar
  181. Silver, I. A., Murrills, R. J., and Etherington, D. J., 1988, Microelectrode studies on the acid microenviron-ment beneath adherent macrophages and osteoclasts, Exp. Cell Res. 175:266–276.PubMedCrossRefGoogle Scholar
  182. Simpson, D. M., and Ross, R., 1971, Effects of heterologous antineutrophil serum in guinea pigs. Hematologic and ultrastructural observations, Am. J. Pathol. 65:79–102.PubMedGoogle Scholar
  183. Simpson, D. M., and Ross, R., 1972, The neutrophilic leukocyte in wound repair a study with antineutrophil serum, J. Clin. Invest. 51:2009–2023.PubMedCrossRefGoogle Scholar
  184. Snyderman, R., and Fudman, E. J., 1980, Demonstration of a chemotactic factor receptor on macrophages, J. Immunol. 124:2754–2757.PubMedGoogle Scholar
  185. Stanley, E., Lieschke, G. J., Grail, D., Metcalf, D., Hodgson, G., Gall, J. A., Maher, D. W., Cebon, J., Sinickas, V., and Dunn, A. R., 1994, Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology, Proc. Natl. Acad. Sci. USA 91:5592–5596.PubMedCrossRefGoogle Scholar
  186. Stewart, R. J., Duley, J. A., Dewdney, J., Allardyce, R. A., Beard, M. E. J., and Fitzgerald, P. H., 1981, The wound fibroblast and macrophage. IL Their origin studied in a human after bone marrow transplantation, Br. J. Surg. 68:129–131.PubMedCrossRefGoogle Scholar
  187. Strieter, R. M., Chensue, S. W., Basha, M. A., Standiford, T. J., Lynch, J. P., Baggiolini, M., and Kunkel, S. L., 1990a, Human alveolar macrophage gene expression of interleukin-8 by tumor necrosis factor-alpha, lipopolysaccharide, and interleukin-1 beta, Am. J. Respir. Cell. Mol. Biol. 2:321–326.Google Scholar
  188. Strieter, R. M., Chensue, S. W., Standiford, T. J., Basha, M. A., Showell, H. J., and Kunkel, S. L., 1990b, Disparate gene expression of chemotactic cytokines by human mononuclear phagocytes, Biochem. Biophys. Res. Commun. 166:886–891.PubMedCrossRefGoogle Scholar
  189. Strieter, R. M., Kunkel, S. L., Einer, V. M., Martonyi, C. L., Koch, A. E., Polverini, P. J., and Einer, S. G., 1992, Interleukin-8. A corneal factor that induces neovascularization, Am. J. Pathol. 141:1279–1284.PubMedGoogle Scholar
  190. Sugimoto, M., Dannenberg, A. M., Wahl, L. M., Ettinger, W. H., Hastie, A. T., Daniels, D. C., Thomas, C. R., and Brahy, L. D., 1978, Extracellular hydrolytic enzymes of rabbit dermal tuberculous lesions and tuberculin reactions collected in skin chambers, Am. J. Pathol. 90:583–606.PubMedGoogle Scholar
  191. Tanaka, H., Abe, E., Miyaura, C., Shiina, Y., and Suda, T., 1983, Iα,25-dihydroxyvitamin D3 induces differentiation of human promyelocytic leukemia cells (HL-60) into monocyte-macrophages but not into granulocytes, Biochem. Biophys. Res. Commun. 117:86–92.PubMedCrossRefGoogle Scholar
  192. Tarling, J. D., and Coggle, J. E., 1982, Evidence for the pulmonary origin of alveolar macrophages, Cell Tissue Kinet. 15:577–584.PubMedGoogle Scholar
  193. Thakral, K. K., Goodson, W. H., and Hunt, T. K., 1979, Stimulation of wound blood vessel growth by wound macrophages, J. Surg. Res. 26:430–436.PubMedCrossRefGoogle Scholar
  194. Tsunawaki, S., Sporn, M., Ding, A., and Nathan, C., 1988, Deactivation of macrophages by transforming growth factor-beta, Nature 334:260–262.PubMedCrossRefGoogle Scholar
  195. Unemori, E. N., Bair, M. J., Bauer, E. A., and Amento, E. P., 1991, Stromelysin expression regulates collagenase activation in human fibroblasts. Dissociable control of two metalloproteinases by interferon-gamma, J. Biol. Chem. 266:23477–23482.PubMedGoogle Scholar
  196. Unemori, E. N., Ehsani, N., Wang, M., Lee, S., McGuire, J., and Amento, E. P., 1994, Interleukin-1 and transforming frowth factor-alpha: Synergistic stimulation of metalloproteinases, PGE2, and proliferation in human fibroblasts, Exp. Cell Res. 210:166–171.PubMedCrossRefGoogle Scholar
  197. van Furth, R., and Conn, Z. A., 1968, The origin and kinetics of mononuclear phagocytes, J. Exp. Med. 128:415–435.PubMedCrossRefGoogle Scholar
  198. van Furth, R., Hirsch, J. G., and Fedorko, M. E., 1970, Morphology and peroxidase cytochemistry of mouse promonocytes, monocytes and macrophages, J. Exp. Med. 132:794–805.PubMedCrossRefGoogle Scholar
  199. van Furth, R., Diesselhoff-den Dulk, M. M. C., and Mattie, H., 1973, Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction, J. Exp. Med. 138:1314–1330.PubMedCrossRefGoogle Scholar
  200. van Furth, R., Diesselhoff-den Dulk, M. M. C., Sluiter, W., and van Dissel, J. T., 1985a, New perspectives on the kinetics of mononuclear phagocytes, in: Mononuclear Phagocytes: Characteristics, Physiology and Function, (R. van Furth and Mijhoff), pp. 201–208, Dordrecht, Holland.CrossRefGoogle Scholar
  201. van Furth, R., Nibbering, P. H., van Dissel, J. T., and Diesselhoff-den Dulk, M. M. C., 1985b, The characterization, origin, and kinetics of skin macrophages during inflammation, J. Invest. Dermatol. 85:398–402.PubMedCrossRefGoogle Scholar
  202. Volkman, A., and Gowans, J. L., 1965a, The origin of macrophages from bone marrow in the rat, Br. J. Exp. Pathol. 46:62–70.PubMedGoogle Scholar
  203. Volkman, A., and Gowans, J. L., 1965b, The production of macrophages in the rat, Br. J. Exp. Pathol. 46:50–61.PubMedGoogle Scholar
  204. Wakefield, L. M., Smith, D. M., Flanders, K. C., and Sporn, M. B., 1988, Latent transforming growth factor-b from human platelets, J. Biol. Chem. 263:7646–7654.PubMedGoogle Scholar
  205. Wedmore, C. V., and Williams, T. J., 1981, Control of vascular permeability by polymorphonuclear leukocytes in inflammation, Nature 289:646–650.PubMedCrossRefGoogle Scholar
  206. Welgus, H. G., Campbell, E. J., Cury, J. D., Eisen, A. Z., Senior, R. M., Wilhelm, S. M., and Goldberg, G. I., 1990, Neutral metalloproteinases produced by human mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development, J. Clin. Invest. 86:1496–1502.PubMedCrossRefGoogle Scholar
  207. Werb, Z., and Chin, J. R., 1983, Endotoxin suppresses expression of apolipoprotein E by mouse macrophages in vivo and in culture. A biochemical and genetic study, J. Biol. Chem. 258:10642–10648.PubMedGoogle Scholar
  208. Werb, Z., Banda, M. J., and Jones, P. A., 1980, Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins and collagen by proteinases isolated from macrophages, J. Exp. Med. 152:1340–1357.PubMedCrossRefGoogle Scholar
  209. Wiseman, D. M., Polverini, P. J., Kamp, D. W., and Leibovich, S. J., 1988, Transforming growth factor-beta (TFGβ) is chemotactic for human monocytes and induces their expression of angiogenic activity, Biochem. Biophys. Res. Commun. 157:5788.CrossRefGoogle Scholar
  210. Wright, J. K., Cawston, T. E., and Hazleman, B. L., 1991, Transforming growth factor beta stimulates the production of the tissue inhibitor of metalloproteinases (TIMP) by human synovial and skin fibroblasts, Biochim. Biophys. Acta. 1094:207–210.PubMedCrossRefGoogle Scholar
  211. Wright, S. D., Craigmyle, L. S., and Silverstein, S. C., 1983, Fibronectin and serum amyloid P component stimulate C3b-and C3bi-mediated phagocytosis in cultured human monocytes, J. Exp. Med. 158:1339–1343.Google Scholar
  212. Xie, Q.-W., Cho, H. J., Calaycay, J., Mumford, R. A., Swiderek, K. M., Lee, T. D., Ding, A., Troso, T., and Nathan, C., 1992, Cloning and characterization of inducible nitric oxide synthase from mouse macrophages, Science 256:225–228.PubMedCrossRefGoogle Scholar
  213. Yancey, K. B., Hammer, C. H., Harvath, L., Renfer, L., Frank, M. M., and Lawley, T. J., 1985, Studies of human C5a as a mediator of inflammation in normal human skin, J. Clin. Invest. 75:486–495.PubMedCrossRefGoogle Scholar
  214. Yasui, W., Ji, Z. Q., Kuniyasu, H., Ayhan, A., Yokozaki, H., Ito, H., and Tahara, E., 1992, Expression of transforming growth factor alpha in human tissues: Immunohistochemical study and Northern blot analysis, Virchows Arch. A Pathol. Anat. Histopathol. 421:513–519.PubMedCrossRefGoogle Scholar
  215. Zauli, G., Davis, B. R., Re, M. C., Visani, G., Furlini, G., and La Placa, M., 1992, Tat protein stimulates production of transforming growth factor-beta 1 by marrow macrophages: A potential mechanism for human immunodeficiency virus-1-induced hematopoietic suppression, Blood 80:3036–3043.PubMedGoogle Scholar
  216. Zhu, J. Q., Wu, J., Zhu, D. X., Scharfman, A., Lamblin, G., and Han, K. K., 1991, Recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) induces human macrophage production of transforming growth factor-alpha, Cell. Mol. Biol. 37:413–419.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • David W. H. Riches
    • 1
  1. 1.Division of Basic Sciences, Department of PediatricsNational Jewish Center for Immunology and Respiratory MedicineDenverUSA

Personalised recommendations