Provisional Matrix

  • Kenneth M. Yamada
  • Richard A. F. Clark


Fibronectin, fibrinogen, and other extracellular proteins play important roles in cell surface interactions. For example, fibronectin helps to mediate cell adhesion, embryonic cell migration, and wound repair. Each of these glycoproteins can participate in a variety of functions by use of its different specialized domains or peptide recognition sequences for binding to specific cell surface receptors or to other extracellular molecules. There has been remarkable recent progress in our understanding of the structures, domain organization, and biological roles of these multifunctional cell interaction proteins.


Fibrin Clot Matrix Assembly Venous Ulcer Plasma Fibronectin Fibronectin Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. C., and Lawler, J., 1993, Diverse mechanisms for cell attachment to platelet thrombospondin, J. Cell Sci. 104:1061–1071.PubMedGoogle Scholar
  2. Aikawa, M., Iseki, M., Bamwell, J. W., Taylor, D., Oo, M. M., and Howard, R. J., 1990, The pathology of human cerebral malaria, Am. J. Trop. Med. Hyg. 43:30–37.PubMedGoogle Scholar
  3. Akiyama, S. K., and Yamada, K. M., 1985, Synthetic peptides competitively inhibit both direct binding to fibroblasts and functional biological assays for the purified cell-binding domain of fibronectin, J. Biol. Chem. 260:10402–10405.PubMedGoogle Scholar
  4. Akiyama, S. K., Hasegawa, E., Hasegawa, T., and Yamada, K. M., 1985, The interactions of fibronectin fragments with fibroblastic cells, J. Biol. Chem. 260:13256–13260.PubMedGoogle Scholar
  5. Akiyama, S. K., Aota, S., and Yamada, K. M., 1994, Function and receptor specificity of a minimal 20 kilodalton cell adhesive fragment of fibronectin. Cell Adhesion Commun. 3:13–25.Google Scholar
  6. Alon, R., Cahalon, L., Hershkoviz, R., Elbaz, D., Reizis, B., Wallach, D., Akiyama, S. K., Yamada, K. M., and Lider, O., 1994, TNF-α binds to the N-terminal domain of fibronectin and augments the β1-integrin-mediated adhesion of CD4+ T lymphocytes to the glycoprotein, J. Immunol. 152:1304–1313.PubMedGoogle Scholar
  7. Aota, S., Nagai, T., and Yamada, K. M., 1991, Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis, J. Biol. Chem. 266:15938–15943.PubMedGoogle Scholar
  8. Aota, S., Nomizu, M., and Yamada, K. M., 1994, The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function, J. Biol. Chem. 269:24756–24761.PubMedGoogle Scholar
  9. Asch, A. S., and Nachman, R. L., 1989, Thrombospondin: Phenomenology to function, Prog. Hemost. Thromb. 9:157–176.PubMedGoogle Scholar
  10. Asch, A. S., Tepler, J., Silbiger, S., and Nachman, R. L., 1991, Cellular attachment to thrombospondin. Cooperative interactions between receptor systems, J. Biol. Chem. 266:1740–1745.PubMedGoogle Scholar
  11. Asch, A. S., Silbiger, S., Heimer, E., and Nachman, R. L., 1992, Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding, Biochem. Biophys. Res. Commun. 182:1208–1217.PubMedGoogle Scholar
  12. Asch, A. S., Liu, I., Briccetti, F. M., Bamwell, J. W., Kwakye-Berko, F., Dokun, A., Goldberger, J., and Pernambuco, M., 1993, Analysis of CD36 binding domains: Ligand specificity controlled by de-phosphorylation of an ectodomain, Science 262:1436–1440.PubMedGoogle Scholar
  13. Aukhil, I., Joshi, P., Yan, Y., and Erickson, H. P., 1993, Cell-and heparin-binding domains of the hexa-brachion arm identified by tenascin expression proteins, J. Biol. Chem. 268:2542–2553.PubMedGoogle Scholar
  14. Bale, M. D., Wohlfahrt, L. A., Mosher, D. F., Tomasini, B., and Sutton, R. C., 1989, Identification of vitronectin as a major plasma protein adsorbed on polymer surfaces of different copolymer composition, Blood 74:2698–2706.PubMedGoogle Scholar
  15. Barkalow, F. J., and Schwarzbauer, J. E., 1994, Interactions between fibronectin and chondroitin sulfate are modulated by molecular context, J. Biol. Chem. 269:3957–3962.PubMedGoogle Scholar
  16. Barnea, G., Grumet, M., Milev, P., Silvennoinen, O., Levy, J. B., Sap, J., and Schlessinger, J., 1994, Receptor tyrosine phosphatase β is expressed in the form of proteoglycan and binds to the extracellular matrix protein tenascin, J. Biol. Chem. 269:14349–14352.PubMedGoogle Scholar
  17. Barnes, D. W., Foley, T. P., Shaffer, M. C., and Silnutzer, J. E., 1984, Human serum spreading factor: Relationship to somatomedin B, J. Clin. Endocrinol. Metab. 59:1019–1021.PubMedGoogle Scholar
  18. Baron, M., Norman, D., Willis, A., and Campbell, I. D., 1990, Structure of the fibronectin type 1 module, Nature 345:642–646.PubMedGoogle Scholar
  19. Beckmann, R., Geiger, M., de Vries, C., Pannekoek, H., and Binder, B. R., 1991, Fibronectin decreases the stimulatory effect of fibrin and fibrinogen fragment FCB-2 on plasmin formation by tissue plasminogen activator, J. Biol. Chem. 266:2227–2232.PubMedGoogle Scholar
  20. Benecky, M. J., Kolvenbach, C. G., Wine, R. W., DiOrio, J. P., and Mosesson, M. W., 1990, Human plasma fibronectin structure probed by steady-state fluorescence polarization: Evidence for a rigid oblate structure, Biochemistry 29:3082–3091.PubMedGoogle Scholar
  21. Betz, P., Nerlich, A., Tubel, J., Penning, R., and Eisenmenger, W., 1993, Localization of tenascin in human skin wounds: An immunohistochemical study, Int. J. Legal Med. 105:325–328.PubMedGoogle Scholar
  22. Bini, A., Fenoglio Jr., J. J., Mesa-Tejada, R., Kudryk, B., and Kaplan, K. L., 1989, Identification and distribution of fibrinogen, fibrin and fibrin(ogen) degradation products in atherosclerosis by monoclonal antibodies, Arteriosclerosis 9:109–121.PubMedGoogle Scholar
  23. Blasi, F., 1993, Urokinase and urokinase receptor: A paracrine/autocrine system regulating cell migration and invasiveness, BioEssays 15:105–111.PubMedGoogle Scholar
  24. Blystone, S. D., and Kaplan, J. E., 1992, Isolation of an amino-terminal fibronectin-binding protein on human U937 cells and rat peritoneal macrophages, J. Biol. Chem. 267:3968–3975.PubMedGoogle Scholar
  25. Blystone, S. D., and Kaplan, J. E., 1993, The role of fibronectin in macrophage fibrin binding: A potential mechanism for high affinity, high capacity clearance of circulating fibrin, Blood Coagul. Fibrinolysis 4:769–781.PubMedGoogle Scholar
  26. Bornstein, P., 1992, Thrombospondins: Structure and regulation of expression, FASEB J. 6:3290–3299.PubMedGoogle Scholar
  27. Bourdon, M. A., and Ruoslahti, E., 1989, Tenascin mediates cell attachment through an RGD-dependent receptor, J. Cell Biol. 108:1149–1155.PubMedGoogle Scholar
  28. Bowditch, R. D., Halloran, C. E., Aota, S., Obara, M., Plow, E. F., Yamada, K. M., and Ginsberg, M. H., 1991, Integrin αIIbβ3 (platelet GPIIb-IIIa) recognizes multiple sites in fibronectin, J. Biol. Chem. 266:23323–23328.PubMedGoogle Scholar
  29. Bowditch, R. D., Hariharan, M., Tominna, E. F., Smith, J. W., Yamada, K. M., Getzoff, E. D., and Ginsberg, M. H., 1994, Identification of a novel integrin binding site in fibronectin. Differential utilization by β3 integrins, J. Biol. Chem. 269:10856–10863.PubMedGoogle Scholar
  30. Bristow, J., Tee, M. K., Gitelman, S. E., Mellon, S. H., and Miller, W. L., 1993, Tenascin-X: A novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B, J. Cell Biol. 122:265–278.PubMedGoogle Scholar
  31. Brommer, E. J. P., and van Bocke, L. J. H., 1992, Composition and susceptibility to thrombolysis of human arterial thrombi and the influence of their age, Blood Coagul. Fibrinolysis 3:717–725.PubMedGoogle Scholar
  32. Brown, L. F., Dubin, D., Lavigne, L., Logan, B., Dvorak, H. F., and Van De Water, L., 1993a, Macrophages and fibroblasts express “embryonic” fibronectins during cutaneous wound healing, Am. J. Pathol. 142:793–801.PubMedGoogle Scholar
  33. Brown, L. F., Lanir, N., McDonagh, J., Tognazzi, K., Dvorak, A. M., and Dvorak, H. F., 1993b, Fibroblast migration in fibrin gel matrices, Am. J. Pathol. 142(1):273–283.PubMedGoogle Scholar
  34. Browse, N. L., and Burnand, K. G., 1982, The cause of venous ulceration, Lancet 2:243–245.PubMedGoogle Scholar
  35. Burnand, K. G., Clemenson, G., Whimster, I., Gaunt, J., and Browse, N. L., 1982, The effect of sustained venous hypertension on the skin capillaries of the canine hind limb, Br. J. Surg. 69:41–44.PubMedGoogle Scholar
  36. Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C., 1988, Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton, Annu. Rev. Cell Biol. 4:487–525.PubMedGoogle Scholar
  37. Carsons, S. E. (ed.), 1989, Fibronectin in Health and Disease, CRC Press, Boca Raton, FL.Google Scholar
  38. Castellino, F. J., Strickland, D. K., Morris, J. P., Smith, J., and Chibber, B., 1983, Enhancement of the streptokinase-induced activation of human plasminogen by human fibrinogen and human fibrinogen fragment D1, Ann. NY Acad. Sci. 408:595–601.PubMedGoogle Scholar
  39. Checovich, W. J., and Mosher, D. F., 1993, Lysophosphatidic acid enhances fibronectin binding to adherent cells, Arterioscler. Thromb. 13:1662–1667.PubMedGoogle Scholar
  40. Chernousov, M. A., Fogerty, F. J., Koteliansky, V. E., and Mosher, D. F., 1991, Role of the I-9 and III-1 modules of fibronectin in formation of an extracellular fibronectin matrix, J. Biol. Chem. 266:10851–10858.PubMedGoogle Scholar
  41. Chiquet-Ehrismann, R., 1990, What distinguishes tenascin from fibronectin, FASEB J. 4:2598–2604.PubMedGoogle Scholar
  42. Chiquet-Ehrismann, R., Kalla, P., Pearson, C. A., Beck, K., and Chiquet, M., 1988, Tenascin interferes with fibronectin action, Cell 53:383–390.PubMedGoogle Scholar
  43. Chung, C. Y., and Erickson, H. P., 1994, Cell surface annexin II is a high affinity receptor for the alternatively spliced segment of tenascin-C, J. Cell Biol. 126:539–548.PubMedGoogle Scholar
  44. Ciano, P. S., Colvin, R. B., Dvorak, A. M., McDonagh, J., and Dvorak, H. F., 1986, Macrophage migration in fibrin gel matrices, Lab. Invest. 54:62–70.PubMedGoogle Scholar
  45. Circolo, A., Welgus, H. G., Pierce, G. F., Kramer, J., and Strunk, R. C., 1991, Differential regulation of the expression of proteinases/antiproteinases in fibroblasts. Effects of interleukein-1 and platelet-derived growth factor, J. Biol. Chem. 266:12283–12288.PubMedGoogle Scholar
  46. Clark, R. A. F., and Henson, P. M. (eds.), 1988, The Molecular and Cellular Biology of Wound Repair, Plenum Press, New York.Google Scholar
  47. Clark, R. A. F., Lanigan, J. M., DellaPelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B., 1982, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reep-ithelialization, J. Invest. Dermatol. 70:264–269.Google Scholar
  48. Clark, R. A. F., Wikner, N. E., Doherty, D. E., and Norris, D. A., 1988, Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120 kDa fibroblastic cell-binding fragment, J. Biol. Chem. 263:12115–12123.PubMedGoogle Scholar
  49. Dahlback, K., Lfberg, H., Alumets, J., and Dahlback, B., 1989, Immunohistochemical demonstration of age-related deposition of vitronectin (S-protein of complement) and terminal complement complex on dermal elastic fibers, J. Invest. Dermatol. 92:727–733.PubMedGoogle Scholar
  50. Dahlback, K., Wulf, H. C., and Dahlback, B., 1993, Vitronectin in mouse skin: Immunohistochemical demonstration of its association with cutaneous amyloid, J. Invest. Dermatol. 100:166–170.PubMedGoogle Scholar
  51. Damsky, C. H., and Werb, Z., 1992, Signal transduction by integrin receptors for extracellular matrix: Cooperative processing of extracellular information, Curr. Opin. Cell Biol. 4:772–781.PubMedGoogle Scholar
  52. Dardik, R., and Lahav, J., 1989, Multiple domains are involved in the interaction of endothelial cell thrombospondin with fibronectin, Eur. J. Biochem. 185:581–588.PubMedGoogle Scholar
  53. Darribere, T., Guida, K., Larjava, H., Johnson, K. E., Yamada, K. M., Thiery, J. P., and Boucaut, J.-C., 1990, In vivo analyses of integrin β1 subunit function in fibronectin matrix assembly, J. Cell Biol. 110:1813–1823.PubMedGoogle Scholar
  54. Darribere, T., Koteliansky, V. E., Chernousov, M. A., Akiyama, S. K., Yamada, K. M., Thiery, J. P., and Boucaut, J. C., 1992, Distinct regions of human fibronectin are essential for fibril assembly in an in vivo developing system, Dev. Dyn. 194:63–70.PubMedGoogle Scholar
  55. Dean, D. C., McQuillan, J. J., and Weintraub, S., 1990, Serum stimulation of fibronectin gene expression appears to result from rapid serum-induced binding of nuclear proteins to a c AMP response element, J. Biol. Chem. 265:3522–3527.PubMedGoogle Scholar
  56. Dejana, E., Colella, S., Conforti, G., Abbadini, M., Gaboli, M., and Marchisio, P. C., 1988, Fibronectin and vitronectin regulate the organization of their respective Arg-Gly-Asp adhesion receptors in cultured human endothelial cells, J. Cell Biol. 107:1215–1223.PubMedGoogle Scholar
  57. Del Rosso, M., Fibbi, G., Dini, G., Grappone, C., Pucci, M., Caldini, R., Fimiani, M., Lotti, T., and Pancones, E., 1990, Role of specific membrane receptors in urokinase-dependent migration of human ker-atinocytes, J. Invest. Dermatol. 94:310–316.PubMedGoogle Scholar
  58. DiPietro, L. A., Nebgen, D. R., and Polverini, P. J., 1994, Down-regulation of endothelial cell thrombospondin 1 enhances in vitro angiogenesis, J. Vasc. Res. 31:178–185.Google Scholar
  59. Doherty, D. E., Henson, P. M., and Clark, R. A. F., 1990, Fibronectin fragments containing the RGDS cell-binding domain mediate monocyte migration into the rabbit lung, J. Clin. Invest. 86:1065–1075.PubMedGoogle Scholar
  60. Donoviel, D. B., Framson, P., Eldridge, C. F., Cooke, M., Kobayashi, S., and Bornstein, P., 1988, Structural analysis and expression of the human thrombospondin gene promoter, J. Biol. Chem. 263:18590–18593.PubMedGoogle Scholar
  61. D’Souza, S. E., Ginsberg, M. H., Burke, T. A., and Plow, E. F., 1990, The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its α subunit, J. Biol. Chem. 265:3440–3446.PubMedGoogle Scholar
  62. D’Souza, S. E., Haas, T. A., Piotrowicz, R. S., Byers-Ward, V., McGrath, D. E., Soule, H. R., Cierniewski, C., Plow, E. F., and Smith, J. W., 1994, Ligand and cation binding are dual functions of a discrete segment of the integrin β3 subunit: Cation displacement is involved in ligand binding, Cell 79:659–667.PubMedGoogle Scholar
  63. Du, X. P., Plow, E. F., Frelinger, A. L., O’Toole, T. E., Loftus, J. C., and Ginsberg, M. H., 1991, Ligands activate integrin αIIbβ3 (platelet GPIIb-IIIa), Cell 65:409–416.PubMedGoogle Scholar
  64. Dufour, S., Duband, J.-L., Humphries, M. J., Obara, M., Yamada, K. M., and Thiery, J. P., 1988, Attachment, spreading and locomotion of avian neural crest cells are mediated by multiple adhesion sites on fibronectin molecules, EMBO J. 7:2661–2671.PubMedGoogle Scholar
  65. Erickson, H. P., 1993, Tenascin-C, tenascin-R and tenascin-X: A family of talented proteins in search of functions, Curr. Opin. Cell Biol. 5:869–876.PubMedGoogle Scholar
  66. Erickson, H. P., and Bourdon, M. A., 1989, Tenascin: An extracellular matrix protein prominent in specialized embryonic tissues and tumors, Annu. Rev. Cell Biol. 5:71–92.PubMedGoogle Scholar
  67. Falanga, V., and Eaglestein, W. H., 1993, The “trap” hypothesis of venous ulceration, Lancet 341:1006–1008.PubMedGoogle Scholar
  68. Falanga, V., McKenzie, A., and Eaglstein, W. H., 1991, Heterogeneity in oxygen diffusion around venous ulcers, J. Dermatol. Surg. Oncol. 17:336–339.PubMedGoogle Scholar
  69. Fava, R. A., and McClure, D. B., 1987, Fibronectin-associated transforming growth factor, J. Cell. Physiol. 131:184–189.PubMedGoogle Scholar
  70. Felding-Habermann, B., and Cheresh, D. A., 1993, Vitronectin and its receptors, Curr. Opin. Cell Biol. 5:864–868.PubMedGoogle Scholar
  71. Frrench-Constant, K., Van de Water, L., Dvorak, H. F., and Hynes, R. O., 1989, Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat, J. Cell Biol. 109:903–914.Google Scholar
  72. Flaumenhaft, R., and Rifkin, D. B., 1991, Extracellular matrix regulation of growth factor and protease activity, Curr. Opin. Cell Biol. 3:817–823.PubMedGoogle Scholar
  73. Fogerty, F. J., Akiyama, S. K., Yamada, K. M., and Mosher, D. F., 1990, Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (α5β1) antibodies, J. Cell Biol. 111:699–708.PubMedGoogle Scholar
  74. Francis, C. W., and Marder, V. J., 1988, Increased resistance to plasmin degradation of fibrin with highly cross-linked α-polymer chains formed at high factor XIII concentrations, Blood 71:1361.PubMedGoogle Scholar
  75. Frazier, W. A., 1987, Thrombospondin: A modular adhesive glycoprotein of platelets and nucleated cells, J. Cell Biol. 105:625–632.PubMedGoogle Scholar
  76. Frazier, W. A., 1991, Thrombospondins, Curr. Opin. Cell Biol. 3:792–799.PubMedGoogle Scholar
  77. Friedlander, D. R., Hoffman, S., and Edelman, G. M., 1988, Functional mapping of cytotactin: Proteolytic fragments active in cell-substrate adhesion, J. Cell Biol. 107:2329–2340.PubMedGoogle Scholar
  78. Fukai, F., Iso, T., Sekiguchi, K., Miyatake, N., Tsugita, A., and Katayama, T., 1993, An amino-terminal fibronectin fragment stimulates the differentiation of ST-13 preadipocytes, Biochemistry 32:5746–5751.PubMedGoogle Scholar
  79. Gabriel, D. A., Muga, K., and Boothroyd, E. M., 1992, The effect of fibrin structure on fibrinolysis, J. Biol. Chem. 267:24259–24263.PubMedGoogle Scholar
  80. Ginsberg, M. H., Du, X., and Plow, E. F., 1992, Inside-out integrin signalling, Curr. Opin. Cell Biol. 4:766–771.PubMedGoogle Scholar
  81. Gray, A. J., Bishop, J. E., Reeves, J. T., and Laurent, G. J., 1993, Act and Bβ chains of fibrinogen stimulate proliferation of human fibroblasts, J. Cell Sci. 104:409–413.PubMedGoogle Scholar
  82. Grinnell, F., and Phan, T. V., 1983, Deposition of fibronectin on material surfaces exposed to plasma: Quantitative and biological studies, J. Cell. Physiol. 116:289–296.PubMedGoogle Scholar
  83. Grinnell, F., and Zhu, M., 1994, Identification of neutrophil elastase as the proteinase in burn wound fluid responsible for degradation of fibronectin, J. Invest. Dermatol. 103:155–161.PubMedGoogle Scholar
  84. Grinnell, F., Feld, M., and Minter, D., 1980, Fibroblast adhesion to fibrinogen and fibrin substrata: Requirement for cold-insoluble globulin (plasma fibronectin), Cell 19:517–525.PubMedGoogle Scholar
  85. Grinnell, F., Ho, C. H., and Wysocki, A. J., 1992, Degradation of fibronectin and vitronectin in chronic wound fluid: Analysis by cell blotting, immunoblotting, and cell adhesion assays, J. Invest. Dermatol. 98:410–416.PubMedGoogle Scholar
  86. Grumet, M., Milev, P., Sakurai, T., Karthikeyan, L. Bourdon, M., Margolis, R. K., and Margolis, R. U., 1994, Interactions with tenascin and differential effects on cell adhesion of neurocan and phosphacan, two major chondroitin sulfate proteoglycans of nervous tissue, J. Biol. Chem. 269:12142–12146.PubMedGoogle Scholar
  87. Guan, J. L., Trevithick, J. E., and Hynes, R. O., 1990, Retroviral expression of alternatively spliced forms of rat fibronectin, J. Cell Biol. 110:833–847.PubMedGoogle Scholar
  88. Hajjar, K., Jacovina, A., and Chacko, J., 1994, An endothelial cell receptor for plasminogen and tissue plasminogen activator: Identity with annexin II, J. Biol. Chem. 269:21191–21197.PubMedGoogle Scholar
  89. Halfter, W., Chiquet-Ehrismann, R., and Tucker, R. P., 1989, The effect of tenascin and embryonic basal lamina on the behavior and morphology of neural crest cells in vitro, Dev. Biol. 132:14–25.PubMedGoogle Scholar
  90. Hay, E. D. (ed.), 1991, Cell Biology of Extracellular Matrix, Plenum Press, New York.Google Scholar
  91. Hayashi, M., and Yamada, K. M., 1982, Divalent cation modulation of fibronectin binding to heparin and to DNA, J. Biol. Chem. 257:5263–5267.PubMedGoogle Scholar
  92. Hendey, B., Klee, C. B., and Maxfield, F. R., 1992, Inhibition of neutrophil chemokinesis on vitronectin by inhibitors of calcineurin, Science 258:296–299.PubMedGoogle Scholar
  93. Herrick, S. E., Sloan, P., McGurk, M., Freak, L., McCollum, C. N., and Ferguson, M. W. J., 1992, Sequential changes in histologic pattern and extracellular matrix deposition during the healing of chronic venous ulcers, Am. J. Pathol. 141:1085–1095.PubMedGoogle Scholar
  94. Hershberger, R. P., and Culp, L. A., 1990, Cell-type-specific expression of alternatively spliced human fibronectin IIICS mRNAs, Mol. Cell. Biol. 10:662–671.PubMedGoogle Scholar
  95. Hershkoviz, R., Cahalon, L., Miron, S., Alon, R., Sapir, T., Akiyama, S. K., Yamada, K. M., and Lider, O., 1994, TNF-α associated with fibronectin enhances phorbol myristate acetate-or antigen-mediated integrin-dependent adhesion of CD4+ T cells via protein tyrosine phosphorylation, J. Immunol. 153:554–565.PubMedGoogle Scholar
  96. Hintner, H., Dahlback, K., Dahlback, B., Pepys, M. B., and Breathnach, S. M., 1991, Tissue vitronectin in normal adult human dermis is non-covalently bound to elastic tissue, J. Invest. Dermatol. 96:747–753.PubMedGoogle Scholar
  97. Hirano, H., Yamada, Y., Sullivan, M., de Crombrugghe, B., Pastan, I., and Yamada, K. M., 1983, Isolation of genomic DNA clones spanning the entire fibronectin gene, Proc. Natl. Acad. Sci. USA 80:46–50.PubMedGoogle Scholar
  98. Hocking, D. C., Sottile, J., and McKeown-Longo, P. J., 1994, Fibronectin’s III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin, J. Biol. Chem. 269:19183–19187.PubMedGoogle Scholar
  99. Hoffman, S., Crossin, K. L., and Edelman, G. M., 1988, Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules, J. Cell Biol. 106:519–532.PubMedGoogle Scholar
  100. Hoffman, S., Crossin, K. L., Jones, F. S., Friedlander, D. R., and Edelman, G. M., 1990, Cytotactin and cytotactin-binding proteoglycan. An interactive pair of extracellular matrix proteins, Ann. NY Acad. Sci. 580:288–301.PubMedGoogle Scholar
  101. Hogg, P. J., Stenflo, J., and Mosher, D. F., 1992, Thrombospondin is a slow tight-binding inhibitor of plasmin, Biochemistry 31:265–269.PubMedGoogle Scholar
  102. Hogg, P. J., Owensby, D. A., Mosher, D. F., Misenheimer, T. M., and Chesterman, C. N., 1993, Thrombospondin is a tight-binding competitive inhibitor of neutrophil elastase, J. Biol. Chem. 268:7139–7146.PubMedGoogle Scholar
  103. Huang, S., Cao, Z., and Davie, E. W., 1993a, The role of amino-terminal disulfide bonds in the structure and assembly of human fibrinogen, Biochem. Biophys. Res. Commun. 190:488–495.PubMedGoogle Scholar
  104. Huang, S., Mulvihill, E. R., Farrell, K. H., Chung, D. W., and Davie, E. W., 1993b, Biosynthesis of human fibrinogen, J. Biol. Chem. 268:8919–8926.PubMedGoogle Scholar
  105. Huhtala, P., Humphries, M. J., McCarthy, J. B., Tremble, P. M., Werb, Z., and Damsky, C. H., 1995, Cooperative signaling by α5β1 and α4β1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin, J. Cell Biol. 129:867–879.PubMedGoogle Scholar
  106. Humphries, M. J., Akiyama, S. K., Komoriya, A., Olden, K., and Yamada, K. M., 1986, Identification of an alternatively spliced site in human plasma fibronectin that mediates cell type-specific adhesion, J. Cell Biol. 103:2637–2647.PubMedGoogle Scholar
  107. Humphries, M. J., Komoriya, A., Akiyama, S. K., Olden, K., and Yamada, K. M., 1987, Identification of two distinct regions of the type III connecting segment of human plasma fibronectin that promote cell type-specific adhesion, J. Biol. Chem. 262:6886–6892.PubMedGoogle Scholar
  108. Humphries, M. J., Akiyama, S. K., Komoriya, A., Olden, K., and Yamada, K. M., 1988, Neurite extension of chicken peripheral nervous system neurons on fibronectin: Relative importance of specific adhesion sites in the central cell-binding domain and the alternatively spliced type III connecting segment, J. Cell Biol. 106:1289–1297.PubMedGoogle Scholar
  109. Hynes, R. O., 1990, Fibronectins, Springer-Verlag, New York.Google Scholar
  110. Ingham, K. C., Landwehr, R., and Engel, J., 1985, Interaction of fibronectin with Clq and collagen. Effects of ionic strength and denaturation of the collagenous component, Eur. J. Biochem. 148:219–224.PubMedGoogle Scholar
  111. Ingham, K. C., Brew, S. A., and Migliorini, M. M., 1989, Further localization of the gelatin-binding determinants within fibronectin. Active fragments devoid of type II homologous repeat modules, J. Biol. Chem. 264:16977–16980.PubMedGoogle Scholar
  112. Iruela-Arispe, M. L., Bornstein, P., and Sage, H., 1991, Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro, Proc. Natl. Acad. Sci. USA 88:5026–5030.PubMedGoogle Scholar
  113. Iruela-Arispe, M. L., Liska, D. J., Sage, E. H., and Bornstein, P., 1993, Differential expression of thrombospondin 1, 2, and 3 during murine development, Dev. Dyn. 197:40–56.PubMedGoogle Scholar
  114. Ishikawa-Sakurai, M., and Hayashi, M., 1993, Two collagen-binding domains of vitronectin, Cell Struct. Funct. 18:253–259.PubMedGoogle Scholar
  115. Izumi, M., Shimo-Oka, T., Morishita, N., Ii, I., and Hayashi, M., 1988, Identification of the collagen-binding domain of vitronectin using monoclonal antibodies, Cell Struct. Funct. 13:217–225.PubMedGoogle Scholar
  116. Izumi, M., Yamada, K. M., and Hayashi, M., 1989, Vitronectin exists in two structurally and functionally distinct forms in human plasma, Biochim. Biophys. Acta 990:101–108.PubMedGoogle Scholar
  117. Izzard, C. S., Radinsky, R., and Culp, L. A., 1986, Substratum contacts and cytoskeletal reorganization of BALB/c 3T3 cells on a cell-binding fragment and heparin-binding fragments of plasma fibronectin, Exp. Cell Res. 165:320–336.PubMedGoogle Scholar
  118. Jenne, D., and Stanley, K. K., 1985, Molecular cloning of S-protein, a link between complement, coagulation and cell-substrate adhesion, EMBO J. 4:3153–3157.PubMedGoogle Scholar
  119. Jones, F. S., Hoffman, S., Cunningham, B. A., and Edelman, G. M., 1989, A detailed structural model of cytotactin: Protein homologies, alternative RNA splicing, and binding regions, Proc. Natl. Acad. Sci. USA 86:1905–1909.PubMedGoogle Scholar
  120. Joshi, P., Chung, C. Y., Aukhil, I., and Erickson, H. P., 1993, Endothelial cells adhere to the RGD domain and the fibrinogen-like terminal knob of tenascin, J. Cell Sci. 106:389–400.PubMedGoogle Scholar
  121. Kaesberg, P. R., Ershler, W. B., Esko, J. D., and Mosher, D. F., 1989, Chinese hamster ovary cell adhesion to human platelet thrombospondin is dependent on cell surface heparan sulfate proteoglycan, J. Clin. Invest. 83:994–1001.PubMedGoogle Scholar
  122. Kaminski, M., and McDonagh, J., 1983, Studies on the mechanism of thrombin interaction with fibrin, J. Biol. Chem. 258:10530–10535.PubMedGoogle Scholar
  123. Kanno, S., and Fukuda, Y., 1994, Fibronectin and tenascin in rat tracheal wound healing and their relation to cell proliferation, Pathol. Int. 44:96–106.PubMedGoogle Scholar
  124. Keijer, J., Ehrlich, H. J., Linders, M., Preissner, K. T., and Pannekoek, H., 1991, Vitronectin governs the interaction between plasminogen activator inhibitor 1 and tissue-type plasminogen activator, J. Biol. Chem. 266:10700–10707.PubMedGoogle Scholar
  125. Ketis, N. V., Lawler, J., Hoover, R. L., and Karnovsky, M. J., 1988, Effects of heat shock on the expression of thrombospondin by endothelial cells in culture, J. Cell Biol. 106:893–904.PubMedGoogle Scholar
  126. Keynes, R., and Cook, G., 1990, Cell-cell repulsion: Clues from the growth cone? Cell 62:609–610.PubMedGoogle Scholar
  127. Knox, P., 1984, Kinetics of cell spreading in the presence of different concentrations of serum or fibronectin-depleted serum, J. Cell Sci. 71:51–59.PubMedGoogle Scholar
  128. Knox, P., Crooks, S., and Rimmer, C. S., 1986, Role of fibronectin in the migration of fibroblasts into plasma clots, J. Cell Biol. 102:2318–2323.PubMedGoogle Scholar
  129. Knox, P., Crooks, S., Scaife, M. C., and Patel, S., 1987, Role of plasminogen, plasmin, and plasminogen activators in the migration of fibroblasts into plasma clots, J. Cell. Physiol. 132:501–508.PubMedGoogle Scholar
  130. Koli, K., Lohi, J., Hautanen, A., and Keski-Oja, J., 1991, Enhancement of vitronectin expression in human HepG2 hepatoma cells by transforming growth factor-beta 1, Eur. J. Biochem. 199:337–345.PubMedGoogle Scholar
  131. Komoriya, A., Green, L. J., Mervic, M., Yamada, S. S., Yamada, K. M., and Humphries, M. J., 1991, The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine-aspartic acid-valine, J. Biol. Chem. 266:15075–15079.PubMedGoogle Scholar
  132. Kornblihtt, A. R., Umezawa, K., Vibe-Pedersen, K., and Baralle, F. E., 1985, Primary structure of human fibronectin: Differential splicing may generate at least 10 polypeptides from a single gene, EMBO J. 4:1755–1759.PubMedGoogle Scholar
  133. Koukoulis, G. K., Gould, V. E., Bhattacharyya, A., Gould, J. E., Howeedy, A. A., and Virtanen, I., 1991, Tenascin in normal, reactive, hyperplastic, and neoplastic tissues: Biologic and pathologic implications, Hum. Pathol. 22:636–643.PubMedGoogle Scholar
  134. Kubota, K., Katayama, S., Matsuda, M., and Hayashi, M., 1988, Three types of vitronectin in human blood, Cell Struct. Funct. 13:123–128.PubMedGoogle Scholar
  135. Lahav, J., 1988, Thrombospondin inhibits adhesion of endothelial cells, Exp. Cell Res. 177:199–204.PubMedGoogle Scholar
  136. Lahav, J., 1993, The functions of thrombospondin and its involvement in physiology and pathophysiology, Biochim. Biophys. Acta 1182:1–14.PubMedGoogle Scholar
  137. Laherty, C. D., Gierman, T. M., and Dixit, V. M., 1989, Characterization of the promoter region of the human thrombospondin gene. DNA sequences within the first intron increase transcription, J. Biol. Chem. 264:11222–41227.PubMedGoogle Scholar
  138. Laiho, M., Saksela, O., and Keski-Oja, J., 1986, Transforming growth factor β alters plasminogen activator activity in human skin fibroblasts, Exp. Cell Res. 164:399–407.PubMedGoogle Scholar
  139. Lash, J. W., Linask, K. K., and Yamada, K. M., 1987, Synthetic peptides that mimic the adhesive recognition signal of fibronectin: Differential effects on cell-cell and cell-substratum adhesion in embryonic chick cells, Dev. Biol. 123:411–420.PubMedGoogle Scholar
  140. Lawler, J., 1986, The structural and functional properties of thrombospondin, Blood 67:1197–1209.PubMedGoogle Scholar
  141. Lawler, J., and Hynes, R. O., 1989, An integrin receptor on normal and thrombasthenic platelets that binds thrombospondin, Blood 74:2022–2027.PubMedGoogle Scholar
  142. Lawler, J., Weinstein, R., and Hynes, R. O., 1988, Cell attachment to thrombospondin: The role of Arg-Gly-Asp, calcium, and integrin receptors, J. Cell Biol. 107:2351–2361.PubMedGoogle Scholar
  143. Lawler, J., Duquette, M., Urry, L., McHenry, K., and Smith, T. F., 1993, The evolution of the thrombospondin gene family, J. Mol. Evol. 36:509–516.PubMedGoogle Scholar
  144. Leahy, D. J., Hendrickson, W. A., Aukhil, I., and Erickson, H. P., 1992, Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein, Science 258:987–991.PubMedGoogle Scholar
  145. Leavesley, D. I., Ferguson, G. D., Wayner, E. A., and Cheresh, D. A., 1992, Requirement of the integrin β3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen, J. Cell Biol. 117:1101–1107.PubMedGoogle Scholar
  146. Leung, L. L., Li, W. X., McGregor, J. L., Albrecht, G., and Howard, R. J., 1992, CD36 peptides enhance or inhibit CD36-thrombospondin binding. A two-step process of ligand-receptor interaction, J. Biol. Chem. 267:18244–18250.PubMedGoogle Scholar
  147. Li, W. X., Howard, R. J., and Leung, L. L., 1993, Identification of SVTCG in thrombospondin as the conformation-dependent, high affinity binding site for its receptor, CD36, J. Biol. Chem. 268:16179–16184.PubMedGoogle Scholar
  148. Lightner, V. A., and Erickson, H. P., 1990, Binding of hexabrachion (tenascin) to the extracellular matrix and substratum and its effect on cell adhesion, J. Cell Sci. 95:263–277.PubMedGoogle Scholar
  149. Limper, A. H., Quade, B. J., LaChance, R. M., Birkenmeier, T. M., Rangwala, T. S., and McDonald, J. A., 1991, Cell surface molecules that bind fibronectin’s matrix assembly domain, J. Biol. Chem. 26:9697–9702.Google Scholar
  150. Liu, C. Y., Nossel, H. L., and Kaplan, K. L., 1979, The binding of thrombin by fibrin, J. Biol. Chem. 254:10421–10425.PubMedGoogle Scholar
  151. Loftus, J. C., O’Toole, T. E., Plow, E. F., Glass, A., Frelinger, A. L., and Ginsberg, M. H., 1990, A β3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation, Science 249:915–918.PubMedGoogle Scholar
  152. Long, M. W., and Dixit, V. M., 1990, Thrombospondin functions as a cytoadhesion molecule for human hematopoietic progenitor cells, Blood 75:2311–2318.PubMedGoogle Scholar
  153. Loskutoff, D. J., and Edgington, T. S., 1977, Synthesis of a fibrinolytic activator and inhibitor by endothelial cells, Proc. Natl. Acad. Sci. USA 74:3903–3907.PubMedGoogle Scholar
  154. Lotz, M. M., Burdsal, C. A., Erickson, H. P., and McClay, D. R., 1989, Cell adhesion to fibronectin and tenascin: Quantitative measurements of initial binding and subsequent strengthening response, J. Cell Biol. 109:1795–1805.PubMedGoogle Scholar
  155. Luomanen, M., and Virtanen, I., 1993, Distribution of tenascin in healing incision, excision and laser wounds, J. Oral Pathol. Med. 22:41–45.PubMedGoogle Scholar
  156. Lyons-Giordano, B., Brinker, J. M., and Kefalides, N. A., 1989, Heparin increases mRNA levels of thrombospondin but not fibronectin in human vascular smooth muscle cells, Biochem. Biophys. Res. Commun. 162:1100–1104.PubMedGoogle Scholar
  157. Mackie, E. J., Halfter, W., and Liverani, D., 1988, Induction of tenascin in healing wounds, J. Cell Biol. 107:2757–2767.PubMedGoogle Scholar
  158. Main, A. L., Harvey, T. S., Baron, M., Boyd, J., and Campbell, I. D., 1992, The three-dimensional structure of the tenth type III module of fibronectin: An insight into RGD-mediated interactions, Cell 71:671–678.PubMedGoogle Scholar
  159. Majack, R. A., Goodman, L. V., and Dixit, V. M., 1988, Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation, J. Cell Biol. 106:415–422.PubMedGoogle Scholar
  160. Matsuka, Y. V., Medved, L. V., Brew, S. A., and Ingham, K. C., 1994, The NH2-terminal fibrin-binding site of fibronectin is formed by interacting fourth and fifth finger domains. Studies with recombinant finger fragments expressed in Escherichia coli, J. Biol. Chem. 269:9539–9546.PubMedGoogle Scholar
  161. McCarthy, J. B., Chelberg, M. K., Mickelson, D. J., and Furcht, L. T., 1988, Localization and chemical synthesis of fibronectin peptides with melanoma adhesion and heparin binding activities, Biochemistry 27:1380–1388.PubMedGoogle Scholar
  162. McCarthy, J. B., Skubitz, A. P., Qi, Z., Yi, X. Y., Mickelson, D. J., Klein, D. J., and Furcht, L. T., 1990, RGD-independent cell adhesion to the carboxy-terminal heparin-binding fragment of fibronectin involves heparin-dependent and-independent activities, J. Cell Biol. 110:777–787.PubMedGoogle Scholar
  163. McDonald, J. A., 1988, Extracellular matrix assembly, Annu. Rev. Cell Biol. 4:183–207.PubMedGoogle Scholar
  164. McDonald, J. A., and Kelley, D. G., 1980, Degradation of fibronectin by human leukocyte elastase. Release of biologically active fragments, J. Biol. Chem. 255:8848–8858.PubMedGoogle Scholar
  165. McDonald, J. A., Kelley, D. G., and Broekelmann, T. J., 1982, Role of fibronectin in collagen deposition: Fab1 antibodies to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix, J. Cell Biol. 92:485–492.PubMedGoogle Scholar
  166. McDonald, J. A., Quade, B. J., Broekelmann, T. J., LaChane, R., Forsman, K., Hasegawa, E., and Akiyama, S., 1987, Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in the assembly into fibroblast pericellular matrix, J. Biol. Chem. 262:2957–2967.PubMedGoogle Scholar
  167. McKee, P. A., Mattock, P., and Hill, R. L., 1970, Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin, Proc. Natl. Acad. Sci. USA 66:738–743.PubMedGoogle Scholar
  168. McKeown-Longo, P. J., and Mosher, D. F., 1985, Interaction of the 70,000-mol-wt amino fragment of fibronectin with the matrix-assembly receptor of fibroblasts, J. Cell Biol. 100:364–374.PubMedGoogle Scholar
  169. Michel, D., and Harmand, M. F., 1990, Fibrin seal in wound healing: Effect of thrombin and [Ca2+] on human skin fibroblast growth and collagen production, J. Dermatol. Sci. 1(5):325–33.PubMedGoogle Scholar
  170. Mirshahi, M., Azzarone, B., Soria, J., Mirshahi, F., and Soria, C., 1991, The role of fibroblasts in organization and degradation of a fibrin clot, J. Lab. Clin. Med. 117(4):274–81.PubMedGoogle Scholar
  171. Moon, K. Y., Shin, K. S., Song, W. K., Chung, C. H., Ha, D. B., and Kang, M. S., 1994, A candidate molecule for the matrix assembly receptor to the N-terminal 29 kDa fragment of fibronectin in chick myoblasts, J. Biol. Chem. 269:7651–7657.PubMedGoogle Scholar
  172. Morla, A., and Ruoslahti, E., 1992, A fibronectin self-assembly site involved in fibronectin matrix assembly: Reconstruction in a synthetic peptide, J. Cell Biol. 118:421–429.PubMedGoogle Scholar
  173. Mosesson, M. W., 1992, The roles of fibrinogen and fibrin in hemostasis and thrombosis, Sem. Hematol. 29:177–188.Google Scholar
  174. Mosesson, M. W., Siebenlist, K. R., Amrani, D. L., and DiOrio, J. P., 1989, Identification of covalently linked trimeric and tetrameric D domains in cross-linked fibrin, Proc. Natl. Acad. Sci. USA 86:1113.PubMedGoogle Scholar
  175. Mosher, D. F., 1989, Fibronectin, Academic Press, San Diego, CA.Google Scholar
  176. Mosher, D. F., 1990, Physiology of thrombospondin, Annu. Rev. Med. 41:85–97.PubMedGoogle Scholar
  177. Mosher, D. F., Sottile, J., Wu, C., and McDonald, J. A., 1992, Assembly of extracellular matrix, Curr. Opin. Cell Biol. 4:810–818.PubMedGoogle Scholar
  178. Murphy-Ullrich, J. E., and Hook, M., 1989, Thrombospondin modulates focal adhesions in endothelial cells, J. Cell Biol. 109:1309–1319.PubMedGoogle Scholar
  179. Murphy-Ullrich, J. E., Schultz-Cherry, S., and Hook, M., 1992, Transforming growth factor-beta complexes with thrombospondin, Mol. Biol. Cell 3:181–188.PubMedGoogle Scholar
  180. Murphy-Ullrich, J. E., Gurusiddappa, S., Frazier, W. A., and Hook, M., 1993, Heparin-binding peptides from thrombospondins 1 and 2 contain focal adhesion-labilizing activity, J. Biol. Chem. 268:26784–26789.PubMedGoogle Scholar
  181. Nagai, T., Yamakawa, N., Aota, S., Yamada, S. S., Akiyama, S. K., Olden, K., and Yamada, K. M., 1991, Monoclonal antibody characterization of two distant sites required for function of the central cell-binding domain of fibronectin in cell adhesion, cell migration, and matrix assembly, J. Cell Biol. 114:1295–1305.PubMedGoogle Scholar
  182. Nair, C. H., and Dhall, D. P., 1991, Studies on fibrin network structure: The effect of some plasma proteins, Thromb. Res. 61:315–325.PubMedGoogle Scholar
  183. Nicosia, R. F., and Tuszynski, G. P., 1994, Matrix-bound thrombospondin promotes angiogenesis in vitro, J. Cell Biol. 124:183–193.PubMedGoogle Scholar
  184. Nojima, Y., Humphries, M. J., Mould, A. P., Komoriya, A., Yamada, K. M., Schlossman, S. F., and Morimoto, C., 1990, VLA-4 mediates CD3-dependent CD4+ T cell activation via the CS1 alternatively spliced domain of fibronectin, J. Exp. Med. 172:1185–1192.PubMedGoogle Scholar
  185. Norenberg, U., Wille, H., Wolff, J. M., Frank, R., and Rathjen, F. G., 1992, The chicken neural extracellular matrix molecule restrictin: Similarity with EGF-, fibronectin type III-, and fibrinogen-like motifs, Neuron 8:849–863.PubMedGoogle Scholar
  186. Obara, M., Kang, M. S., and Yamada, K. M., 1988, Site-directed mutagenesis of the cell-binding domain of human fibronectin: Separable, synergistic sites mediate adhesive function, Cell 53:649–657.PubMedGoogle Scholar
  187. Olden, K., Pratt, R. M., and Yamada, K. M., 1979, Role of carbohydrate in biological function of the adhesive glycoprotein fibronectin, Proc. Natl. Acad. Sci. USA 76:3343–3347.PubMedGoogle Scholar
  188. O’Shea, K. S., and Dixit, V. M., 1988, Unique distribution of the extracellular matrix component thrombospondin in the developing mouse embryo, J. Cell Biol. 107:2737–2748.PubMedGoogle Scholar
  189. Owens, R. J., and Baralle, F. E., 1986, Mapping the collagen-binding site of human fibronectin by expression in Escherichia coli, EMBO J. 5:2825–2830.PubMedGoogle Scholar
  190. Oyama, F., Murata, Y., Suganuma, N., Kimura, T., Titani, K., and Sekiguchi, K., 1989, Patterns of alternative splicing of fibronectin pre-mRNA in human adult and fetal tissues, Biochemistry 28:1428–1434.PubMedGoogle Scholar
  191. Pardes, J. B., Tonnesen, M. G., Falanga, V., Eaglestein, W. H., and Clark, R. A. F., 1990, Skin capillaries surrounding chronic venous ulcers demonstrate smooth muscle hyperplasia and increased laminin and type IV collagen, Clin. Res. 38:628A.Google Scholar
  192. Patel, R. S., Odermatt, E., Schwarzbauer, J. E., and Hynes, R. O., 1987, Organization of the fibronectin gene provides evidence for exon shuffling during evolution, EMBO J. 6:2565–2572.PubMedGoogle Scholar
  193. Pearson, C. A., Pearson, D., Shibahara, S., Hofsteenge, J., and Chiquet-Ehrismann, R., 1988, Tenascin: cDNA cloning and induction by TGF-beta, EMBO J. 7:2977–2982.PubMedGoogle Scholar
  194. Penttinen, R. P., Kobayashi, S., and Bornstein, P., 1988, Transforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability, Proc. Natl. Acad. Sci. USA 85:1105–1108.PubMedGoogle Scholar
  195. Pesciotta-Peters, D. M., Portz, L. M., Fullenwider, J., and Mosher, D. F., 1990, Co-assembly of plasma and cellular fibronectins into fibrils in human fibroblast cultures, J. Cell Biol. 111:249–256.Google Scholar
  196. Petersen, T. E., Skorstengaard, K., and Vibe-Pedersen, K., 1989, Primary structure of fibronectin, in: Fibronectin (D. F. Mosher, ed.), pp. 1–24, Academic Press, New York.Google Scholar
  197. Pierschbacher, M. D., and Ruoslahti, E., 1984, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature 309:30–33.PubMedGoogle Scholar
  198. Pierschbacher, M. D., and Ruoslahti, E., 1987, Influence of stereochemistry of the sequence arg-gly-asp-xaa on binding specificity in cell adhesion, J. Biol. Chem. 262:17294–11298.PubMedGoogle Scholar
  199. Pisano, J. J., Finlayson, J. S., and Peyton, M. P., 1968, Cross-link in fibrin polymerized by factor XIII: ∈-(γ-glutamyl)lysine, Science 160:892–893.PubMedGoogle Scholar
  200. Preissner, K. T., and Jenne, D., 1991, Vitronectins. A new molecular connection in haemostasis, Thromb. Haemost. 66:189–194.PubMedGoogle Scholar
  201. Preissner, K. T., and Muller-Berghaus, G., 1987, Neutralization and binding of heparin by S protein/vitronectin in the inhibition of factor Xa by antithrombin III. Involvement of an inducible heparin-binding domain of S protein/vitronectin, J. Biol. Chem. 262:12247–12253.PubMedGoogle Scholar
  202. Prieto, A. L., Andersson-Fisone, C., and Crossin, K. L., 1992, Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin, J. Cell Biol. 119:663–678.PubMedGoogle Scholar
  203. Prochownik, E. V., O’Rourke, K., and Dixit, V. M., 1989, Expression and analysis of COOH-terminal deletions of the human thrombospondin molecule, J. Cell Biol. 109:843–852.PubMedGoogle Scholar
  204. Quax, P. H. A., Pedersen, N., Masucci, M. T., Weening-Werhoeff, E. J. D., Dano, K., Verheeijen, J., and Blasi, F., 1991, Complementation between urokinase-producing and receptor-producing cells in extracellular matrix degradations, Cell Regul. 2:793–803.PubMedGoogle Scholar
  205. Reed, M. J., Puolakkainen, P., Lane, T. F., Dickerson, D., Bornstein, P., and Sage, E. H., 1993, Differential expression of SPARC and thrombospondin 1 in wound repair: Immunolocalization and in situ hybridization, J. Histochem. Cytochem. 41:1467–1477.PubMedGoogle Scholar
  206. Rettig, W. J., Erickson, H. P., Albino, A. P., and Garin-Chesa, P., 1994, Induction of human tenascin (neuronectin) by growth factors and cytokines: Cell type-specific signals and signalling pathways, J. Cell Sci. 107:487–497.PubMedGoogle Scholar
  207. Riou, J. F., Shi, D. L., Chiquet, M., and Boucaut, J.-C., 1990, Exogenous tenascin inhibits mesodermal cell migration during amphibian gastrulation, Dev. Biol. 137:305–317.PubMedGoogle Scholar
  208. Robbins, K. C., Summaria, L., Hseih, B., and Shah, R., 1967, The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin, J. Biol. Chem. 242:2333–2342.PubMedGoogle Scholar
  209. Roberts, D. D., and Ginsburg, V., 1988, Sulfated glycolipids and cell adhesion, Arch. Biochem. Biophys. 267:405–415.PubMedGoogle Scholar
  210. Saga, Y., Yagi, T., Ikawa, Y., Sakakura, T., and Aizawa, S., 1992, Mice develop normally without tenascin, Genes Dev. 6:1821–1831.PubMedGoogle Scholar
  211. Sakata, Y., and Aoki, N., 1980, Cross-linking of α2-plasma inhibitor to fibrin by fibrin-stabilizing factor, J. Clin. Invest. 65:290–297.PubMedGoogle Scholar
  212. Salonen, E.-M., Vaheri, A., Pollanen, J., Stephens, R., Andreasen, P., Mayer, M., Dano, K., Gailit, J., and Ruoslahti, E., 1989, Interaction of plasminogen activator inhibitor (PAI-1) with vitronectin, J. Biol. Chem. 264:6339–6343.PubMedGoogle Scholar
  213. Savill, J., Hogg, N., Ren, Y., and Haslett, C., 1992, Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis, J. Clin. Invest. 90:1513–1522.PubMedGoogle Scholar
  214. Schultz-Cherry, S., and Murphy-Ullrich, J. E., 1993, Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism, J. Cell Biol. 122:923–932.PubMedGoogle Scholar
  215. Seiffert, D., Poenninger, J., and Binder, B. R., 1993, Organization of the gene encoding mouse vitronectin, Gene 134:303–304.PubMedGoogle Scholar
  216. Shainoff, J. R., Urbanic, D. A., and DiBello, P. M., 1991, Immunoelectrophoretic characterization of the cross-linking of fibrinogen and fibrin by factor XIIIa and tissue transglutaminase, J. Biol. Chem. 166:6429–6437.Google Scholar
  217. Siebenlist, K. R., and Mosesson, M. W., 1992, Factors affecting γ-chain multimer formation in cross-linked fibrin, Biochemistry 31:936.PubMedGoogle Scholar
  218. Siebenlist, K. R., DiOrio, J. P., Budzynski, A. Z., and Mosesson, M. W., 1990, The polymerization and thrombin-binding properties of des-(Bβ1–42)-fibrin, J. Biol. Chem. 265:18650–18655.PubMedGoogle Scholar
  219. Silverstein, R. L., Baird, M., Lo, S. K., and Yesner, L. M., 1992, Sense and antisense cDNA transfection of CD36 (glycoprotein IV) in melanoma cells. Role of CD36 as a thrombospondin receptor, J. Biol. Chem. 267:16607–16612.PubMedGoogle Scholar
  220. Singer, I. I., Kawka, D. W., Scott, S., Mumford, R. A., and Lark, M. W., 1987, The fibronectin cell attachment sequence Arg-Gly-Asp-Ser promotes focal contact formation during early fibroblast attachment and spreading, J. Cell Biol. 104:573–584.PubMedGoogle Scholar
  221. Singer, I. I., Scott, S., Kawka, D. W., Kazazis, D. M., Gailit, J., and Ruoslahti, E., 1988, Cell surface distribution of fibronectin and vitronectin receptors depends on substrate composition and extracellular matrix accumulation, J. Cell Biol. 106:2171–2182.PubMedGoogle Scholar
  222. Sipes, J. M., Guo, N., Negre, E., Vogel, T., Krutzsch, H. C., and Roberts, D. D., 1993, Inhibition of fibronectin binding and fibronectin-mediated cell adhesion to collagen by a peptide from the second type I repeat of thrombospondin, J. Cell Biol. 121:469–477.PubMedGoogle Scholar
  223. Sjoberg, B., Eriksson, M., Osterlund, E., Pap, S., and Osterlund, K., 1989, Solution structure of human plasma fibronectin as a function of NaCl concentration determined by small-angle X-ray scattering, Eur. Biophys. J. 17:5–11.PubMedGoogle Scholar
  224. Somers, C. E., and Mosher, D. F., 1993, Protein kinase C modulation of fibronectin matrix assembly, J. Biol. Chem. 268:22277–22280.PubMedGoogle Scholar
  225. Sottile, J., and Wiley, S., 1994, Assembly of amino-terminal fibronectin dimers into the extracellular matrix, J. Biol. Chem. 269:17192–17198.PubMedGoogle Scholar
  226. Sottile, J., Schwarzbauer, J., Selegue, J., and Mosher, D. F., 1991, Five type I modules of fibronectin form a functional unit that binds to fibroblasts and Staphylococcus aureus, J. Biol. Chem. 266:12840–12843.PubMedGoogle Scholar
  227. Spiegel, S., Yamada, K. M., Horn, B. E., Moss, J., and Fishman, P. H., 1986, Fibrillar organization of fibronectin is expressed coordinately with cell surface gangliosides in a variant murine fibroblast, J. Cell Biol. 102:1898–1906.PubMedGoogle Scholar
  228. Spring, J., Beck, K., and Chiquet-Ehrismann, R., 1989, Two contrary functions of tenascin: Dissection of the active sites by recombinant tenascin fragments, Cell 59:325–334.PubMedGoogle Scholar
  229. Srebrow, A., Muro, A. F., Werbajh, S., Sharp, P. A., and Kornblihtt, A. R., 1993, The CRE-binding factor ATF-2 facilitates the occupation of the CCAAT box in the fibronectin gene promoter, FEBS Lett. 327:25–28.PubMedGoogle Scholar
  230. Summaria, L., Hsieh, B., Groskopf, W. R., and Robbins, K. C., 1967, The isolation and characterization of the S-carboxymethyl (light) chain derivative of human plasmin. The location of the active site on the light chain, J. Biol Chem. 242:5046–5052.PubMedGoogle Scholar
  231. Suzuki, S., Oldberg, A., Hayman, E. G., Pierschbacher, M. D., and Ruoslahti, E., 1985, Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin, EMBO J. 4:2519–2524.PubMedGoogle Scholar
  232. Taylor, H. C., Lightner, V. A., Beyer, W. F., McCaslin, D., Briscoe, G., and Erickson, H. P., 1989, Biochemical and structural studies of tenascin/hexabrachion proteins, J. Cell. Biochem. 41:71–90.PubMedGoogle Scholar
  233. Thompson, L. K., Horowitz, P. M., Bentley, K. L., Thomas, D. D., Alderete, J. F., and Klebe, R. J., 1986, Localization of the ganglioside-binding site of fibronectin, J. Biol. Chem. 261:5209–5214.PubMedGoogle Scholar
  234. Thorsen, S., Glas-Greenwalt, P., and Astrup, T., 1972, Difference in the binding to fibrin of urokinase and tissue plasminogen activator, Thromb. Pathol. Haemost. 28:65–74.Google Scholar
  235. Tolsma, S. S., Volpert, O. V., Good, D. J., Frazier, W. A., Polverini, P. J., and Bouck, N., 1993, Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity, J. Cell Biol. 122:497–511.PubMedGoogle Scholar
  236. Tomasini, B. R., and Mosher, D. F., 1991, Vitronectin, Prog. Hemost. Thromb. 10:269–305.PubMedGoogle Scholar
  237. Tuan, T. L., and Grinnell, F., 1989, Fibronectin and fibrinolysis are not required for fibrin gel contraction by human skin fibroblasts, J. Cell. Physiol. 140(3):577–583.PubMedGoogle Scholar
  238. Tucker, R. P., Spring, J., Baumgartner, S., Martin, D., Hagios, C., Poss, P. M., and Chiquet-Ehrismann, R., 1994, Novel tenascin variants with a distinctive pattern of expression in the avian embryo, Development 120:637–647.PubMedGoogle Scholar
  239. Tuckwell, D. S., Brass, A., and Humphries, M. J., 1992, Homology modelling of integrin EF-hands. Evidence for widespread use of a conserved cation-binding site, Biochem. J. 285:325–331.PubMedGoogle Scholar
  240. Tuszynski, G. P., Rothman, V. L., Deutch, A. H., Hamilton, B. K., and Eyal, J., 1992, Biological activities of peptides and peptide analogues derived from common sequences present in thrombospondin, properdin, and malarial proteins, J. Cell Biol. 116:209–217.PubMedGoogle Scholar
  241. Tuszynski, G. P., Rothman, V. L., Papale, M., Hamilton, B. K., and Eyal, J., 1993, Identification and characterization of a tumor cell receptor for CSVTCG, a thrombospondin adhesive domain, J. Cell Biol. 120:513–521.PubMedGoogle Scholar
  242. Varani, J., Nickoloff, B. J., Riser, B. L., Mitra, R. S., O’Rourke, K., and Dixit, V. M., 1988, Thrombospondin-induced adhesion of human keratinocytes, J. Clin. Invest. 81:1537–1544.PubMedGoogle Scholar
  243. Vartio, T., Laitinen, L., Nrvnen, O., Cutolo, M., Thornell, L. E., Zardi, L., and Virtanen, I., 1987, Differential expression of the ED sequence-containing form of cellular fibronectin in embryonic and adult human tissues, J. Cell Sci. 88:419–430.PubMedGoogle Scholar
  244. Veklich, Y. I., Gorkun, O. V., Medved, I. V., Nieuwenhuizen, W., and Weisel, J. W., 1993, Carboxyl-terminal portions of the a chains of fibrinogen and fibrin, J. Biol. Chem. 268:13577–13585.PubMedGoogle Scholar
  245. Vogel, T., Guo, N. H., Krutzsch, H. C., Blake, D. A., Hartman, J., Mendelovitz, S., Panet, A., and Roberts, D. D., 1993, Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin, J. Cell Biochem. 53:74–84.PubMedGoogle Scholar
  246. Wagner, O. F., Nicolosa, G., and Bachmann, F., 1989, Plasminogen activator inhibitor 1: Development of a radioimmunoassay and observations on its plasma concentration during venous occlusion and after platelet aggregation, Blood 70:1645–1653.Google Scholar
  247. Wehrle-Haller, B., and Chiquet, M., 1993, Dual function of tenascin: Simultaneous promotion of neurite growth and inhibition of glial migration, J. Cell Sci. 106:597–610.PubMedGoogle Scholar
  248. Werb, Z., Tremble, P. M., Behrendtsen, O., Crowley, E., and Damsky, C. H., 1989, Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression, J. Cell Biol. 109:877–889.PubMedGoogle Scholar
  249. Whitby, D. J., and Ferguson, M. W., 1991, The extracellular matrix of lip wounds in fetal, neonatal and adult mice, Development 112:651–668.PubMedGoogle Scholar
  250. Whitby, D. J., Longaker, M. T., Harrison, M. R., Adzick, N. S., and Ferguson, M. W., 1991, Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin, J. Cell Sci. 99:583–586.PubMedGoogle Scholar
  251. Wikner, N. E., and Clark, R. A. F., 1988, Chemotactic fragments of fibronectin, Methods Enzymol. 162:214–222.PubMedGoogle Scholar
  252. Williams, M. J., Phan, I., Harvey, T. S., Rostagno, A., Gold, L. I., and Campbell, I. D., 1994, Solution structure of a pair of fibronectin type 1 modules with fibrin binding activity, J. Mol. Biol. 235:1302–1311.PubMedGoogle Scholar
  253. Wilner, G. D., Danitz, M. P., Mudd, M. S., Hsieh, K.-H., and Fenton II, J. W., 1981, Selective immobilization of α-thrombin by surface-bound fibrin, J. Lab. Clin. Med. 97:403–411.PubMedGoogle Scholar
  254. Wolff, C., and Lai, C. S., 1989, Fluorescence energy transfer detects changes in fibronectin structure upon surface binding, Arch. Biochem. Biophys. 268:536–545.PubMedGoogle Scholar
  255. Woods, A., and Couchman, J. R., 1992, Protein kinase C involvement in focal adhesion formation, J. Cell Sci. 101:277–290.PubMedGoogle Scholar
  256. Woods, A., Couchman, J. R., Johansson, S., and Hook, M., 1986, Adhesion and cytoskeletal organisation of fibroblasts in response to fibronectin fragments, EMBO J. 5:665–670.PubMedGoogle Scholar
  257. Woods, A., McCarthy, J. B., Furcht, L. T., and Couchman, J. R., 1993, A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation, Mol. Biol. Cell 4:605–613.PubMedGoogle Scholar
  258. Wu, C., Bauer, J. S., Juliano, R. L., and McDonald, J. A., 1993, The α5β1 integrin fibronectin receptor, but not the α5 cytoplasmic domain, functions in an early and essential step in fibronectin matrix assembly, J. Biol. Chem. 268:21883–21888.PubMedGoogle Scholar
  259. Wysocki, A. B., Staiano-Coico, L., and Grinnell, F., 1993, Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9, J. Invest. Dermatol. 101:64–68.PubMedGoogle Scholar
  260. Yabkowitz, R., Dixit, V. M., Guo, N., Roberts, D. D., and Shimizu, Y., 1993, Activated T-cell adhesion to thrombospondin is mediated by the α4β1 (VLA-4) and α5β1 (VLA-5) integrins, J. Immunol. 151:149–158.PubMedGoogle Scholar
  261. Yamada, K. M., 1989, Fibronectin structure, functions and receptors, Curr. Opin. Cell Biol. 1:956–963.PubMedGoogle Scholar
  262. Yamada, K. M., and Kennedy, D. W., 1984, Dualistic nature of adhesive protein function: Fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function, J. Cell Biol. 99:29–36.PubMedGoogle Scholar
  263. Yamada, K. M., Kennedy, D. W., Kimata, K., and Pratt, R. M., 1980, Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments, J. Biol. Chem. 255:6055–6063.PubMedGoogle Scholar
  264. Yatohgo, T., Izumi, M., Kashiwagi, H., and Hayashi, M., 1988, Novel purification of vitronectin from human plasma by heparin affinity chromatography, Cell Struct. Funct. 13:281–292.PubMedGoogle Scholar
  265. Yokosaki, Y., Palmer, E. L., Prieto, A. L., Crossin, K. L., Bourdon, M. A., Pytela, R., and Sheppard, D., 1994, The integrin α9β1 mediates cell attachment to a non-RGD site in the third fibronectin type III repeat of tenascin, J. Biol. Chem. 269:26691–26696.PubMedGoogle Scholar
  266. Zhang, Z., Morla, A. O., Vuori, K., Bauer, J. S., Juliano, R. L., and Ruoslahti, E., 1993, The αvβ1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin, J. Cell Biol. 122:235–242.PubMedGoogle Scholar
  267. Zhao, Y., and Sane, D. C., 1993, The cell attachment and spreading activity of vitronectin is dependent on the Arg-Gly-Asp sequence. Analysis by construction of RGD and domain deletion mutants, Biochem. Biophys. Res. Commun. 192:575–582.PubMedGoogle Scholar
  268. Zhu, B. C., and Laine, R. A., 1985, Polylactosamine glycosylation on human fetal placental fibronectin weakens the binding affinity of fibronectin to gelatin, J. Biol. Chem. 260:4041–4045.PubMedGoogle Scholar
  269. Zisch, A. H., D’Alessandri, L., Ranscht, B., Falchetto, R., Winterhalter, K. H., and Vaughan, L., 1992, Neuronal cell adhesion molecule contactin/F11 binds to tenascin via its immunoglobulin-like domains, J. Cell Biol. 119:203–213.PubMedGoogle Scholar
  270. Zlatopolsky, A. D., Chubukina, A. N., and Berman, A. E., 1992, Heparin-binding fibronectin fragments containing cell-binding domains and devoid of hep2 and gelatin-binding domains promote human embryo fibroblast proliferation, Biochem. Biophys. Res. Commun. 183:383–389.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Kenneth M. Yamada
    • 1
  • Richard A. F. Clark
    • 2
  1. 1.Laboratory of Developmental Biology, National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA
  2. 2.Department of Dermatology, Health Sciences CenterState University of New York at Stony BrookStony BrookUSA

Personalised recommendations