Advertisement

Fetal Wound Healing and the Development of Antiscarring Therapies for Adult Wound Healing

  • R. L. McCallion
  • M. W. J. Ferguson

Abstract

Scarring is an important clinical problem, often resulting in adverse effects on function and growth as well as an undesirable cosmetic appearance. Adult wound healing is characterized by acute inflammation, contraction, and collagen deposition, responses likely to have been optimized for rapid wound closure and minimizing infection. Similar processes may also result in fibrotic diseases that are common in many areas of medicine and surgery. Abdominal surgery often leads to intraperitoneal fibrous adhesions, while fibrotic retinopathy in diabetes, pulmonary fibrosis, and hepatic cirrhosis are significant medical problems. A major medical objective is therefore the reduction, and ideally the prevention, of scarring.

Keywords

Hyaluronic Acid Amniotic Fluid Wound Repair Wound Contraction Fetal Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abatangelo, G., Martelli, M., and Vecchia, P., 1983, Healing of hyaluronic acid enriched wounds: Histologi-cal observations, J. Surg. Res. 35:410–416.PubMedGoogle Scholar
  2. Adzick, N. S., Outwater, K. M., Harrison, M. R., Davies, P., Glick, P. L., deLorimer, A. A., and Reid, L. M., 1985a, Correction of congenital diaphragmatic hernia in utero. IV An early gestational age fetal lamb model for pulmonary vascular morphometric analysis, J. Pediatr. Surg. 20:673–680.PubMedGoogle Scholar
  3. Adzick, N. S., Harrison, M. R., Glick, P. L., Beckstead, J. H., Villa, R. L., Schevenstuhl, H., and Goodson, W. H., 1985b, Comparison of fetal, newborn and adult wound healing by histologic, enzyme-histochemical and hydroxyproline determination, J. Pediatr. Surg. 20:315–319.PubMedGoogle Scholar
  4. Andres, J. L., Stanley, K., Cheifetz, S., and Massague, J., 1989, Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor, J. Cell Biol. 109:3137–3145.PubMedGoogle Scholar
  5. Andres, J. L., Ronnstrand, L., Cheiftz, S., and Massague, J., 1991, Purification of the TGFβ binding proteoglycan betaglycan, J. Biol. Chem. 266:23282–23287.PubMedGoogle Scholar
  6. Antoniades, H. N., Galanolpoulos, T. G., Neville-Golden, J., Kiritsy, C. P., and Lynch, S. E., 1991, Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF mRNAs in skin epithelial cells and PDGF mRNAs in connective tissue fibroblasts, Proc. Natl. Acad. Sci. USA 88:565–569.PubMedGoogle Scholar
  7. Armstrong, J. R., and Ferguson, M. W. J., 1995, Ontogeny of the skin and the transition from scar-free to scarring phenotype during wound healing in the pouch young of a marsupial Monodelphis domestica, Dev. Biol. 169(1):242–260.PubMedGoogle Scholar
  8. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., and Seed, B., 1990, CD44 is the principle cell surface receptor for hyaluronate, Cell 61:1303–1313.PubMedGoogle Scholar
  9. Attisano, L., Wrana, J. L., Lopes-Casillas, F., and Massague, J., 1994, TGFβ receptors and actions, Biochim. Biophys. Acta. 1222:71–80.PubMedGoogle Scholar
  10. Balazs, E. A., and Darzynkiewicz, Z., 1973, The effect of hyaluronic acid on fibroblasts, mononuclear phagocytes and lymphocytes, in: Biology of the Fibroblast (E. Kulonen and J. Pikkarainen, eds.), pp. 237–252, Academic Press, New York.Google Scholar
  11. Balza, E., Borsi, L., Allemanni, G., and Zardi, L., 1988, Transforming growth factor-β regulates the levels of different fibronectin isoforms in normal human cultured fibroblasts, FEBS Lett. 228:42–44.PubMedGoogle Scholar
  12. Bertolami, C. N., and Dunoff, R. B., 1978, Hyaluronidase activity during open wound healing in rabbits: A preliminary report, J. Surg. Res. 25:256–259.PubMedGoogle Scholar
  13. Bianco, P., Fisher, L. W., Young, M. F., Termine, J. D., and Robey, P. G., 1990, Expression and localisation of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues, J. Histochem. Cytochem. 38:1549–1563.PubMedGoogle Scholar
  14. Birk, D. E., Fitch, J. M., Barbiaz, J. P., and Linsenmayer, T. F., 1988, Collagen type I and type V are present in the same fibril in the avian corneal stroma, J. Cell Biol. 106:999–1008.PubMedGoogle Scholar
  15. Birk, D. E., Fitch, J. M., Babiarz, J. R., Doane, K. J., and Linsenmayer, T. M., 1990, Collagen fibrillogenesis in vitro: Interaction of types I and V collagen regulates fibril diameter, J. Cell Sci. 95:649–657.PubMedGoogle Scholar
  16. Bonner-Frazer, M., 1985, Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion, J. Cell Biol. 101:610–617.Google Scholar
  17. Boon, L., Manicourt, D., Marbaix, E., Vandenabeele, M., and Vanwijck, R., 1992, A comparative analysis of surgical cleft lip corrected in utero and in neonates, Plast. Reconstr. Surg. 89:11–17.PubMedGoogle Scholar
  18. Border, W. A., and Ruoshlati, E., 1992, Transforming growth factor-β in disease: The dark side of tissue repair, J. Clin. Invest. 90:1–5.PubMedGoogle Scholar
  19. Border, W. A., Okuda, S., Languino, L. R., Sporn, M. B., Ruoslahti, E., 1990a, Suppression of experimental glomerulophritis by anti-serum against transforming growth factor-β, Nature 346:371–374.PubMedGoogle Scholar
  20. Border, W. A., Okuda, S., Languino, L. R., and Ruoslahti, E., 1990b, Transforming growth factor beta regulates production of proteoglycans by mesangial cells, Kidney Int. 37:689–695.PubMedGoogle Scholar
  21. Boucaut, J. C., Darriebere, J., Boulekbache, H., and Thiery, J. P., 1984, Prevention of gastrulation but not neuralation by antibodies to fibronectin in amphibian embryos, Nature 307:364–367.PubMedGoogle Scholar
  22. Bowersox, J. C., and Sorgente, N., 1982, Chemotaxis of aortic endothelial cells in response to fibronectin, Cancer Res. 42:2547–2551.PubMedGoogle Scholar
  23. Brecht, M., Mayer, U., and Schlosser, E., 1986, Increased hyaluronic acid synthesis is required for fibroblast detachment and mitosis, Biochem. J. 239:445–450.PubMedGoogle Scholar
  24. Broeklmann, T. J., Limper, A. M., Colby, T. V., and McDonald, J. A., 1991, Transforming growth factor β1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis, Proc. Natl. Acad. Sci. USA 88:6642–6646.Google Scholar
  25. Brown, G. L., Curtsinger, L., Brightwell, J. R., Ackerman, D. M., Tobin, G. R., Polk, H. C., George-Nascimento, C., Valenzuela, P., and Schultz, G. S., 1986, Enhancement of epidermal regeneration by biosynthetic epidermal growth factor, J. Exp. Med. 163:1319–1324.PubMedGoogle Scholar
  26. Burd, D. A. R., Siebert, J. W., Ehrlich, H. P., and Garg, H. G., 1989, Human skin and post-burn hyaluronan: Demonstration of the association with collagen and other proteins, Matrix 9:322–327.PubMedGoogle Scholar
  27. Burd, D. A. R., Longaker, M. T., Adzick, N. S., Harrison, M. R., and Erlich, H. P., 1990, Fetal wound healing in a large animal model: The deposition of collagen is confirmed, Br. J. Plast. Surg. 43:571–577.PubMedGoogle Scholar
  28. Burd, D. A. R., Longaker, M. T., Rittenberg, T., Adzick, N. S., Harrison, M. R., and Erlich, H. P., 1991a, In vitro foetal wound contraction: The effect of amniotic fluid, Br. J. Plast. Surg. 44:302–305.PubMedGoogle Scholar
  29. Burd, D. A. R., Greco, R. M., Regauer, S., Longaker, M. T., Siebert, J. W., and Garg, H. G., 1991b, Hyaluronan and wound healing: A new perspective, Br. J. Plast. Surg. 44:579–584.PubMedGoogle Scholar
  30. Burrington, J. D., 1971, Wound healing in the fetal lamb, J. Pediatr. Surg. 6:523–528.PubMedGoogle Scholar
  31. Chamberlain, J., and Ferguson, M. W. J., 1995, Use of antisense oligonucleotides to TGFβ in adult wound repair, J. Invest. Dermatol., in press.Google Scholar
  32. Chamberlain, J., Shah, M., and Ferguson, M. W. J., 1995, The effect of suramin on healing adult rodent dermal wounds, J. Anat. 186:87–96.PubMedGoogle Scholar
  33. Chandrakasan, G., Rutka, J., and Stern, R., 1986, Hyaluronic acid stimulates collagen synthesis and levels of type III collagen in cultures of human fibroblasts (Abstract), J. Cell Biol. 103:252.Google Scholar
  34. Cheng, C. Y., Martin, D. E., Leggett, C. G., Reece, M. C., and Reese, A. C., 1988, Fibronectin enhances healing of excised wounds in rats, Arch. Dermatol. 124:221–225.PubMedGoogle Scholar
  35. Chiquet-Ehrismann, R., 1990, What distinguishes tenascin from fibronectin? FASEB J. 4:2598–2604.PubMedGoogle Scholar
  36. Chiquet-Ehrismann, R., Kalla, P., Pearson, C. A., Beck, K., and Chiquet, M., 1988, Tenascin interferes with fibronectin action, Cell 53:383–390.PubMedGoogle Scholar
  37. Chiu, E. S., Longaker, M. T., and Adzick, N. S., Stern, M., Harrison, M. P., and Stern, R., 1990, Hyaluronic acid patterns in fetal and adult wound fluid, Surg. Forum 41:636–639.Google Scholar
  38. Clark, R. A. F., 1988, Potential roles of fibronectin in cutaneous wound repair, Arch. Dermatol. 124: 201–206.PubMedGoogle Scholar
  39. Clark, R. A. F., 1993, Regulation of fibroplasia in cutaneous wound repair, Am. J. Med. Sci. 306:42–48.PubMedGoogle Scholar
  40. Clark, R. A. F., Winn, H. J., Dvorak, H. F., and Colvin, R. B., 1983, Fibronectin beneath re-epithelialising epidermis in vivo, sources and significance, J. Invest. Dermatol. 80:26–30S.Google Scholar
  41. Clark, R. A. F., Nielsen, L. D., Welch, M. P., and McPherson, J. M., 1995, Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGFβ, J. Cell Sci. 108:1251–1261.PubMedGoogle Scholar
  42. Damon, D. H., Lobb, R. R., D’Amore, P. A., and Wagner, J. A., 1989, Heparin potentiates the action of acidic fibroblast growth factor by prolonging its biological half life, J. Cell Physiol. 138:221–226.PubMedGoogle Scholar
  43. Daniloff, J. K., Crossin, K.L., Pincon-Raymond, M., Murawsky, M., Rieger, F., and Edelman, G. M., 1989, Expression of cytotactin in the normal regenerating neuromuscular system, J. Cell Biol. 108:625–635.PubMedGoogle Scholar
  44. Dennis, P. A., and Rifkin, D. B., 1991, Cellular activation of latent TGFβ requires binding to the cation-independent M6P/IGF II receptor, Proc. Natl. Acad. Sci. USA 88:580–584.PubMedGoogle Scholar
  45. Depalma, R. L., Krummel, T. M., Durham, L. A., Michna, B. A., Thomas, B. L., Nelson, J. M., and Diegelmann, R. F., 1989, Characterisation and quantitation of wound matrix in the fetal rabbit, Matrix 9:224–231.PubMedGoogle Scholar
  46. Derynck, R., 1994, TGFβ receptor-mediated signalling, Trends Biochem. Sci. 19:548–553.PubMedGoogle Scholar
  47. Desmouliere, A., Redard, M., Darby, I., and Gabbiani, G., 1995, Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar, Am. J. Pathol. 146:56–66.PubMedGoogle Scholar
  48. Dillon, P. W., Keefer, K., Blackburn, J. H., Houghton, P. E., and Krummel, T. M., 1994, The extracellular matrix of the fetal wound: Hyaluronic acid controls lymphocyte adhesion, J. Surg. Res. 57:170–173.PubMedGoogle Scholar
  49. Donaldson, D. J., and Mahan, J. T., 1983, Fibrinogen and fibronectin as substrates for epidermal cell migration during wound closure, J. Cell Sci. 62:117–127.PubMedGoogle Scholar
  50. Duband, J. L., Darriebere, T., Boucaut, J. C., Boulekbache, H., and Thiery, J. P., 1987, Regulation of development by the extracellular matrix, in: Cell Membranes: Methods and Reviews (E. L. Elson, W. A. Frazier, and L. Glaser, eds.), pp. 1–53, Plenum Press, New York.Google Scholar
  51. Duband, J. L., Dufor, S., and Thiery, J. P., 1988, Extracellular matrix-cytoskeleton interactions in locomoting embryonic cells, Protoplasma 145:112–119.Google Scholar
  52. Dunphy, J. E., and Upuda, K. N., 1955, Chemical and histochemical sequences in the normal healing of wounds, N. Engl. J. Med. 235:847–851.Google Scholar
  53. Durham, L. A., Krummel, T. M., Cawthorn, J. W., Thomas, B. L., and Diegelmann, R. F., 1989, Analysis of transforming growth factor beta receptor binding in embryonic, fetal and adult rabbit fibroblasts, J. Pediatr. Surg. 24:784–788.PubMedGoogle Scholar
  54. Elenius, K., Vainio, S., Laato, M., Samivirta, M., Thesleff, I., and Jalkanen, M., 1991, Induced expression of syndecan in healing wounds, J. Cell Biol. 114:585–595.PubMedGoogle Scholar
  55. Ellis, I., Grey, A. M., Schor, A. M., and Schor, S. L., 1992, Antagonistic effects of TGF-β1 and MSF on fibroblast migration and hyaluronic acid synthesis: Possible implications for dermal wound healing, J. Cell Sci. 102:447–456.PubMedGoogle Scholar
  56. Ellis, I. R., 1993, Migration Stimulating Factor: Biochemical Characterisation, Mode of Action, PhD thesis, University of Manchester.Google Scholar
  57. Epstein, E. H., 1974, (alpha 1 (3)) Human skin collagen. Release by pepsin digestion and preponderance in fetal life. J. Biol. Chem. 249:3225–3231.Google Scholar
  58. Erickson, H. P., 1993, Tenascin-C., tenascin-R and tenasin-R and tenascin-X: A family of talented proteins in search of functions, Curr. Opin. Cell Biol. 5:869–876.PubMedGoogle Scholar
  59. Erickson, H. P., and Bourdon, M. A., 1989, Tenascin: An extracellular matrix protein prominent in specialised embryonic tissues and tumours, Annu. Rev. Cell Biol. 5:71–92.PubMedGoogle Scholar
  60. Erlich, H. P., 1988, Wound closure: Evidence of co-operation between fibroblasts and collagen matrix, Eye 2:149–157.Google Scholar
  61. Erlich, H. P., and Rajartnum, J. M. B., 1990, Cell locomotion forces versus cell contraction forces for collagen lattice contraction: In vitro model of wound contraction, Tissue Cell 22:407–417.Google Scholar
  62. Estes, J. H., Spencer, E. M., Longaker, M. T., and Adzick, N. S., 1991, Insulin-like growth factor II in ovine wound fluid. Evidence for developmental regulation, Surg. Forum 42:659–661.Google Scholar
  63. Estes, J. M., Adzick, N. S., Harrison, M. R., Longaker, M. T., and Stern, R., 1993, Hyaluronate metabolism undergoes an ontogenic transition during fetal development: Implications for scar-free wound healing, J. Pediatr. Surg. 28:1227–1231.PubMedGoogle Scholar
  64. Estes, J. M., Van de Berg, J. S., Adzick, N. S., MacGillivray, T. E., Desmouliere, A., and Gabbiani, G., 1994, Phenotypic and functional features of myofibroblasts in sheep wounds, Differentiation 56:173–181.PubMedGoogle Scholar
  65. Feinberg, R. N., and Beebe, D. L., 1983, Hyaluronate in vasculogenesis, Science 220:1177–1179.PubMedGoogle Scholar
  66. Ferguson, M. W. J., and Howarth, G. F., 1991, Marsupial models of scarless fetal wound healing, in: Fetal Wound Healing, 1st ed. (N. S. Adzick and M. T. Longaker, eds.), pp. 92–125, Elsevier, Holland.Google Scholar
  67. Ferguson, M. W. J., Shah, M., Armstrong, J., Whitby, D. J., and Longaker, M. T., 1995, Scar formation. The spectral nature of fetal and adult wound repair, Plas. Reconstr. Surg., in press.Google Scholar
  68. Ffrench-Constant, C., and Hynes, R. O., 1988, Patterns of fibronectin gene expression and splicing during cell migration in chicken embryos, Development 104:369–382.PubMedGoogle Scholar
  69. Ffrench-Constant, C., and Hynes, R. O., 1989, Alternative splicing of fibronectin is temporally and spatially regulated in the chicken embryo, Development 106:375–388.PubMedGoogle Scholar
  70. Ffrench-Constant, C., Van De Water, L., Dvorak, H. F., and Hynes, R. O., 1989, Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat, J. Cell Biol. 109: 903–914.PubMedGoogle Scholar
  71. Fiegel, V. D., Penner, B. G., Wohl, R. C., and Knighton, D. R., 1991, PDGF-BB induces wound capillary endothelial cell chemotaxis, Wound Healing Society Programme Abstracts, no. 1.Google Scholar
  72. Fleischamajer, R., Fisher, L. W., MacDonald, E. D., Jacobs, L., Perlish, J. S., and Termine, J. D., 1991, Decorin interacts with fibrillar collagen of embryonic and adult human skin, J. Struct. Biol. 106:82–90.Google Scholar
  73. Frantz, F. W., Diegelmann, R. F., Mast, B. A., and Cohen, K., 1992, Biology of fetal wound healing: Collagen biosynthesis during dermal repair, J. Pediatr. Surg. 27:945–949.PubMedGoogle Scholar
  74. Frantz, F. W., Bettinger, D. A., Haynes, J. H., Johnson, D. E., Harvey, K. H., Dalton, H. P., Yager, D. R., Diegelmann, R. F., and Cohen, I. K., 1993, Biology of fetal repair: The presence of bacteria in fetal wounds induces an adult-like healing response, J. Pediatr. Surg. 78:428–434.Google Scholar
  75. Frost, S. J., and Weigel, P. H., 1990, Binding of hyaluronic acid to mammalian fibrinogens, Biochim. Biophys. Acta 1034:39–45.PubMedGoogle Scholar
  76. Gabbiani, G., Hirschel, B. J., Ryan, G. B., Statkov, P. R., and Majno, G., 1972, Granulation tissue as a contractile organ: A study of structure and function, J. Exp. Med. 135:719–734.PubMedGoogle Scholar
  77. Gao, X. X., Devoe, L. D., and Given, K. S., 1994, Effects of amniotic fluid on proteases—A possible role of amniotic fluid in fetal wound healing, Ann. Plast. Surg. 33:128–134.PubMedGoogle Scholar
  78. Garin-Chesa, P., Old, L. J., and Rettig, W. J., 1990, Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers, Proc. Natl. Acad. Sci. USA 87:7235–7239.PubMedGoogle Scholar
  79. Giri, S. N., Hyde, D. M., and Hollinger, M. A., 1993, Effect of antibody to transforming growth factor-β on bleomycin induced accumulation of lung collagen in mice, Thorax 48:959–966.PubMedGoogle Scholar
  80. Gospodarowicz, D., Ferrara, F., Schweigere, L., and Neufeld, G., 1987, Structural characterisation and biological functions of fibroblast growth factor, Endocrinol. Rev. 8:95–114.Google Scholar
  81. Goss, A. N., 1977, Intrauterine healing of fetal rat oral mucosal, skin and cartilage wounds, J. Oral Pathol. 6:35–38.PubMedGoogle Scholar
  82. Graham, M. F., Diegelmann, R. F., and Cohen, I. K., 1984, An in vitro model of fibroplasia: Simultaneous quantification of fibroblast proliferation, migration and collagen synthesis, Proc. Soc. Exp. Med. 176:302–308.Google Scholar
  83. Grinnell, F., Billingham, R. E., and Burgess, L., 1981, Distribution of fibronectin during wound healing in vivo, J. Invest. Dermatol. 76:181–189.PubMedGoogle Scholar
  84. Gross, J., Farinelli, W., Sadow, P., Anderson, R., and Bruns, R., 1995, On the mechanism of skin wound contraction. A granulation tissue knockout with a normal phenotype, Proc. Natl. Acad. Sci. USA 92:5982–5986.PubMedGoogle Scholar
  85. Hallock, G., Rice, D. C., Merkel, J. R., and DiPaolo, B. R., 1988, Analysis of collagen content in the fetal wound, Ann. Plast. Surg. 21:310–315.PubMedGoogle Scholar
  86. Hallock, G. G., Merkel, J. R., Rice, D. C., and DiPaolo, B. R., 1993, The ontogenic transition of collagen deposition in rat skin, Ann. Plast. Surg. 30:239–243.PubMedGoogle Scholar
  87. Hardingham, T. E., and Bayliss, M. T., 1990, Proteoglycans of articular cartilage changes in ageing and joint disease, Semin. Arthritis Rheum. Suppl. 1:12–33.Google Scholar
  88. Hedbom, E., and Heinegard, D., 1989, Interaction of a 59 kDa connective tissue matrix protein with collagen I and II, J. Biol. Chem. 264:6898–6905.PubMedGoogle Scholar
  89. Hedlund, H., Mengarelli-Widholm, S., Heinegard, D., Reinholt, F. P., and Svensson, O., 1994, Fibromodulin distribution and association with collagen, Matrix Biol. 14:227–232.PubMedGoogle Scholar
  90. Hellstrom, S., and Laurent, C., 1987, Hyaluronan and healing of tympanic membrane perforations: An experimental study, Acta. Otolaryngol. S442:54–61.Google Scholar
  91. Hemesath, T. J., Marton, L. S., and Stefansson, K., 1994, Inhibition of T cell activation by the extracellular matrix protein tenascin, J. Immunol. 152:5199–5207.PubMedGoogle Scholar
  92. Heremans, H., Dillen, C., Put, W., Vandamme, J., and Billiau, A., 1992, Protective effect of anti-interleukin (IL)-6 antibody against endotoxin, associated with paradoxically increased IL-6 levels, Eur. J. Immunol. 22:2395–2401.PubMedGoogle Scholar
  93. Hildebrand, A., Romaris, M., Rasmussen, L. M., Heinegard, D., Twardzik, D. R., Border, W. A., and Ruoslahti, E., 1994, Interaction of small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor-beta, Biochem. J. 302:527–534.PubMedGoogle Scholar
  94. Hopkinson-Woolley, J., Hughes, D., Gordon, S., and Martin, P., 1994, Macrophage recruitment during limb development and wound healing in the embryonic and fetal mouse, J. Cell Sci. 107:1159–1167.PubMedGoogle Scholar
  95. Home, R. S. C., Hurley, J. V., Crowe, D. M., Ritz, M. H., McCo’Brien, B., and Arnold, L. I., 1992, Wound healing in fetal sheep: a histological and electron microscope study, Br. J. Plast. Surg. 45:333–345.Google Scholar
  96. Hunt, T. K., Zederfeldt, B., and Goldstick, T. K., 1961, Oxygen and wound healing, Am. J. Surg. 118: 521–525.Google Scholar
  97. Ignotz, R. A., and Massague, J., 1987, Cell adhesion protein receptors as targets for transforming growth factor β action, Cell 51:189–197.PubMedGoogle Scholar
  98. Ignotz, R. A., Endo, T., and Massague, J., 1987, Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor β, J. Biol. Chem. 262:6443–6446.PubMedGoogle Scholar
  99. Ihara, S., and Motobayashi, Y., 1992, Wound closure in fetal rat skin, Development 114:573–582.PubMedGoogle Scholar
  100. Ihara, S., Motobayashi, Y., Nagao, E., and Kistler, A., 1990, Ontogenic transition of wound healing pattern in rat skin occurring at the rat fetal stage, Development 110:671–680.PubMedGoogle Scholar
  101. Jackson, R. L., Busch, S. J., and Cardin, A. L., 1991, Glycosaminoglycans: Molecular properties, protein interactions and role in physiological processes, Physiol. Rev. 71:481–539.PubMedGoogle Scholar
  102. Jahoda, C. A. B., and Oliver, R. F., 1984, Histological studies of the effects of wounding vibrissa follicles in the hooded rat, J. Embryol. Exp. Morphol. 83:95–108.PubMedGoogle Scholar
  103. Jarnagin, W. R., Rockey, D. C., Koteliansky, V. E., Wang, S.-S., and Bissell, D. M., 1994, Expression of variant fibronectins in wound healing: Cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis, J. Cell Biol. 127:2037–2048.PubMedGoogle Scholar
  104. Julia, M. V., Albert, A., Morales, L., Miro, D., Sancho, M. A., and Garcia, X., 1993, Wound healing in the fetal period: The resistance of the scar to rupture, J. Pediatr. Surg. 28:1458–1462.PubMedGoogle Scholar
  105. Kahari, V. M., Larjava, H., and Uitto, J., 1991, Differential regulation of extracellular matrix proteoglycan gene expression, J. Biol. Chem. 266:10608–10615.PubMedGoogle Scholar
  106. Kane, C. J. M., Mansbridge, J. N., Hebda, P. A., and Hanawalt, P. C., 1991, Direct evidence for spatial and temporal regulation of transforming growth factor βl expression during cutaneous wound healing, J. Cell Physiol. 148:157–173.PubMedGoogle Scholar
  107. Keene, D. R., Sakai, L. Y., Bachinger, H. P., and Burgeson, R. E., 1987, Type III collagen can be present on banded collagen fibrils regardless of fibril diameter, J. Cell Biol. 105:2393–2402.PubMedGoogle Scholar
  108. Kiritsy, C. P., and Lynch, S. E., 1993, Role of growth factors in cutaneous wound healing: A review, Crit. Rev. Oral Biol. Med. 4:729–760.PubMedGoogle Scholar
  109. Knight, K. R., Home, R. S. C., Lepore, D. A., Kumta, S., Ritz, M., Hurley, J. V., and McCO’Brien, B., 1994, Glycosaminoglycan composition of uninjured skin and of scar tissue in fetal, newborn and adult sheep, Res. Exp. Med. 194:119–127.Google Scholar
  110. Knudson, W., Biswas, C., Li, X. Q., Nemec, R. E., and Toole, B. P., 1989, The role and regulation of tumour-associated hyaluronan, in: The Biology of Hyaluronan, (CIBA Foundation Symposium), (D. Evered and J. Whelan, eds.), pp. 150–169, John Wiley and Sons, Chichester, England.Google Scholar
  111. Kojima, S., Nara, K., and Rifkin, D. B., 1993, Requirement for transglutaminase in the activation of latent transforming growth factor β in bovine endothelial cells, J. Cell Biol. 121:439–448.PubMedGoogle Scholar
  112. Krummel, T. M., Nelson, J. M., Diegelmann, R. F., Linblad, W. J., Salzberg, A. M., Greenfield, L. J., and Cohen, I. K., 1987, Fetal response to injury in the rabbit, J. Pediatr. Surg. 22:640–644.PubMedGoogle Scholar
  113. Krummel, T. M., Michna, B. A., Thomas, B. L., Sporn, M. B., Nelson, J. M., Salzberg, I. K., and Diegelmann, R. F., 1988, Transforming growth factor beta (TGF-β) induces fibrosis in a fetal wound model, J. Pediatr. Surg. 23:647–652.PubMedGoogle Scholar
  114. Kuhn, K., 1987, The classical collagens: Types I, II and III, in: Structure and Function of Collagen Types (R. Mayne and R. E. Burgeson, eds.), pp. 1–42, Academic Press, New York.Google Scholar
  115. Kujawa, M. J., and Tepperman, K., 1983, Culturing chick muscle cells on glycosaminoglycan substrates: Attachment and differentiation, Dev. Biol. 99:277–286.PubMedGoogle Scholar
  116. Kujawa, M. J., Pechak, D. G., Fiszman, M. Y., Caplan, A. I., 1986, Hyaluronic acid bonded to cell culture surfaces inhibits the program of myogenesis, Dev. Biol. 113:10–16.PubMedGoogle Scholar
  117. Kumar, S., Kumar, P., Ponting, J. M., Sattar, A., Rooney, P., Pye, D., and Hunter, R. D., 1992, Hyaluronic acid promotes and inhibits angiogenesis, in: Angiogenesis in Health and Disease (M. E. Maragoudakis, P. Lelkes, and P. M. Gullino, eds.), pp. 253–263, Plenum Press, New York.Google Scholar
  118. Kurkinen, M., Vaheri, A., Roberts, P. J., and Stenman, S., 1980, Sequential appearance of fibronectin and collagen in experimental granulation tissue, Lab. Invest. 43:47–51.PubMedGoogle Scholar
  119. Lane, A. T., Scott, G. A., and Day, K. H., 1989, Development of fetal skin transplanted onto nude mice, J. Invest. Dermatol. 93:787–791.PubMedGoogle Scholar
  120. Laurent, T. C., 1987, Biochemistry of hyaluronan, Acta Otolaryngol. (Stockh.) 442(Suppl):7–24.Google Scholar
  121. Laurent, T. C., Hellstrom, S., and Fellenius, E., 1988, Hyaluronan improves the healing of experimental membrane perforations. Arch. Otolaryngol. Head Neck Surg. 114:1435–1441.PubMedGoogle Scholar
  122. Le Boeuf, R. D., Raja, R. H., Fuller, G. M., and Weigel, P. H., 1986, Human fibrinogen specifically binds hyaluronic acid, J. Biol. Chem. 261:12586–12592.Google Scholar
  123. Lee, W. H., Bowsher, R. R., Apathy, J. M., Smith, M. M., and Henry, D. P., 1991, Measurement of insulin-like growth factor II in physiological fluids and tissues. II Extraction and quantification in rat tissues, Endocrinology 128:815–822.PubMedGoogle Scholar
  124. Leibovich, S. J., and Ross, R., 1975, The role of the macrophage in wound repair. A study with hydrocortisone and anti-macrophage serum, Am. J. Pathol. 78:71–100.PubMedGoogle Scholar
  125. Levine, J. H., Moses, H. L., Gold, L. I., and Nanney, L. B., 1993, Spatial and temporal patterns of immunoreactive transforming growth factor β1, β2 and β3 during excisional wound repair, Am. J. Pathol. 143:368–380.PubMedGoogle Scholar
  126. Lightner, V. A., and Erickson, H. P., 1990, Binding of hexabrachion (tenascin) to the extracellular matrix and substratum and its effect on cell adhesion, J. Cell Sci. 95:263–277.PubMedGoogle Scholar
  127. Longaker, M. T., Harrison, M. R., Crombleholme, T. M., Langer, J. C., Decker, M., Verrier, E. D., Spend-love, R., and Stern, R., 1989a, Studies in fetal wound healing: I A factor in fetal serum that stimulates deposition of hyaluronic acid, J. Pediatr. Surg. 24:789–792.PubMedGoogle Scholar
  128. Longaker, M. T., Harrison, M. R., Langer, J. C., Crombleholme, T. M., Verrier, E. D., Spendlove, R., and Stern, R., 1989b, Studies in fetal wound healing: IIA fetal environment accelerates fibroblast migration in vitro, J. Pediatr. Surg. 24:793–798.PubMedGoogle Scholar
  129. Longaker, M. T., Whitby, D. J., Ferguson, M. W. J., Harrison, M. R., Crombleholme, T. M., Langer, J. C., Cochrum, K. C., Verrier, E. D., and Stern, R., 1989c, Studies in fetal wound healing: III Early deposition of fibronectin distinguishes fetal from adult wound healing, J. Pediatr. Surg. 24:799–805.PubMedGoogle Scholar
  130. Longaker, M. T., Adzick, N. S., Hall, J. L., Stair, S. E., Crombleholme, T. M., Duncan, B. W., Bradley, S. M., Harrison, M. R., and Stern, R., 1990a, Studies in fetal wound healing: VII Fetal wound healing may be modulated by hyaluronic acid stimulating activity in amniotic fluid, J. Pediatr. Surg. 25:430–433.PubMedGoogle Scholar
  131. Longaker, M. T., Whitby, D. J., Adzick, N. S., Crombleholme, T. M., Langer, J. C., Duncan, B. W., Bradley, S. M., Stern, R., Ferguson, M. W., and Harrison, M. R., 1990b, Studies in fetal wound healing. VI Second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation, J. Pediatr. Surg. 25:63–68.PubMedGoogle Scholar
  132. Longaker, M. T., Burd, A. R., Gowen, A. H., Yen, T. S. B., Jennings, R. W., Duncan, B. W., Harrison, M. R., and Adzick, N. S., 1991a, Midgestational excisional fetal lamb wounds contract in utero, J. Pediatr. Surg. 26:942–948.PubMedGoogle Scholar
  133. Longaker, M. T., Chiu, E. S., Adzick, N. S., Stern, M., Harrison, M. R., and Stern, R., 1991b, Studies in fetal wound healing. A prolonged presence of hyaluronic acid characterizes fetal wound healing, Ann. Surg. 213:292–296.PubMedGoogle Scholar
  134. Longaker, M. T., Whitby, D. J., Jennings, R. W., Duncan, B. W., Ferguson, M. W., Harrison, M. R., and Adzick, N. S., 1991c, Fetal diaphragmatic wounds heal with scar formation, J. Surg. Res. 50:375–385.PubMedGoogle Scholar
  135. Longaker, M. T., Whitby, D. J., Ferguson, M. W. J., Lorenz, H. P., Harrison, M. R., and Adzick, N. S., 1994, Adult skin wounds in the fetal environment heal with scar formation, Ann. Surg. 219:65–72.PubMedGoogle Scholar
  136. Lopez-Casillas, F., Wrana, J. L., and Massague, J., 1993, Betaglycan presents ligand to the TGF-β signalling receptor, Cell 73:1435–1444.PubMedGoogle Scholar
  137. Lopez-Casillas, F., Payne, H. M., Andres, J. L., and Massague, J., 1994, Betaglycan can act as a dual modulator of TGF-β access to signalling receptors: Mapping of ligand binding and GAG attachment sites, J. Cell Biol. 124:557–568.PubMedGoogle Scholar
  138. Lorenz, P. H., and Adzick, N. S., 1993, Scarless skin wound repair in the fetus, West. J. Med. 159:350–355.PubMedGoogle Scholar
  139. Lorenz, H. P., Longaker, M. T., Perocha, L. A., Jennings, R. W., Harrison, M. R., and Adzick, N. S., 1992, Scarless wound repair: A human fetal skin model, Development 114:253–259.PubMedGoogle Scholar
  140. Lorenz, H. P., Whitby, D. J., Longaker, M. T., and Adzick, N. S., 1993, Fetal wound healing: The ontogeny of scar formation in the non-human primate, Ann. Surg. 217:391–396.PubMedGoogle Scholar
  141. Lotz, M. M., Burdsal, C. A., Erickson, H. P., and McClay, D. R., 1989, Cell adhesion to fibronectin and tenascin: Quantitative measurements of initial binding and subsequent strengthening response, J. Cell Biol. 109:1795–1805.PubMedGoogle Scholar
  142. Mackie, E. J., Halfter, W., and Liverani, D., 1988, Induction of tenascin in healing wounds, J. Cell. Biol. 107:2757–2767.PubMedGoogle Scholar
  143. Magnuson, V. L., Young, M., Schattenberg, D. G., Mancini, M. A., Chen, B., Steffensen, B., and Klebe, R. J., 1991, The alternative splicing of fibronectin pre-mRNA is altered during ageing and in response to growth factors, J. Biol. Chem. 266:14654–14662.PubMedGoogle Scholar
  144. Martens, E., Dillen, C., Put, W., Heremans, H., Vandamme, J., and Billiau, A., 1993, Increased circulating interleukin-6 (IL-6) activity in endotoxin-challenged mice pretreated with anti-IL-6 antibody is due to IL-6 accumulated in antigen-antibody complexes, Eur. J. Immunol. 23:2026–2029.PubMedGoogle Scholar
  145. Martin, D. E., Reece, M. C., Maher, J. E., and Reese, A. C., 1988, Tissue debris at the injury site is coated by plasma fibronectin and subsequently removed by tissue macrophages, Arch. Dermatol. 124:226–229.PubMedGoogle Scholar
  146. Martin, P., and Lewis, J., 1992, Actin cables and epidermal movement in embryonic wound healing, Nature 360:179–183.PubMedGoogle Scholar
  147. Martin, P., Dickson, M. C., Millan, F. A., and Akhurst, R. J., 1993, Rapid induction and clearance of TGF-β1 is an early response to wounding in the mouse embryo, Dev. Genet. 14:225–238.PubMedGoogle Scholar
  148. Massague, J., Cheiftetz, S., Boyd, F. T., and Andres, J. L., 1990, TGF-beta receptors and TGF-beta binding proteoglycans: Recent progress in identifying their functional properties, Ann. NY Acad. Sci. 593: 59–72.PubMedGoogle Scholar
  149. Mast, B. A., Flood, L. C., Haynes, J. H., DePalma, R. L., Cohen, I. K., Dieglmann, R. F., and Krummel, T. M., 1991, Hyaluronic acid is a major component of the matrix of fetal rabbit skin and wounds: Implications for healing by regeneration, Matrix 11:63–68.PubMedGoogle Scholar
  150. Mast, B. A., Dieglemann, R. F., Krummel, T. M., and Cohen, I. K., 1992a, Scarless wound healing in the mammalian fetus, Surg. Gynecol. Obstet. 174:441–451.PubMedGoogle Scholar
  151. Mast, B. A., Haynes, J. H., Krummel, T. M., Diegelmann, R. F., and Cohen, I. K., 1992b, In vivo degradation of fetal wound hyaluronic acid results in increased fibroplasia, collagen deposition and neovascularisation, Plast. Reconstr. Surg. 89:503–509.PubMedGoogle Scholar
  152. Mast, B. A., Diegelmann, R. F., Krummel, T. M., and Cohen, I. K., 1993, Hyaluronic acid modulates proliferation, collagen and protein synthesis of cultured fetal fibroblasts, Matrix 13:441–446.PubMedGoogle Scholar
  153. McCluskey, J., Hopkinson-Wooley, J., Luke, B., and Martin, P., 1993, A study of wound healing in the El 1.5 mouse embryo by light and electron microscopy, Tissue Cell 25:173–181.PubMedGoogle Scholar
  154. McDonald, J. A., 1988, Extracellular matrix assembly, Annu. Rev. Cell Biol. 4:183–207.PubMedGoogle Scholar
  155. Merkel, J. R., DiPaolo, B. R., Hallock, G. G., and Rice, D. C., 1988, Types I and types III collagen content of healing wounds in fetal and adult rats, Proc. Soc. Exp. Biol. Med. 187:493–497.PubMedGoogle Scholar
  156. Meyer, D. H., Krull, N., Dreher, K. L., and Gressner, A. M., 1992, Biglycan and decorin gene expression in normal and fibrotic rat liver: Cellular localization and regulatory factors, Hepatology 16:204–216.PubMedGoogle Scholar
  157. Mian, N., 1986, Analysis of cell-growth-phase-related variations in hyaluronate synthase activity of isolated plasma membrane fractions of cultured human skin fibroblasts, Biochem. J. 237:333–342.PubMedGoogle Scholar
  158. Morykwas, M. J., Ditesheim, J. A., Ledbetter, M. S., Crook, E., White, W. L., Jennings, D. A., and Argenta, L. C., 1991, Monodelphis domesticius: A model for early developmental wound healing, Ann. Plast. Surg. 4:327–331.Google Scholar
  159. Moses, A. C., Nissley, P. S., Short, P. A., Rechler, M. M., White, R. M., Knight, A. B., and Higa, O. Z., 1980, Increase levels of multiplication stimulating activity, an insulin-like growth factor in fetal rat serum, Proc. Natl. Acad. Sci. USA 77:3649–3653.PubMedGoogle Scholar
  160. Mustoe, T. A., Pierce, G. F., Thomason, A., Gramates, P., Sporn, M. B., and Deuel, T. F., 1987, Accelerated healing of incisional wounds in rats induced by transforming growth factor β, Science 237:1333–1336.PubMedGoogle Scholar
  161. Nath, R. K., LaRegina, M., Markham, H., Ksander, G. A., and Weeks, P. M., 1994a, The expression of transforming growth factor beta in fetal and adult rabbit skin wounds, J. Pediatr. Surg. 29:416–421.PubMedGoogle Scholar
  162. Nath, R. K., Parks, W C., Mackinnon, S. E., Hunter, D. A., Markham, H., and Weeks, P. M., 1994b, The regulation of collagen in fetal skin wounds: mRNA localization and analysis, J. Pediatr. Surg. 29:855–862.PubMedGoogle Scholar
  163. Nelson, N. M., 1976, Respiration and circulatory changes before birth, in: The Physiology of the Newborn Infant, 4th ed. (C. A. Smith and N. M. Nelson, eds.), pp. 75–121, C. C. Thomas, Springfield, Massachusetts.Google Scholar
  164. Noms, D. A., Clark, R. A. F., Swigart, L. M., Huff, J. C., Weston, W. L., and Howell, S. E., 1982, Fibronectin fragment(s) are chemotactic for human peripheral blood monocytes, J. Immunol. 129:1612–1618.Google Scholar
  165. Picardo, M., McGurk, M., Schor, S. L., Grey, A. M., and Ellis, I., 1992, Identification of migration stimulating factor in wound fluid, Exp. Mol. Pathol. 57:8–21.PubMedGoogle Scholar
  166. Pierce, G. F., Vandeberg, J., Rudolph, R., Tarpley, J., and Mustoe, T., 1991, Platelet derived growth factor-BB and transforming growth factor beta-1 selectively modulate glycosaminoglycans, collagen and myo-fibroblasts in excisional wounds, Am. J. Pathol. 138:629–646.PubMedGoogle Scholar
  167. Poole, T. J., and Thiery, J. P., 1986, Antibodies and a synthetic peptide that block cell-fibronectin adhesion arrest neural crest migration in vivo, Prog. Clin. Biol. Res. 217B:235–238.PubMedGoogle Scholar
  168. Purchio, A. F., Cooper, J. A., Brunner, A. M., Lioubin, M. N., Gentry, L. E., Kovacina, K. S., Roth, R. A., and Marquardt, H., 1988, Identification of mannose-6-phosphate in two asparagine-linked sugar chains of recombinant transforming growth factor-βl precursor, J. Biol. Chem. 263:14211–14215.PubMedGoogle Scholar
  169. Raghow, R., 1994, The role of extracellular matrix in post inflammatory wound healing and fibrosis, FASEB J. 8:823–831.PubMedGoogle Scholar
  170. Rettig, W. J., Garin-Chesa, P., Beresford, H. R., Oettgen, H. F., Melamed, M. R., and Old, L. J., 1988, Cell surface glycoproteins of human sarcomas: Differential expression in normal and malignant tissues and cultured cells, Proc. Natl. Acad. Sci. USA 85:3110–3114.PubMedGoogle Scholar
  171. Rittenberg, T., Longaker, M. T., Adzick, N. S., and Erlich, H. P., 1991, Sheep amniotic fluid has a protein factor which stimulates human fibroblast populated collagen lattice contraction, J. Cell Physiol. 149:444–450.PubMedGoogle Scholar
  172. Roberts, A. B., and Sporn, M. B., 1990, The transforming growth factors TGF-β, in: Peptide Growth Factors and Their Receptors, Vol. 95 Handbook of Experimental Pathology (M. B. Sporn and A. B. Roberts, eds.), pp. 419–472, Springer-Verlag, New York.Google Scholar
  173. Robinson, B. W., and Goss, A. N., 1981, Intrauterine healing of fetal rat cheek wounds, Cleft Palate J. 18:251–255.PubMedGoogle Scholar
  174. Roswell, A. R., 1984, The intrauterine healing of fetal muscle wounds: experimental study in the rat, Br. J. Plast. Surg. 37:635–642.Google Scholar
  175. Ruegg, C. R., Chiquet-Ehrismann, R., and Alkan, S. S., 1989, Tenascin, an extracellular matrix protein exerts immunomodulatory activities, Proc. Natl Acad. Sci. USA 86:7437–7441.PubMedGoogle Scholar
  176. Ruoslahti, E., and Yamaguchi, Y., 1991, Proteoglycans as modulators of growth factor activities, Cell 64:867–869.PubMedGoogle Scholar
  177. Saga, Y., Yagi, T., Ikawa, Y., Sakakura, T., and Aizawa, S., 1992, Mice develop normally without tenascin, Genes Dev. 6:1821–1831.PubMedGoogle Scholar
  178. Sakaguchi, K., Yanagishita, M., Takeuchi, Y., and Aurbach, G. D., 1991, Identification of heparan sulfate proteoglycans as a high affinity receptor for acidic fibroblast growth factor (aFGF) in a parathyroid cell line, J. Biol. Chem. 266:7270–7278.PubMedGoogle Scholar
  179. Saksela, O., Rifkin, D. B., 1990, Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity, J. Cell Biol. 110:767–775.PubMedGoogle Scholar
  180. Sames, K., 1994, Introduction: Biochemistry of proteoglycans and glycosaminoglycans, in: The Role of Proteoglycans and Glycosaminoglycans in Ageing. Interdisciplinary Topics in Gerontology (H. P. von Hahn, ed.), pp. 1–17, S. Karger, Basel, Switzerland.Google Scholar
  181. Scanlan, M. J., Mohan Raj, B. K., Calvo, B., Garin-Chesa, P., Sanz-Moncasi, M. P., Healey, J. H., Old, L. J., and Rettig, W. J., 1994, Molecular cloning of fibroblast activation protein a, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers, Proc. Natl. Acad. Sci. USA 91:5657–5661.PubMedGoogle Scholar
  182. Schmid, P., Kunz, S., Cerletti, N., McMaster, G., and Cox, D., 1993, Injury induced expression of TGF-β1 mRNA is enhanced by exogenously applied TGFβs, Biochem. Biophys. Res. Commun. 194:399–406.PubMedGoogle Scholar
  183. Schonherr, E., Hausser, H., Beavan, L., and Kresse, H., 1995, Decorin-type I collagen-interaction: Presence of separate core protein binding domains, J. Biol. Chem. 270:8877–8883.PubMedGoogle Scholar
  184. Schor, S. L., Schor, A. M., Rushton, G., and Smith, L., 1985, Adult, fetal and transformed fibroblasts display different migratory phenotypes on collagen gels: Evidence for an isoform transition during fetal development, J. Cell Sci. 73:221–234.PubMedGoogle Scholar
  185. Schor, S. L., Schor, A. M., Grey, A. M., and Rushton, G., 1988, Fetal and cancer patient fibroblasts produce an autocrine migration stimulating factor not made by normal adult cells, J. Cell Sci. 90:391–399.PubMedGoogle Scholar
  186. Schor, S. L., Schor, A. M., Grey, A. M., Chen, J., Rushton, G., Grant, M., and Ellis, I., 1989, Mechanisms of action of the migration stimulating factor (MSF) produced by fetal and cancer patient fibroblasts: Effect on hyaluronic acid synthesis, In Vitro Cell. Dev. Biol. 25:737–746.PubMedGoogle Scholar
  187. Schultz, G. S., White, M., Mitchell, R., Brown, G., Lynch, J., Twardzick, D. R., and Todaro, G. J., 1987, Epithelial wound healing enhanced by transforming growth factor a and vaccinia growth factor, Science 235:350–352.PubMedGoogle Scholar
  188. Schurch, W., Seemayer, T. A., and Gabbiani, G., 1992, Myofibroblasts, in: Histology for Pathologists (S. S. Sternberg, ed.), pp. 109–144, Raven Press, New York.Google Scholar
  189. Schwarzbauer, J. E., Tamkun, J. W., Lemiscka, I. R., and Hynes, R. O., 1983, Three different fibronectin mRNA arise by alternative splicing within the coding region, Cell 35:421–431.PubMedGoogle Scholar
  190. Schwarzbauer, J. E., Patel, R. S., Fonda, D., and Hynes, R. O., 1987, Multiple sites of alternative splicing of the rat fibronectin gene transcript, EMBO J. 6:2573–2580.PubMedGoogle Scholar
  191. Scott, J. E., 1988, Proteoglycan-fibrillar collagen interactions, Biochem. J. 252:313–323.PubMedGoogle Scholar
  192. Scott, J. E., 1992, Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues, FASEB J. 6:2639–2645.PubMedGoogle Scholar
  193. Scott, J. E., and Hughes, E. W., 1986, Proteoglycan-collagen relationships in developing chick and bovine tendons. Influence of physiological environment, Connect. Tiss. Res. 14:267–278.Google Scholar
  194. Shah, M., Foreman, D. M., and Ferguson, M. W. J., 1992, Control of scarring in adult wounds by neutralising antibody to TGF-β, Lancet 339:213–214.PubMedGoogle Scholar
  195. Shah, M., Foreman, D. M., and Ferguson, M. W. J., 1994, Neutralising antibody to TGFβ1,2 reduces cutaneous scarring in adult rodents, J. Cell Sci. 107:1137–1157.PubMedGoogle Scholar
  196. Shah, M., Foreman, D. M., and Ferguson, M. W. J., 1995, Neutralisation of TGF-β1 and TGF-β2 or exogenous addition of TGF-β3 to cutaneous rat wounds reduces scarring, J. Cell Sci. 108:15–17.Google Scholar
  197. Shaw, L. M., and Olsen, B. R., 1991, FACIT collagens: Diverse molecular bridges in extracellular matrices, Trends Biochem. Sci. 16:191–194.PubMedGoogle Scholar
  198. Siebert, J. W., Burd, D. A. R., McCarthy, J., and Erlich, H. P., 1990, Fetal wound healing: A biochemical study of scarless healing, Plast. Reconst. Surg. 85:495–504.PubMedGoogle Scholar
  199. Sloan, P., 1991, Current concepts in the role of fibroblasts and extracellular matrix in wound healing and their relevance to oral implantology, J. Dent. 19:107–109.PubMedGoogle Scholar
  200. Somasundaram, K., and Prathap, K., 1970, Intra-uterine healing of skin wounds in rabbit wounds in rabbit fetuses, J. Pathol. 100:81–86.PubMedGoogle Scholar
  201. Somasundaram, K., and Prathap, K., 1972, The effect of exclusion of amniotic fluid on intra-uterine healing of skin wounds in rabbit fetuses, J. Pathol. 107:127–130.PubMedGoogle Scholar
  202. Speranz, M. L., Valentini, G., and Calligaro, A., 1987, Influence of fibronectin on fibrillogenesis of type I and type III collagen, Coll. Rel. Res. 7:115–123.Google Scholar
  203. Sporn, M. B., Roberts, A. B., Schull, J. M., Smith, J. M., Ward, J. M., and Sodek, J., 1983, Polypeptide transforming growth factors isolated from bovine sources and used for wound healing in vivo, Science 219:1329–1331.PubMedGoogle Scholar
  204. Stadnyk, A. W., 1994, Cytokine production by epithelial cells, FASEB J. 8:1041–1047.PubMedGoogle Scholar
  205. Stern, M., Schmid, B., Dodson, T. B., Stern, R., and Kaban, K. B., 1992, Fetal cleft lip repair in rabbits: Histology and role of hyaluronic acid, J. Oral Maxillofac. Surg. 50:263–268.PubMedGoogle Scholar
  206. Stern, M., Dodson, T. B., Longaker, M. T., Lorenz, H. P., Harrison, M. R., and Kaban, L. B., 1993, Fetal cleft lip repair in lambs: Histologie characteristics of the healing wound, Int. J. Oral Maxillofac. Surg. 22:371–374.PubMedGoogle Scholar
  207. Tahery, T. J., and Lee, D. A., 1989, Review: Pharmacologie control of wound healing in glaucoma filtration surgery, J. Ocular Pharmacol. 5:155–179.Google Scholar
  208. Takashima, A., Billingham, R. E., and Grinnell, F., 1986, Activation of rabbit keratinocyte receptor function in vivo during wound healing, J. Invest. Dermatol. 86:585–590.PubMedGoogle Scholar
  209. Tamkun, J. W., Schwarzbauer, J. E., and Hynes, R. O., 1984, A single rat fibronectin gene generates three different mRNAs by alternative splicing of a complex exon, Proc. Natl. Acad. Sci. USA 81:5140–5144.PubMedGoogle Scholar
  210. Tan, E. M. L., Hoffren, J., Rouda, S., Greenbaum, S., Fox, J. W., Moore, J. H., and Dodge, G. R., 1993, Decorin, versican and biglycan gene expression by keloid and normal dermal fibroblasts: Differential regulation by basic fibroblast growth factor, Exp. Cell Res. 209:200–207.PubMedGoogle Scholar
  211. Terrell, T. G., Working, P. K., Chow, C. P., Green, C. P., and Green, J. D., 1993, Pathology of recombinant human transforming growth factor-βl in rats and rabbits, Int. Rev. Exp. Pathol. 34:43–67.PubMedGoogle Scholar
  212. Thompson, R. W., Whalen, G. F., Saunders, K. B., Hores, T., and D’Amore, P. A., 1990, Heparin-mediated release of fibroblast growth factor-like activity into the circulation of rabbits, Growth Factors 3: 221–229.PubMedGoogle Scholar
  213. Tomida, M., Koyama, H., and Ono, T., 1974, Hyaluronic acid synthetase in cultured mammalian cells producing hyaluronic acid. Oscillatory change during the growth phase and suppression by 5-bro-modeoxyuridine, Biochem. Biophys. Acta 338:352–363.Google Scholar
  214. Toole, B. P., 1991, Proteoglycans and hyaluronan in morphogenesis and differentiation, in: Cell Biology of the Extracellular Matrix (E. D. Hay, ed.), pp. 305–339, Plenum Press, New York.Google Scholar
  215. Turley, B. P., and Torrance, J., 1984, Localization of hyaluronate-binding protein on motile and non-motile fibroblasts, Exp. Cell Res. 161:17–28.Google Scholar
  216. Turley, E. A., Austen, L., Vandeligt, K., and Clary, C., 1991, Hyaluronan and a cell associated hyaluronan binding protein regulates the locomotion of Ras-transformed cells, J. Cell Biol. 112:1041–1047.PubMedGoogle Scholar
  217. Van Vlasselaer, P., Borremans, B., van Gorp, U., Dasch, J. R., and DeWaal-Malefyt, R., 1994, Interleukin-10 inhibits transforming growth factor-β (TGF-β) synthesis required for osteogenic commitment of mouse bone marrow cells, J. Cell Biol 124:569–577.PubMedGoogle Scholar
  218. Vogel, K. G., and Trotter, J. A., 1987, The effect of proteoglycans on the morphology of collagen fibrils formed in vitro, Collagen Rel. Res. 7:105–114.Google Scholar
  219. Vogel, K. G., Paulsson, M., and Heinegard, D., 1984, Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon, Biochem. J. 223:587–597.PubMedGoogle Scholar
  220. Vuorio, E., and Crombrugghe, B., 1990, The family of collagen genes, Annu. Rev. Biochem. 59:837–872.PubMedGoogle Scholar
  221. Wahl, S. M., Hunt, D. A., Wakefield, N., McCartney-Francis, L. M., Wahl, A. B., Roberts, A. B., and Sporn, M. B., 1987, Transforming growth factor-β (TGF-β) induces monocyte chemotaxis and growth factor production, Proc. Natl. Acad. Sci. USA 84:5788–5792.PubMedGoogle Scholar
  222. Weigel, P. H., Fuller, G. M., and Le Boeuf, R. D., 1986, A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing, J. Theor. Biol. 119:219–234.PubMedGoogle Scholar
  223. Welch, M. P., Odland, G. F., and Clark, R. A. F., 1990, Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly and fibronectin receptor expression during wound contraction, J. Cell Biol. 110:133–145.PubMedGoogle Scholar
  224. West, D. C., Hampson, I. N., Arnold, F., and Kumar, S., 1985, Angiogenesis induced by degradation products of hyaluronic acid, Science 228:1324–1326.PubMedGoogle Scholar
  225. Whitby, D. J., and Ferguson, M. W. J., 1991a, The extracellular matrix of lip wounds in fetal, neonatal and adult mice, Development 112:651–668.PubMedGoogle Scholar
  226. Whitby, D. J., and Ferguson, M. W. J., 1991b, Immunolocalization of growth factors in fetal wound healing, Dev. Biol. 147:2207–2215.Google Scholar
  227. Whitby, D. J., Longaker, M. T., Harrison, M. R., Adzick, N. S., and Ferguson, M. W. J., 1991, Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin, J. Cell Sci. 99: 583–586.PubMedGoogle Scholar
  228. Wider, T. M., Yager, J. S., Rittenberg, T., Hugo, N. E., and Erlich, P., 1993, The inhibition of fibroblast-populated collagen lattice contraction by human amniotic fluid: A chronologic examination, Plast. Reconstruc. Surg. 91:1287–1293.Google Scholar
  229. Wight, T. N., Kinsella, M. G., and Qwarnstrom, E. E., 1992, The role of proteoglycans in cell adhesion, migration and proliferation, Curr. Opin. Cell Biol. 4:793–801.PubMedGoogle Scholar
  230. Yamaguchi, Y., Mann, D. M., and Ruoslahti, E., 1990, Negative regulation of transforming growth factor-beta by the proteoglycan decorin, Nature 346:281–284.PubMedGoogle Scholar
  231. Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E., and Border, W. A., 1993, Expression of transforming growth factor β is elevated in human and experimental diabetic nephropathy, Proc. Natl. Acad. Sci. USA 90:1814–1818.PubMedGoogle Scholar
  232. Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M., 1991, Cell surface heparin like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 64:841–848.PubMedGoogle Scholar
  233. Yeo, T. K., Brown, L., and Dvork, H. L., 1991, Alterations in proteoglycan synthesis common to healing wounds and tumors, Am. J. Pathol. 138:437–1450.Google Scholar
  234. Yoshioka, K., Takemura, T., Murakami, K., Okada, M., Hino, S., Miyamoto, H., and Maki, S., 1993, Transforming growth factor β and mRNA in glomeruli in normal and diseased human kidneys, Lab. Invest. 68:154–163.PubMedGoogle Scholar
  235. Zugmaier, G., Paik, S., Wilding, G., Knabbe, C., Bano, M., Lupu, R., Deschauer, B., Simpson, S., Dickson, R. B., and Lippman, M., 1991, Transforming growth factor-β1 induces cachexia and systemic fibrosis without an anti-tumor effect in nude mice, Cancer Res. 51:3590–3594.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • R. L. McCallion
    • 1
  • M. W. J. Ferguson
    • 1
  1. 1.School of Biological SciencesUniversity of ManchesterManchesterEngland

Personalised recommendations