Advertisement

Proteinases and Tissue Remodeling

  • Paolo Mignatti
  • Daniel B. Rifkin
  • Howard G. Welgus
  • William C. Parks

Abstract

The term tissue remodeling describes transient or permanent changes in tissue architecture that involve breaching of histological barriers such as basement membranes, basal laminae, and interstitial stroma [extracellular matrix (ECM)]. Tissue remodeling is important to several stages of wound repair, such as inflammation and granulation tissue formation, and in a variety of other physiological or pathological states. These include ovulation, spermatogenesis, trophoblast implantation, mammary involution following lactation, uterine involution, nerve regeneration, rheumatoid arthritis, tumor invasion, and metastasis formation. A common feature of tissue remodeling involves the production of high levels of extracellular proteolytic activities by parenchymal and/or connective tissue cells. The ECM is organized into highly complex structures, each of which consists of different components including various collagen types, glycoproteins such as fibronectin and laminin, elastin, glycosaminoglycans (GAGs), and proteoglycans. Because these ECM components have distinct hydrolytic requirements for their degradation, remodeling of the ECM involves the action of an array of degradative enzymes.

Keywords

Plasminogen Activator Tissue Remodel Bullous Pemphigoid Plasminogen Activation Vascular Endothelial Cell Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ågren, M. S., Taplin, C. J., Woessner, J. F., Eaglstein, W. H., and Mertz, P. M., 1992, Collagenase in wound healing: Effect of wound age and type, J. Invest. Dermatol. 99:709–714.PubMedGoogle Scholar
  2. Alessandri, G., Rajn, K., and Gullino, P. M., 1983, Mobilization of capillary endothelium in vitro induced by effectors of angiogenesis in vivo, Cancer Res. 43:1790–1797.PubMedGoogle Scholar
  3. Andrade-Gordon, P., and Strickland, S., 1986, Interaction of heparin with plasminogen activators and plasminogen: Effects on the activation of plasminogen, Biochemistry 25:4033–4040.PubMedGoogle Scholar
  4. Andreasen, P. A., Nielsen, L. S., Grondahl-Hansen, J., Zenthen, J., Stephens, R., and Dano, K., 1984, Inactive proenzyme to tissue-type plasminogen activator from human melanoma cells, identified after affinity purification with a monoclonal antibody, EMBO J. 3:51–56.PubMedGoogle Scholar
  5. Andreasen, P. A., Sottrup-Jensen, L., Kjoller, L., Nykjaer, A., Moestrup, S. K., Petersen, C. M., and Gliemann, J., 1994, Receptor-mediated endocytosis of plasminogen activators and activator/inhibitor complexes, FEBS Lett. 338:239–245.PubMedGoogle Scholar
  6. Angel, P., and Karin, M. I., 1992, Specific members of the jun protein family regulate collagenase expression in response to various extracellular stimuli, in: Matrix Metalloproteinases and Inhibitors (H. Birkedahl-Hansen, Z. Werb, H. G. Welgus, and H. E. van Wart, eds.), pp. 156–164, Gustav Fisher, Stuttgart.Google Scholar
  7. Antalis, T. M., and Dickinson, J. L., 1992, Control of plasminogen-activator inhibitor type 2 gene expression in the differentiation of monocytic cells, Eur. J. Biochem. 205:203–209.PubMedGoogle Scholar
  8. Appella, E., Robinson, E. A., Ullrich, S. J., Stoppelli, M. P., Corti, A., Cassani, G., and Blasi, F., 1987, The receptor-binding sequence of urokinase. A biological function for the growth factor module of proteases, J. Biol. Chem. 262:4437–4440.PubMedGoogle Scholar
  9. Astedt, B., Lecander, I., Brodin, T., Ludblad, A., and Low, K., 1985, Purification of a specific placental plasminogen activator inhibitor by monoclonal antibody and its complex formation with plasminogen activator, Thromb. Haemost. 53:122–125.PubMedGoogle Scholar
  10. Auble, D. T., and Brinkerhoff, C. E., 1991, The AP-1 sequence is necessary but not sufficient for phorbol induction of collagenase in fibroblasts, Biochemistry 30:4629–4635.PubMedGoogle Scholar
  11. Ausprunk, D. H., and Folkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvasc. Res. 14:53–65.PubMedGoogle Scholar
  12. Bacharach, E., Itin, A., and Keshet, E., 1992, In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis, Proc. Natl. Acad. Sci. USA 89:10686–10690.PubMedGoogle Scholar
  13. Baker, J. B., Low, D. A., Simmer, R. L., and Cunningham, D. D., 1980, Protease-nexin: A cellular component that links thrombin and plasminogen activator and mediates their binding to cells, Cell 21:37–45.PubMedGoogle Scholar
  14. Baragi, V., Fliszar, C. J., Conroy, M. C., Ye, Q.-Z., Shipley, J. M., and Welgus, H. G., 1994, Contribution of the C-terminal domain of metalloproteinases to binding by TIMP: C-terminal truncated stromelysin and matrilysin exhibit equally compromised affinities as compared to full-length stromelysin, J. Biol. Chem. 269:12692–12697.PubMedGoogle Scholar
  15. Bashkin, P., Doctrow, S., Klagsbrun, M., Svahn, C. M., Folkman, J., and Vlodavski, I., 1989, Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules, Biochemistry 28:1737–1743.PubMedGoogle Scholar
  16. Basilico, C., and Moscatelli, D., 1992, The FGF family of growth factors and oncogenes, Adv. Cancer Res. 59:115–165.PubMedGoogle Scholar
  17. Behrendt, N., Rønne, E., Ploug, M., Pétri, T., Løber, D., Nielsen, L. S., Schleuning, W. D., Blasi, F., Appella, E., and Danø, K., 1990, The human receptor for urokinase plasminogen activator. NH2-terminal sequence and glycosylation variants, J. Biol. Chem. 265:6453–6460.PubMedGoogle Scholar
  18. Behrendt, N., Ploug, M., Patthy, L., Houen, G., Blasi, F., and Dano, K., 1991, The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator, J. Biol. Chem. 266:7842–7847.PubMedGoogle Scholar
  19. Behrendt, N., Ploug, M., Ronne, E., Høyer-Hansen, G., and Dano, K., 1993, Cellular receptor for urokinase-type plasminogen activator: Protein structure, Methods Enzymol. 223:207–222.PubMedGoogle Scholar
  20. Berkenpas, M. B., and Quigley, J. P., 1991, Transformation-dependent activation of urokinase-type plasminogen activator by a plasmin-independent mechanism: Involvement of cell surface membranes, Proc. Natl. Acad. Sci. USA 88:7768–7772.PubMedGoogle Scholar
  21. Birkedal-Hansen, H., Moore, W G. I., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A., and Engler, J. A., 1993, Matrix metalloproteinases: A review, Crit. Rev. Oral Biol Med. 4:197–250.PubMedGoogle Scholar
  22. Bizik, J., Stephens, R. W., Grofova, M., and Vaheri, A., 1993, Binding of tissue-type plasminogen activator to human melanoma cells, J. Cell Biochem. 51:326–335.PubMedGoogle Scholar
  23. Bodden, M. K., Harber, G. J., Birkedal-Hansen, B., Windsor, L. J., Caterina, N. C. M., Engler, J. A., and Birkedal-Hansen, H., 1994, Functional domains of human TIMP-1 (tissue inhibitor of metalloproteinases), J. Biol. Chem. 269:18943–18952.PubMedGoogle Scholar
  24. Boone, T. C., Johnson, M. J., DeClerck, Y. A., and Langley, K. E., 1990, cDNA cloning and expression of a metalloproteinase inhibitor related to tissue inhibitor of metalloproteinases, Proc. Natl. Acad. Sci. USA 87:2800–2804.PubMedGoogle Scholar
  25. Bouma, B. N., and Griffin, J. H., 1978, Deficiency of factor XII-dependent plasminogen proactivator in prekallikrein-deficient plasma, J. Lab. Clin. Med. 91:148–155.PubMedGoogle Scholar
  26. Bowersox, J. C., and Sorgente, N., 1982, Chemotaxis of aortic endothelial cells in response to fibronectin, Cancer Res. 42:2547–2551.PubMedGoogle Scholar
  27. Brinckerhoff, C. E., Sirum-Connolly, K. L., Karmilowicz, M. J., and Auble, D., 1992, Expression of stromelysin and stromelysin-2 in rabbit and human fibroblasts, Matrix Suppl. 1:165–175.PubMedGoogle Scholar
  28. Brown, P. D., Kleiner, D. E., Unsworth, E. J., and Stetler-Stevenson, W. G., 1993, Cellular activation of the 72 kDa type IV procollagenase/TIMP-2 complex, Kidney Int. 43:163–170.PubMedGoogle Scholar
  29. Bu, G., Maksymovitch, E. A., and Schwartz, A. L., 1993, Receptor-mediated endocytosis of tissue-type plasminogen activator by low density lipoprotein receptor-related protein on human hepatoma HepG2 cells, J. Biol Chem. 268:13002–13009.PubMedGoogle Scholar
  30. Buckley-Sturrock, A., Woodward, S. C., Senior, R. M., Griffin, G. L., Klagsbrun, M., and Davidson, J. M., 1989, Differential stimulation of collagenase and chemotactic activity in fibroblasts derived from rat wound repair tissue and human skin by growth factors, J. Cell. Physiol. 138:70–78.PubMedGoogle Scholar
  31. Biirk, R. R., 1973, A factor from a transformed cell line that affects cell migration, Proc. Natl. Acad. Sci. USA 70:369–372.Google Scholar
  32. Burridge, K., Turner, C. E., and Romer, L. H., 1992, Tyrosine phosphorylation of paxillin and pp 125FAK accompanies cell adhesion to extracellular matrix: A role in cytoskeletal assembly, J. Cell Biol. 119:893–903.PubMedGoogle Scholar
  33. Bussolino, F., Di Renzo, M. F., Ziche, M., Bocchietto, E., Olivero, M., Naldini, L., Gaudino, G., Tamagnone, L., Coffer, A., and Comoglio, P. M., 1992, Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth, J. Cell Biol. 119:629–641.PubMedGoogle Scholar
  34. Buttice, G., and Kurkinen, M., 1993, A polyomavirus enhancer A-binding protein-3 site and Ets-2 protein have a major role in the 12-0-tetradecanoylphorbol-13-acetate response of the human stromelysin gene, J. Biol. Chem. 268:7169–7204.Google Scholar
  35. Buttice, G., Quinones, S., and Kurkinen, M., 1991, The AP-1 site is required for basal expression but is not necessary for TPA-response of the human stromelysin gene, Nucleic Acids Res. 19:3723–3731.PubMedGoogle Scholar
  36. Carmeliet, P., Schoonjans, L., Kieckens, L., Ream, B., Degen, J., Bronson, R., De Vos, R., van den Oord, J. J., Collen, D., and Mulligan, R. C., 1994, Physiological consequences of loss of plasminogen activator gene function in mice, Nature 386:419–425.Google Scholar
  37. Carmichael, D. F., Sommer, A., Thompson, R. C., Anderson, D. C., Smith, C. G., Welgus, H. G., and Stricklin, G. P., 1986, Primary structure and cDNA cloning of human fibroblast collagenase inhibitor, Proc. Natl. Acad. Sci. USA 83:2407–2411.PubMedGoogle Scholar
  38. Carrel, R., and Travis, J., 1985, Alpha-1-antitrypsin and the serpins: Variation and countervariation, Trends Biol. Sci. 10:20–25.Google Scholar
  39. Carroll, P. M., Richards, W. G., Darrow, A. L., Wells, J. M., and Strickland, S., 1993, Preimplantation mouse embryos express a cell surface receptor for tissue-plasminogen activator, Development 119:191–198.PubMedGoogle Scholar
  40. Cavani, A., Zambruno, G., Marconi, A., Manca, V., Marchetti, M., and Giannetti, A., 1993, Distinctive integrin expression in the newly forming epidermis during wound healing in humans, J. Invest. Der-matol. 101:600–604.Google Scholar
  41. Chapman, H. A., and Stone, Jr., O. L., 1984, Cooperation between plasmin and elastase in elastin degradation by intact murine macrophages, Biochem. J. 222:721–728.PubMedGoogle Scholar
  42. Clark, R. A. F., Lanigan, J. M., DellaPelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B., 1982, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound re-epithelization, J. Invest. Dermatol 79:264–269.PubMedGoogle Scholar
  43. Collier, I. E., Krasnov, P. A., Strongin, A. Y., Birkedal-Hansen, H., and Goldberg, G. I., 1992, Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92 kDa type IV collagenase, J. Biol. Chem. 267:6776–6781.PubMedGoogle Scholar
  44. Colman, R. W., 1969, Activation of plasminogen by human plasma kallikrein, Biochem. Biophys. Res. Commun. 35:273–279.PubMedGoogle Scholar
  45. Corcoran, M. L., Stetler-Stevenson, W. G., Brown, P. D., and Wahl, L. M., 1992, Interleukin 4 inhibition of prostaglandin E2 synthesis block interstitial collagenase and 92-kDa type IV collagenase/gelatinase production by human monocytes, J. Biol. Chem. 267:515–519.PubMedGoogle Scholar
  46. Cubellis, M. V., Nolli, M. L., Cassani, G., and Blasi, F., 1986, Binding of single-chain prourokinase to the urokinase receptor of human U937 cells, J. Biol. Chem. 261:15819–15822.PubMedGoogle Scholar
  47. Cubellis, M. V., Wun, T. C., and Blasi, F., 1990, Receptor-mediated internalization and degradation of urokinase is caused by its specific inhibitor PAI-1, EMBO J. 9:1079–1085.PubMedGoogle Scholar
  48. Danø, K., Andreasen, P. A., Grøndahl-Hansen, J., Kristensen, B., Nielsen, L. S., and Skriver, L., 1985, Plasminogen activators, tissue degradation and cancer, Adv. Cancer Res. 44:146–239.Google Scholar
  49. DiMario, J., Buffinger, N., Yamada, S., and Strohman, R. C., 1989, Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle, Science 244:688–690.PubMedGoogle Scholar
  50. Eaton, D. L., Scott, R. W., and Baker, J. B., 1984, Purification of human fibroblast urokinase proenzyme and analysis of its regulation by proteases and protease nexin, J. Biol. Chem. 259:6241–6247.PubMedGoogle Scholar
  51. Edlund, T., Ny, T., Ranby, M., Hedén, L. O., Palm, G., Holmgren, E., and Josephson, S., 1983, Isolation of cDNA sequences coding for a part of human tissue plasminogen activator, Proc. Natl. Acad. Sci. USA 80:349–352.PubMedGoogle Scholar
  52. Edwards, D. R., Murphy, G., Reynolds, J. J., Whitham, S. E., Docherty, A. J. P., Angel, P., and Heath, J. K., 1987, Transforming growth factor modulates the expression of collagenase and metalloproteinase inhibitor, EMBO J. 6:1899–1904.PubMedGoogle Scholar
  53. Ellis, V., Behrendt, N., and Dano, K., 1991, Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor, J. Biol. Chem. 266:12752–12758.PubMedGoogle Scholar
  54. Ellis, V., Behrendt, N., and Dano, K., 1993, Cellular receptor for urokinase-type plasminogen activator: function in cell-surface proteolysis, Methods Enzymol. 223:223–233.PubMedGoogle Scholar
  55. Emonard, H. P., Remade, A. G., Noel, A. C., Grimaud, J. A., Stetler-Stevenson, W. G., and Foidart, J. M., 1992, Tumor cell surface-associated binding site for the M(r) 72,000 type IV collagenase, Cancer Res. 52:5845–5848.PubMedGoogle Scholar
  56. Estreicher, A., Wohlwend, A., Belin, D., Schleuning, W. D., and Vassalli, J. D., 1989, Characterization of the cellular binding site for the urokinase-type plasminogen activator, J. Biol. Chem. 264:1180–1189.PubMedGoogle Scholar
  57. Estreicher, A., Miihlhauser, J., Carpentier, J. L., Orci, L., and Vassalli, J. D., 1990, The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme-inhibitor complexes, J. Cell Biol. 111:783–792.PubMedGoogle Scholar
  58. Felez, J., Chanquia, C. J., Fabregas, P., Plow, E. F., and Miles, L. A., 1993, Competition between plasminogen and tissue plasminogen activator for cellular binding sites, Blood 82:2433–2441.PubMedGoogle Scholar
  59. Fernandez, H. N., Henson, P. M., Otani, A., and Hugh, T. E., 1978, Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under simulated in vivo conditions, J. Immunol. 120:109–115.PubMedGoogle Scholar
  60. Ferrara, N., Houck, K. A., Jakeman, L. B., Winer, J., and Leung, D. W., 1991, The vascular endothelial cell growth factor family of polypeptides, J. Cell. Biochem. 47:211–218.PubMedGoogle Scholar
  61. Fibbi, G., Ziche, M., Morbidelli, L., Magnelli, L., and Del Rosso, M., 1988, Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells, Exp. Cell Res. 179:385–395. [Published erratum in Exp. Cell. Res. 186:196.]Google Scholar
  62. Fini, M. E., Girard, M. T., and Matsubara, M., 1992, Collagenolytic/gelatinolytic enzymes in corneal wound healing, Acta Ophthalmol. 70:26–33.Google Scholar
  63. Firestein, G. S., Paine, M. M., and Littman, B. H., 1991, Gene expression (collagenase, tissue inhibitor of metalloproteinases, complement, and HLA-DR) in rheumatoid arthritis and osteoarthritis synovium. Quantitative analysis and effect of intraarticular corticosteroids, Arthritis Rheum. 34:1094–1105.PubMedGoogle Scholar
  64. Flaumenhaft, R., Moscatelli, D., and Rifkin, D. B., 1990, Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor, J. Cell Biol. 111:1651–1659.PubMedGoogle Scholar
  65. Flaumenhaft, R., Abe, M., Mignatti, P., and Rifkin, D. B., 1992, Basic fibroblast growth factor-induced activation of latent transforming growth factor β in endothelial cells: Regulation of plasminogen activator activity, J. Cell Biol. 118:901–909.PubMedGoogle Scholar
  66. Freije, J. M. P., Diez-Itza, I., Balbin, M., Sanchez, L. M., Blasco, R., Tolivia, J., and Lopez-Otin, C., 1994, Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas, J. Biol. Chem. 269:16766–16773.PubMedGoogle Scholar
  67. Gaire, M., Magbanua, Z., McDonnell, S., McNeil, L., Lovett, D. H., and Matrisian, L. M., 1994, Structure and expression of the human gene for the matrix metalloproteinase matrilysin, J. Biol. Chem. 269:2032–2040.PubMedGoogle Scholar
  68. Gherardi, E., Sharpe, M., and Lane, K., 1993, Properties and structure-function relationship of HGF-SF, EXS 65:31–48.PubMedGoogle Scholar
  69. Goldberg, G. I., Wilhelm, S. M., Kronberger, A., Bauer, E. A., Grant, G. A., and Eisen, A. Z., 1986, Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein, J. Biol. Chem. 261:6600–6605.PubMedGoogle Scholar
  70. Golsen, J. B., and Bauer, E. A., 1986, Basal cell carcinoma and collagenase, J. Dermatol. Surg. Oncol. 12:812–817.Google Scholar
  71. Gordon, S., Unkeless, J. C., and Cohn, Z. A., 1974, Induction of macrophage plasminogen activator by endotoxin stimulation and phagocytosis, J. Exp. Med. 140:995–1010.PubMedGoogle Scholar
  72. Gosline, J. M., 1978, Hydrophobic interaction and a model for the elasticity of elastin, Biopolymers 17:677–695.PubMedGoogle Scholar
  73. Granelli-Piperno, A., Vassalli, J. D., and Reich, E., 1977, Secretion of plasminogen activator by human polymorphonuclear leukocytes. Modulation by glucocorticoids and other effectors, J. Exp. Med. 146:1693–1706.PubMedGoogle Scholar
  74. Grant, D. S., Kleinman, H. K., Goldberg, I. D., Bhargava, M. M., Nickoloff, B. J., Kinsella, J. L., Polverini, P., and Rosen, E. M., 1993, Scatter factor induces blood vessel formation in vivo, Proc. Natl. Acad. Sci. USA 90:1937–1941.PubMedGoogle Scholar
  75. Grant, G. A., Eisen, A. Z., Marnier, B. L., Roswit, W. T., and Goldberg, G. I., 1987, The activation of human skin fibroblast procollagenase. Sequence identification of the major conversion products, J. Biol. Chem. 262:5886–5889.PubMedGoogle Scholar
  76. Grobmyer, S. R., Kuo, A., Orishimo, M., Okada, S. S., Cines, D. B., and Barnathan, E. S., 1993, Determinants of binding and internalization of tissue-type plasminogen activator by human vascular smooth muscle and endothelial cells, J. Biol. Chem. 268:13291–13300.PubMedGoogle Scholar
  77. Grondahl-Hansen, J., Lund, L. R., Ralfkiaer, E., Ottevanger, V., and Dano, K., 1988, Urokinase-and tissue-type plasminogen activators in keratinocytes during wound reepithelization in vivo, J. Invest. Dermatol. 90:790–795.PubMedGoogle Scholar
  78. Guo, M., Kim, L. T., Akiyama, S. K., Gralnick, H. R., Yamada, K. M., and Grinnell, F., 1991, Altered processing of integrin receptors during keratinocyte activation, Exp. Cell. Res. 195:315–322.PubMedGoogle Scholar
  79. Hajjar, K. A., 1991, The endothelial cell tissue plasminogen activator receptor. Specific interaction with plasminogen, J. Biol. Chem. 266:21962–21970.PubMedGoogle Scholar
  80. Hajjar, K. A., 1993, Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor, J. Clin. Invest. 91:2873–2879.PubMedGoogle Scholar
  81. Hajjar, K. A., and Hamel, N. M., 1990, Identification and characterization of human endothelial cell membrane binding sites for tissue plasminogen activator and urokinase, J. Biol. Chem. 265(5):2908–2916.PubMedGoogle Scholar
  82. Hajjar, K. A., Harpel, P. C., Jaffe, E. A., and Nachman, R. L., 1986, Binding of plasminogen to cultured human endothelial cells, J. Biol. Chem. 261:11656–11662.PubMedGoogle Scholar
  83. Hamilton, J. A., Whitty, G. A., Stanton, H., Wojta, J., Gallichio, M., McGrath, K., and Ianches, G., 1993a, Macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor stimulate the synthesis of plasminogen-activator inhibitors by human monocytes, Blood 82:3616–3621.PubMedGoogle Scholar
  84. Hamilton, J. A., Whitty, G. A., Wojta, J., Gallichio, M., McGrath, K., and Ianches, G., 1993b, Regulation of plasminogen activator inhibitor-1 levels in human monocytes, Cell. Immunol. 152:7–17.PubMedGoogle Scholar
  85. Hashimoto, K., Singer, K., Lide, W. B., Shafran, K., Webber, P., Morioka, S., and Lazarus, G. S., 1983, Plasminogen activator in cultured epidermal cells, J. Invest. Dermatol. 81:424–429.PubMedGoogle Scholar
  86. Hasty, K. A., Pourmotabbed, T. F., Goldberg, G. I., Thompson, J. P., Spinella, D. G., Stevens, R. M., and Mainardi, C. L., 1990, Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases, J. Biol. Chem. 265:11421–11424.PubMedGoogle Scholar
  87. Hayakawa, T., Yamashita, K., Tanzawa, K., Uchujima, E., and Iwata, K., 1992, Growth-promoting activity of tissue inhibitor of metalloproteinase-1 (TIMP-1) for a wide range of cells, FEBS Lett. 298:29–32.PubMedGoogle Scholar
  88. He, C. S., Wilhelm, S. M., Pentland, A. P., Manner, B. L., Grant, G. A., Eisen, A. Z., and Goldberg, G. I., 1989, Tissue cooperation in a proteolytic cascade activating human interstitial collagenase, Proc. Natl. Acad. Sci. USA 86:2632–2636.PubMedGoogle Scholar
  89. Hébert, C. A., and Baker, J. B., 1988, Linkage of extracellular plasminogen activator to the fibroblast cytoskeleton: Colocalization of cell surface urokinase with vinculin, J. Cell. Biol. 106:1241–1248.PubMedGoogle Scholar
  90. Heckmann, M., Adelmann, G. B. C., Hein, R., and Krieg, T., 1993, Biphasic effects of interleukin-1 alpha on dermal fibroblasts: Enhancement of chemotactic responsiveness at low concentrations and of mRNA expression for collagenase at high concentrations, J. Invest. Dermatol. 100:780–784.PubMedGoogle Scholar
  91. Heeb, M. J., Espana, F., Geiger, M., Collen, D., Stump, D. C., and Griffin, J. H., 1987, Immunological identity of heparin-dependent plasma and urinary protein C inhibitor and plasminogen activator inhibi-tor-3, J. Biol. Chem. 262:15813–15816.PubMedGoogle Scholar
  92. Heimark, R. L., Twardzik, D. R., and Schwartz, S. M., 1986, Inhibition of endothelial cell regeneration by type-beta transforming growth factor from platelets, Science 233:1078–1080.PubMedGoogle Scholar
  93. Hekman, C. M., and Loskutoff, D. J., 1985, Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by dénaturants, J. Biol. Chem. 260:11581–11587.PubMedGoogle Scholar
  94. Hertle, M. D., Kubier, M.-D., Leigh, I. M., and Watt, F. M., 1992, Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis, J. Clin. Invest. 89:1892–1901.PubMedGoogle Scholar
  95. Herz, J., Clouthier, D. E., and Hammer, R. E., 1992, LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation, Cell 71:411–421.PubMedGoogle Scholar
  96. Howard, E. W., Bullen, E. C., and Banda, M. J., 1991, Regulation of the autoactivation of human 72 kDa progelatinase by tissue inhibitor of metalloproteinases-2, J. Biol. Chem. 266:13064–13069.PubMedGoogle Scholar
  97. Høyer-Hansen, G., Rønne, E., Solberg, H., Behrendt, N., Ploug, M., Lund, L. R., Ellis, V., and Danø, K., 1992, Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand binding domain, J. Biol. Chem. 267:18224–18229.PubMedGoogle Scholar
  98. Huhtala, P., Tuuttila, A., Chow, L. T., Lohi, J., Keski-Oja, J., and Tryggvason, K., 1991, Complete structure of the human gene for 92-kDa type IV collagenase, J. Biol. Chem. 266:16485–16490.PubMedGoogle Scholar
  99. Iadonato, S. P., Bu, G., Maksymovitch, E. A., and Schwartz, A. L., 1993, Interaction of a 39 kDa protein with the low-density-lipoprotein-receptor-related protein (LRP) on rat hepatoma cells, Biochem. J. 296:867–875.PubMedGoogle Scholar
  100. Ichinose, A., 1992, Multiple members of the plasminogen-apolipoprotein(a) gene family associated with thrombosis, Biochemistry 31:3113–3118.PubMedGoogle Scholar
  101. Ichinose, A., Kisiel, W., and Fjuikawa, K., 1984, Proteolytic activation of tissue plasminogen activator by plasma and tissue enzymes, FEBS Lett. 175:412–418.PubMedGoogle Scholar
  102. Isseroff, R. R., and Rifkin, D. B., 1983, Plasminogen is present in the basal layer of epidermis, J. Invest. Dermatol. 80:297–299.PubMedGoogle Scholar
  103. Isseroff, R. R., Fusenig, N. E., and Rifkin, D. B., 1983, Plasminogen activator in differentiating mouse keratinocytes, J. Invest. Dermatol. 80:217–222.PubMedGoogle Scholar
  104. Juhasz, I., Murphey, G. F., Yan, H.-C., Herlyn, M., and Albelda, S. M., 1993, Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous wound healing in vivo, Am. J. Pathol. 143:1458–1469.PubMedGoogle Scholar
  105. Kanalas, J. J., and Makker, S. P., 1991, Identification of the rat Heymann nephritis autoantigen (gp330) as a receptor site for plasminogen, J. Biol. Chem. 266:10825–10829.PubMedGoogle Scholar
  106. Kawano, T., Morimoto, K., and Uemura, Y., 1970, Partial purification and properties of urokinase inhibitor from human placenta, J. Biochem. 67:333–342.PubMedGoogle Scholar
  107. Kim, J. P., Zhang, K., Kramer, R. H., Schall, T. J., and Woodley, D. T., 1992, Integrin receptors and RGD sequences in human keratinocyte migration: Unique anti-migratory function of a3bl epiligrin receptor, J. Invest. Dermatol. 5:764–770.Google Scholar
  108. Kim, K. J., Li, B., Houck, K., Winer, J., and Ferrara, N., 1992, The vascular endothelial growth factor proteins: Identification of biologically relevant regions by neutralizing monoclonal antibodies, Growth Factors 7:53–64.PubMedGoogle Scholar
  109. Kirchheimer, J. C., Nong, Y. H., and Remold, H. G., 1988, IFN-gamma, tumor necrosis factor alpha, and urokinase regulate the expression of urokinase receptors on human monocytes, J. Immunol. 141:4229–4234.PubMedGoogle Scholar
  110. Kobayashi, H., Schmitt, M., Goretzki, L., Chucholowski, N., Calvete, J., Kramer, M., Günzler, W. A., Jänicke, F., and Graeff, H., 1991, Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (pro-uPA), J. Biol. Chem. 266:5147–5152.PubMedGoogle Scholar
  111. Kounnas, M. Z., Henkin, J., Argraves, W. S., and Strickland, D. K., 1993, Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates cellular uptake of prourokinase, J. Biol. Chem. 268:21862–21867.PubMedGoogle Scholar
  112. Kristensen, P., Larsson, L. I., Nielsen, L. S., Grøndahl-Hansen, J., Andreasen, P. A., and Danø, K., 1984, Human endothelial cells contain one type of plasminogen activator, FEBS Lett. 168:33–37.PubMedGoogle Scholar
  113. Kruithof, E. K. O., Vassalli, J. D., Schleuning, W. D., Mattaliano, R. J., and Bachman, F., 1986, Purification and characterization of a plasminogen activator inhibitor from the histiocytic lymphoma cell line U-937, J. Biol. Chem. 261:11207–11213.PubMedGoogle Scholar
  114. Küpper, T., 1990, The activated keratinocyte: A model for inducible cytokine production by non-bone marrow-derived cells in cutaneous inflammatory and immune responses, J. Invest. Dermatol. 94(Suppl. 6):146S–149S.PubMedGoogle Scholar
  115. Lacraz, S., Nicod, L., Galve-de Rochemonteix, B., Baumberger, C., Dayer, J.-M., and Welgus, H. G., 1992, Suppression of metalloproteinase biosynthesis in human alveolar macrophages by interleukin-4, J. Clin. Invest. 90:382–388.PubMedGoogle Scholar
  116. Lacraz, S., Isler, P., Welgus, H. G., and Dayer, J.-M., 1994a, Direct contact between T-lymphocytes and monocytes is a major pathway for the induction of metalloproteinase expression, J. Biol. Chem. 269:22027–22033.PubMedGoogle Scholar
  117. Lacraz, S., Nicod, L., Welgus, H. G., and Dayer, J.-M., 1995, IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes, J. Clin. Invest, in press.Google Scholar
  118. Larjava, H., Salo, T., Haapasalmi, K., Kramer, R. H., and Heino, J., 1993, Expression of integrins and basement membrane components by wound keratinocytes, J. Clin. Invest. 92:1425–1435.PubMedGoogle Scholar
  119. Leco, K. J., Khokha, R., Pavloff, N., Hawkes, S. P., and Edwards, D. R., 1994, TIMP-3 is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues, J. Biol. Chem. 269:9352–9360.PubMedGoogle Scholar
  120. Lee, S. W., Ellis, V., and Dichek, D. A., 1994, Characterization of plasminogen activation by glycosyl-phosphatidylinositol-anchored urokinase, J. Biol. Chem. 269:2411–2418.PubMedGoogle Scholar
  121. Li, W. H., and Graur, D., 1991, Evolution by gene duplication and exon shuffling. Exon shuffling, in: Fundamentals of Molecular Evolution, pp. 153-155, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  122. Lipton, A., Klinger, I., Paul, D., and Holley, R. W., 1971, Migration of mouse 3T3 fibroblasts in response to a serum factor, Proc. Natl. Acad. Sci. USA 68:2799–2801.PubMedGoogle Scholar
  123. Loskutoff, D. J., and Edgington, T. S., 1977, Synthesis of a fibrinolytic activator and inhibitor by endothelial cells, Proc. Natl. Acad. Sci. USA 74:3903–3907.PubMedGoogle Scholar
  124. Low, D. A., Baker, J. B., Koonce, W. C., and Cunningham, D. D., 1981, Release of protease nexin regulates cellular binding, internalization, and degradation of serine proteinases, Proc. Natl. Acad. Sci. USA 78:2340–2344.PubMedGoogle Scholar
  125. Lu, H., Misrhahi, M. C., Krief, P., Soria, C., Soria, J., Mishal, Z., Bertrand, O., Perrot, J. Y., Li, H., Pujade, E., Bernadou, A., and Caen, J. P., 1988, Parallel induction of fibrinolysis and receptors for plasminogen and urokinase by interferon gamma on U937 cells, Biochem. Biophys. Res. Commun. 155:418–422.PubMedGoogle Scholar
  126. Lund, L. R., Romer, J., Ronne, E., Ellis, V., Blasi, F., and Dano, K., 1991a, Urokinase-receptor biosynthesis, mRNA level and gene transcription are increased by transforming growth factor βl in human A549 lung carcinoma cells, EMBO J. 10:3399–3407.PubMedGoogle Scholar
  127. Lund, L. R., Rønne, E., Roldan, A. L., Behrendt, N., Romer, J., Blasi, F., and Dano, K., 1991b, Urokinase receptor mRNA level and gene transcription are strongly and rapidly increased by phorbol myristate acetate in human monocyte-like U937 cells, J. Biol. Chem. 266:5177–5181.PubMedGoogle Scholar
  128. Lyons, R. M., Keski-Oja, J., and Moses, H. L., 1988, Proteolytic activation of latent transforming growth factor-β from fibroblast conditioned medium, J. Cell Biol. 106:1659–1665.PubMedGoogle Scholar
  129. Lyons, R. M., Gentry, L. E., Purchio, A. F., and Moses, H. L., 1990, Mechanism of activation of latent recombinant transforming growth factor β-1 by plasmin, J. Cell Biol. 110:1361–1367.PubMedGoogle Scholar
  130. Maciag, T., 1984, Angiogenesis: The phenomenon, in: Progress in Thrombosis and Haemostasis (T. H. Spaet, ed.), pp. 167–182, New York, Grune and Stratton.Google Scholar
  131. Mandle, R. J., and Kaplan, A. P., 1977, Hageman factor substrates. Human plasma prekallikrein: Mechanism of activation by Hageman factor and participation in Hageman factor-dependent fibrinolysis, J. Biol. Chem. 252:6097–6104.PubMedGoogle Scholar
  132. Marcotte, P. A., Kozan, I. M., Dorwin, S. A., and Ryan, J. M., 1992, The matrix metalloproteinase Pump-1 catalyzes formation of low molecular weight (pro)urokinase in cultures of normal human kidney cells, J. Biol. Chem. 267:13803–13806.PubMedGoogle Scholar
  133. Matrisian, L. M., 1990, Metalloproteinases and their inhibitors in matrix remodeling, Trends Genet. 6:121–125.PubMedGoogle Scholar
  134. Matrisian, L. M., 1992, The matrix-degrading metalloproteinases, BioEssays 14:455–463.PubMedGoogle Scholar
  135. Mauch, C., Adelmann, G. B., Hatamochi, A., and Krieg, T., 1989, Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen, FEBS Lett. 250:301–305.PubMedGoogle Scholar
  136. Mauviel, A., 1993, Cytokine regulation of metalloproteinase gene expression, J. Cell. Biochem. 53:288–295.PubMedGoogle Scholar
  137. Mauviel, A., and Uitto, J., 1993, The extracellular matrix in wound healing: Role of the cytokine network, Wounds 5:137–152.Google Scholar
  138. Mauviel, A., Kähäri, V.-M., Evans, C. H., and Uitto, J., 1992, Transcriptional activation of fibroblast collagenase gene expression by a novel lymphokine, leukoregulin, J. Biol. Chem. 267:5644–5648.PubMedGoogle Scholar
  139. Mauviel, A., Halcin, C., Vasiloudes, P., Parks, W. C., Kurkinen, M., and Uitto, J., 1994, Uncoordinated regulation of collagenase, stromelysin, tissue inhibitor of metalloproteinases, and interleukin-8 genes by prostaglandin E2. Selective enhancement of collagenase gene expression in human dermal fibroblasts in culture, J. Cell. Biochem. 54:465–472.PubMedGoogle Scholar
  140. McKay, I. A., and Leigh, I. M., 1991, Epidermal cytokines and their roles in cutaneous wound healing, Br. J. Dermatol. 124:513–518.PubMedGoogle Scholar
  141. McNeill, H., and Jensen, P. J., 1990, A high-affinity receptor for urokinase plasminogen activator on human keratinocytes: Characterization and potential modulation during migration, Cell Regul. 1:843–852.PubMedGoogle Scholar
  142. Mignatti, P., and Rifkin, D. B., 1993, Biology and biochemistry of proteinases in tumor invasion, Physiol. Rev. 73:161–195.PubMedGoogle Scholar
  143. Mignatti, P., Robbins, E., and Rifkin, D. B., 1986, Tumor invasion through the human amniotic membrane: Requirement for a proteinase cascade, Cell 47:487–498.PubMedGoogle Scholar
  144. Mignatti, P., Tsuboi, R., Robbins, E., and Rifkin, D. B., 1989, In vitro angiogenesis on the human amniotic membrane: Requirement for basic fibroblast growth factor-induced proteinases, J. Cell Biol. 108:671–682.PubMedGoogle Scholar
  145. Mignatti, P., Mazzieri, R., and Rifkin, D. B., 1991, Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor, J. Cell Biol. 113:1193–1201.PubMedGoogle Scholar
  146. Miles, L. A., and Plow, E. F., 1985, Binding and activation of plasminogen on the platelet surface, J. Biol. Chem. 260:4303–4311.PubMedGoogle Scholar
  147. Miles, L. A., Dahlberg, C. M., Plescia, J., Felez, J., Kato, K., and Plow, E. F., 1991, Role of cell-surface lysines in plasminogen binding to cells: Identification of alpha-enolase as a candidate plasminogen receptor, Biochemistry 30:1682–1691.PubMedGoogle Scholar
  148. Miyazono, K., Hellman, U., Westedt, C., and Heldin, C. H., 1988, Latent high molecular weight complex of transforming growth factor β1, J. Biol. Chem. 263:6407–6415.PubMedGoogle Scholar
  149. Mizuno, K., and Nakamura, T., 1993, Molecular characteristics of HGF and the gene, and its biochemical aspects, EXS 65:1–29.PubMedGoogle Scholar
  150. Møller, L. B., Pöllanen, J., Rønne, E., Pedersen, N., and Blasi, F., 1993, N-linked glycosylation of the ligand-binding domain of the human urokinase receptor contributes to the affinity for its ligand, J. Biol. Chem. 268:11152–11159.PubMedGoogle Scholar
  151. Monsky, W. L., Kelly, T., Lin, C. Y., Yeh, Y., Stetler-Stevenson, W. G., Mueller, S. C., and Chen, W. T., 1993, Binding and localization of M(r) 72,000 matrix metalloproteinase at cell surface invadopodia, Cancer Res. 53:3159–3164.PubMedGoogle Scholar
  152. Montesano, R., Vassalli, J. D., Baird, A., Guillemin, R., and Orci, L., 1986, Basic fibroblast growth factor induces angiogenesis in vitro, Proc. Natl. Acad. Sci. USA 83:7297–7301.PubMedGoogle Scholar
  153. Montesano, R., Pepper, M. S., Möhle-Steinlein, U., Risau, W., Wagner, E. F., and Orci, L., 1990, Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene, Cell 62:435–445.PubMedGoogle Scholar
  154. Morton, P. A., Owensby, D. A., Wun, T. C., Billadello, J., and Schwartz, A. L., 1990, Identification of determinants involved in binding of tissue-type plasminogen activator-plasminogen activator inhibitor type 1 complexes to HepG2 cells, J. Biol. Chem. 265:14093–14099.PubMedGoogle Scholar
  155. Moscatelli, D., and Rifkin, D. B., 1988, Membrane and matrix localization of proteinases: A common theme in tumor cell invasion and angiogenesis, Biochim. Biophys. Acta 948:67–85.PubMedGoogle Scholar
  156. Moscatelli, D., Presta, M., and Rifkin, D. B., 1986, Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis and migration, Proc. Natl. Acad. Sci. USA 83:2091–2095.PubMedGoogle Scholar
  157. Moser, T. L., Enghild, J. J., Pizzo, S.V., and Stack, M. S., 1993, The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator, J. Biol. Chem. 268:18917–18923.PubMedGoogle Scholar
  158. Müller, G., Behrens, J., Nussbaumer, U., Bohlen, P., and Birchmeyer, W., 1987, Inhibitory action of transforming growth factor β on endothelial cells, Proc. Natl. Acad. Sci. USA 84:5600–5604.PubMedGoogle Scholar
  159. Mullins, D. E., and Rohrlich, S. T., 1983, The role of proteinases in cellular invasiveness, Biochim. Biophys. Acta 695:177–214.PubMedGoogle Scholar
  160. Murphy, G., Cockett, M. I., Stephens, P. E., Smith, B. J., and Docherty, A. J., 1987, Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes, Biochem. J. 248:265–268.PubMedGoogle Scholar
  161. Murphy, G., Cockett, M. I., Ward, R. V., and Docherty, A. J. P., 1991, Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 75 kDa gelatinases, stromelysins-1 and-2 and punctuated metalloproteinase (PUMP), Biochem. J. 277:277–279.PubMedGoogle Scholar
  162. Murphy, G., Allan, J. A., Willenbrock, F., Cockett, M. I., O’Connell, J. P., and Docherty, A. J. P., 1992a, The C-terminal domain in collagenase and stromelysin specificity, J. Biol. Chem. 267:9612–9618.PubMedGoogle Scholar
  163. Murphy, G., Ward, R., Gavrilovic, J., and Atkinson, S., 1992b, Physiological mechanisms for metalloproteinase activation, Matrix (Suppl.) 1:224–230.PubMedGoogle Scholar
  164. Murphy, G., Willenbrock, F., Ward, R. V., Cockett, M. I., Eaton, D., and Docherty, A. J. P., 1992c, The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases, Biochem. J. 283:637–641.PubMedGoogle Scholar
  165. Murphy, G., Segain, J. P., O’Shea, M., Cockett, M., Ioannou, C., Lefebvre, O., Chambon, P., and Basset, P., 1993, The 28 kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase, J. Biol. Chem. 268:15435–15441.PubMedGoogle Scholar
  166. Murphy, G., Nguyen, Q., Cockett, M. I., Atkinson, S. J., Allan, J. A., Knight, C. G., Willenbrock, F., and Docherty, A. J. P., 1994, Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant, J. Biol. Chem. 269:6632–6636.PubMedGoogle Scholar
  167. Nakamura, T., 1991, Structure and function of hepatocyte growth factor, Prog. Growth Factor Res. 3:67–85.PubMedGoogle Scholar
  168. Naldini, L., Tamagnone, L., Vigna, E., Sachs, M., Hartmann, G., Birchmeier, W., Daikuhara, Y., Tsubouchi, H., Blasi, F., and Comoglio, P. M., 1992, Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor, EMBO J. 11:4825–4833.PubMedGoogle Scholar
  169. Nielsen, L. S., Kellerman, G. M., Behrendt, N., Picone, R., Danø, K., and Blasi, F., 1988, A 55,000-60,000 M r receptor protein for urokinase-type plasminogen activator: Identification in human tumor cell lines and partial purification, J. Biol. Chem. 263:2358–2363.PubMedGoogle Scholar
  170. Norris, D. A., Clark, R. A. F., Swigart, L. M., Huff, J. C., Westin, W. L., and Howell, S. E., 1982, Fibronectin fragments are chemotactic for human peripheral blood monocytes, J. Immunol. 129:1612–1618.PubMedGoogle Scholar
  171. O’Connell, J. P., Willenbrock, F., Docherty, A. J. P., Eaton, D., and Murphy, G., 1994, Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B, J. Biol. Chem. 269:14967–14973.PubMedGoogle Scholar
  172. Odekon, L. E., Sato, Y., and Rifkin, D. B., 1992, Urokinase-type plasminogen activator mediates basic fibroblast growth factor-induced bovine endothelial cell migration independent of its proteolytic activity, J. Cell. Physiol. 150:258–263.PubMedGoogle Scholar
  173. O’Shea, M. O., Willenbrock, F., Williamson, R. A., Cockett, M. I., Freedman, R. B., Reynolds, J. J., Docherty, A. J. P., and Murphy, G., 1992, Site-directed mutations that alter the inhibitory activity of the tissue inhibitor of metalloproteinases-1: importance of the n-terminal region between cystein 3 and cystein 13, Biochemistry 31:10146–10152.PubMedGoogle Scholar
  174. Ossowski, L., Quigley, J. P., Kellerman, G. M., and Reich, E., 1973, Fibrinolysis associated with oncogenic transformation. Requirement of plasminogen for correlated changes in cellular morphology, colony formation in agar and cell migration, J. Exp. Med. 138:1056–1064.PubMedGoogle Scholar
  175. Overall, C. M., Wrana, J. L., and Sodek, J., 1991, Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression, J. Biol. Chem. 266:14064–14071.PubMedGoogle Scholar
  176. Pellegrini, G., De Luca, M., Orecchia, G., Balzac, F., Cremona, O., Savoia, P., Cancedda, R., and Marchisio, P. C., 1992, Expression, topography, and function of integrin receptors are severely altered in ker-atinocytes from involved and uninvolved psoriatic skin, J. Clin. Invest. 89:1783–1795.PubMedGoogle Scholar
  177. Pennica, D., Holmens, W. E., Kohr, W. J., Harkins, R. N., Vehar, G. A., Ward, C. A., Bennet, W. F., Yelverton, E., Seeburg, P. H., Heyneker, H. L., Goeddel, D. V., and Collen, D., 1983, Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli, Nature 301:214–221.PubMedGoogle Scholar
  178. Pepper, M. S., Belin, D., Montesano, R., Orci, L., and Vassalli, J. D., 1990, Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro, J. Cell Biol. 111:743–755.PubMedGoogle Scholar
  179. Pepper, M. S., Ferrara, N., Orci, L., and Montesano, R., 1991, Vascular endothelial cell growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells, Biochem. Biophys. Res. Commun. 181:902–906.PubMedGoogle Scholar
  180. Pepper, M. S., Ferrara, N., Orci, L., and Montesano, R., 1992a, Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro, Biochem. Biophys. Res. Commun. 189:824–831.PubMedGoogle Scholar
  181. Pepper, M. S., Matsumoto, K., Nakamura, T., Orci, L., and Montesano, R., 1992b, Hepatocyte growth factor increases urokinase-type plasminogen activator (u-PA) and u-PA receptor expression in Madin-Darby canine kidney epithelial cells, J. Biol. Chem. 267:20493–20496.PubMedGoogle Scholar
  182. Pepper, M. S., Sappino, A. P., Montesano, R., Orci, L., and Vassalli, J. D., 1992c, Plasminogen activator inhibitor-1 is induced in migrating endothelial cells, J. Cell. Physiol. 153:129–139.PubMedGoogle Scholar
  183. Pepper, M. S., Sappino, A. P., Stocklin, R., Montesano, R., Orci, L., and Vassalli, J. D., 1993, Up-regulation of urokinase receptor expression on migrating endothelial cells, J. Cell Biol. 122:673–684.PubMedGoogle Scholar
  184. Petersen, L. C., Lund, L. R., Nielsen, L. S., Dano, K., and Skriver, L., 1988, One chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity, J. Biol. Chem. 263:11189–11195.PubMedGoogle Scholar
  185. Petersen, M. J., Woodley, D. T., Stricklin, G. P., and O’Keefe, E. J., 1990, Enhanced synthesis of collagenase by human keratinocytes cultured on type I or type IV collagen, J. Invest. Dermatol. 94:341–346.PubMedGoogle Scholar
  186. Peverali, F. A., Mandriota, S., Ciana, P., Marelli, R., Quax, P., Rifkin, D. B., Delia Valle, G., and Mignatti, P., 1994, Tumor cells secrete an angiogenic factor that stimulates basic fibroblast growth factor and urokinase expression in vascular endothelial cells, J. Cell. Physiol. 161:1–14.PubMedGoogle Scholar
  187. Philips, M., Juul, A. G., and Thorsen, S., 1984, Human endothelial cells produce a plasminogen activator inhibitor and a tissue plasminogen activator-inhibitor complex, Biochim. Biophys. Acta 802:99–110.PubMedGoogle Scholar
  188. Picone, R., Kajtaniak, E. L., Nielsen, L. S., Behrendt, N., Mastronicola, M. R., Cubellis, M. V., Stoppelli, M. P., Pedersen, S., Danø, K., and Blasi, F., 1989, Regulation of urokinase receptors in monocyte-like U937 cells by the phorbol ester phorbol myristate acetate, J. Cell Biol. 108:693–702.PubMedGoogle Scholar
  189. Ploug, M., Ronne, E., Behrendt, N., Jensen, A. L., Blasi, F., and Dano, K., 1991, Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol, J. Biol. Chem. 266:1926–1933.PubMedGoogle Scholar
  190. Plow, E. F., and Miles, L. A., 1990, Plasminogen receptors in the mediation of pericellular proteolysis, Cell. Differ. Dev. 32:293–298.PubMedGoogle Scholar
  191. Plow, E. F., Freaney, D. E., Plescia, J., and Miles, L. A., 1986, The plasminogen system and cell surfaces: Evidence for plasminogen and urokinase receptors on the same cell type, J. Cell Biol. 103:2411–2420.PubMedGoogle Scholar
  192. Pollack, R., and Rifkin, D. B., 1975, Actin-containing cables within anchorage-dependent rat embryo cells are dissociated by plasmin and trypsin, Cell 6:495–506.Google Scholar
  193. Pöllanen, J. J., 1993, The N-terminal domain of human urokinase receptor contains two distinct regions critical for ligand recognition, Blood 82:2719–2729.PubMedGoogle Scholar
  194. Pöllanen, J., Hedman, K., Nielsen, L. N., Danø, K., and Vaheri, A., 1988, Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts, J. Cell Biol. 106:87–95.PubMedGoogle Scholar
  195. Ponting, C. P., Marshall, J. M., and Cederholm-Williams, S. A., 1992, Plasminogen: A structural review, Blood Coagul. Fibrinolysis 3:605–614.PubMedGoogle Scholar
  196. Porras-Reyez, B. H., Blair, H. C., Jeffrey, J. J., and Mustoe, T. A., 1991, Collagenase production at the border of granulation tissue in a healing wound: Macrophage and mesenchymal collagenase production in vivo, Connect. Tissue Res. 27:63–71.Google Scholar
  197. Postlethwaite, A. E., and Kang, A. H., 1976, Collagen and collagen peptide-induced chemotaxis of human blood monocytes, J. Exp. Med. 143:1299–1307.PubMedGoogle Scholar
  198. Quinn, C. O., Scott, D. K., Brinckerhoff, C. E., Matrisian, L. M., Jeffrey, J. J., and Partridge, N. C., 1990, Rat collagenase: Cloning, amino acid sequence comparison and parathyroid hormone regulation in osteo-blastic cells, J. Biol. Chem. 265:13521–13527.Google Scholar
  199. Ramakrishnan, V., Sinicropi, D. V., Dere, R., Darbonne, W. C., Bechtol, K. B., and Baker, J. B., 1990, Interaction of wild-type and catalytically inactive mutant forms of tissue-type plasminogen activator with human umbilical vein endothelial cell monolayers, J. Biol. Chem. 265:2755–2762.PubMedGoogle Scholar
  200. Risch, J., Werb, Z., and Fukuyama, K., 1980, Effect of plasminogen and its activities on nuclear disintegration in newborn mice skin in culture, J. Invest. Dermatol. 174:257 (Abstract).Google Scholar
  201. Robbins, K. C., and Summaria, L., 1970, Human plasminogen and plasmin, Methods Enzymol. 19:184–199.Google Scholar
  202. Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, N. S., Wakefield, L. M., Heine, U. I., Liotta, L. A., Falanga, V., Kehrl, J. H., and Fauci, A. S., 1986, Transforming growth factor type β: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc. Natl. Acad. Sci. USA 83:4167–4171.PubMedGoogle Scholar
  203. Rodgers, W. H., Osteen, K. G., Matrisian, L. M., Navre, M., Giudice, L. C., and Gorstein, F., 1993, Expression and localization of matrilysin, a matrix metalloproteinase, in human endometrium during the reproductive cycle, Am. J. Obstet. Gynecol. 168:253–260.PubMedGoogle Scholar
  204. Rogelj, S., Klagsbrun, M., Atzmon, R., Kurokawa, M., Haimovitz, A., Fuks, Z., and Vlodavski, I., 1989, Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC12 cells, J. Cell Biol. 109:823–831.PubMedGoogle Scholar
  205. Rogister, B., Delree, P., Leprince, P., Martin, D., Sadzot, C., and Malgrange, B., 1993, Transforming growth factor beta as a neuronoglial signal during peripheral nervous system response to injury, J. Neurosci. Res. 34:32–43.PubMedGoogle Scholar
  206. Roldan, A. L., Cubellis, M. V., Masucci, M. T., Behrendt, N., Lund, L. R., Danø, K., Appella, E., and Blasi, F., 1990, Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis, EMBO J. 9:467–474.PubMedGoogle Scholar
  207. Ronne, E., Behrendt, N., Ellis, V., Ploug, M., Dano, K., and Hoyer-Hansen, G., 1991, Cell-induced potentiation of the plasminogen activation system is abolished by a monoclonal antibody that recognizes the NH2-terminal domain of the urokinase receptor, FEBS Lett. 288:233–236.PubMedGoogle Scholar
  208. Russell, M. E., Quertermous, T., Declerck, P. J., Collen, D., Haber, E., and Homcy, C. J., 1990, Binding of tissue-type plasminogen activator with human endothelial cell monolayers. Characterization of the high affinity interaction with plasminogen activator inhibitor-1, J. Biol. Chem. 265:2569–2575.PubMedGoogle Scholar
  209. Saarialho-Kere, U. K., Chang, E. S., Welgus, H. G., and Parks, W. C., 1992, Distinct localization of collagenase and TIMP expression in wound healing associated with ulcerative pyogenic granuloma, J. Clin. Invest. 90:1952–1957.PubMedGoogle Scholar
  210. Saarialho-Kere, U. K., Chang, E. S., Welgus, H. G., and Parks, W. C., 1993a, Expression of interstitial collagenase, 92 kDa gelatinase, and TIMP-1 in granuloma annulare and necrobiosis lipoidica diabet-icorum, J. Invest. Dermatol. 100:335–342.PubMedGoogle Scholar
  211. Saarialho-Kere, U. K., Kovacs, S. O., Pentland, A. P., Olerud, J., Welgus, H. G., and Parks, W C., 1993b, Cell-matrix interactions influence interstitial collagenase expression by human keratinocytes actively involved in wound healing, J. Clin. Invest. 92:2858–2866.PubMedGoogle Scholar
  212. Saarialho-Kere, U. K., Welgus, H. G., and Parks, W. C., 1993c, Distinct mechanisms regulate interstitial collagenase and 92 kDa gelatinase expression in human monocytic-like cells exposed to bacterial endotoxin, J. Biol. Chem. 268:17354–17361.PubMedGoogle Scholar
  213. Saarialho-Kere, U. K., Crouch, E. C., and Parks, W. C., 1995, The matrix metalloproteinase matrilysin is constitutively expressed in human exocrine epithelium, J. Invest. Dermatol. 105:190–196.PubMedGoogle Scholar
  214. Saarialho-Kere, U. K., Kovacs, S. O., Pentland, A. P., Parks, W. C., and Welgus, H. G., 1994, Distinct populations of keratinocytes express stromelysin-1 and-2 in chronic wounds, J. Clin. Invest. 94:79–88.PubMedGoogle Scholar
  215. Saarinen, J., Kalkkinen, N., Welgus, H. G., and Kovanen, P. T., 1994, Direct activation of human interstitial procollagenase (MMP-1) by human mast cell chymase in the presence of heparin, J. Biol. Chem. 269:18134–18140.PubMedGoogle Scholar
  216. Saksela, O., and Rifkin, D. B., 1988, Cell-associated plasminogen activation: Regulation and physiological functions, Ann. Rev. Cell Biol. 4:93–126.PubMedGoogle Scholar
  217. Saksela, O., and Rifkin, D. B., 1990, Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity, J. Cell Biol. 110:767–775.PubMedGoogle Scholar
  218. Saksela, O., Moscatelli, D., and Rifkin, D. B., 1987, The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activator activity in capillary endothelial cells, J. Cell Biol. 105:957–963.PubMedGoogle Scholar
  219. Saksela, O., Moscatelli, D., Sommer, A., and Rifkin, D. B., 1988, Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation, J. Cell Biol. 107:743–751.PubMedGoogle Scholar
  220. Salo, T., Lyons, J. G., Rahemtulla, F., Birkedal-Hansen, H., and Larjava, H., 1991, Transforming growth factor-β1 up-regulates type IV collagenase expression in cultured human keratinocytes, J. Biol. Chem. 266:11436–11441.PubMedGoogle Scholar
  221. Salo, T., Mäkela, M., Kylmäniemi, M., Autio-Harmainen, H., and Larjava, H., 1994, Expression of matrix metalloproteinase-2 and-9 during early human wound healing, Lab. Invest. 70:176–182.PubMedGoogle Scholar
  222. Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., and Seiki, M., 1994, A matrix metalloproteinase expressed on the surface of invasive tumor cells, Nature 370:61–65.PubMedGoogle Scholar
  223. Sato, Y., and Rifkin, D. B., 1989, Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor β-1-like molecule by plasmin, J. Cell Biol. 109:309–315.PubMedGoogle Scholar
  224. Sato, Y., Tsuboi, R., Lyons, R. M., Moses, H. L., and Rifkin, D. B., 1990, Characterization of the activation of latent TGF-β by co-cultures of endothelial cells and pericytes or smooth muscle cells: A self-regulating system, J. Cell Biol. 111:757–763.PubMedGoogle Scholar
  225. Schneiderman, J., Sawdey, M., Craig, H., Thinnes, T., Bordin, G., and Loskutoff, D. J., 1993, Type 1 plasminogen activator inhibitor gene expression following partial hepatectomy, Am. J. Pathol. 143:753–762.PubMedGoogle Scholar
  226. Senior, R. M., Griffin, G. L., and Mecham, R. P., 1980, Chemotactic activity of elastin-derived peptides, J. Clin. Invest. 66:859–862.PubMedGoogle Scholar
  227. Shapiro, S., Doyle, G. A. D., Parks, W. C., Ley, T. J., and Welgus, H. G., 1993, Divergent mechanisms regulating the production of collagenase and TIMP in U937 cells: Evidence for involvement of delayed transcriptional activation and enhanced mRNA stability, Biochemistry 32:4286–4292.PubMedGoogle Scholar
  228. Shapiro, S. D., Campbell, E. J., Kobayashi, D. K., and Welgus, H. G., 1990, Immune modulation of metalloproteinase production in human macrophages. Selective pretranslational suppression of interstitial collagenase and stromelysin biosynthesis by interferon-7, J. Clin. Invest. 86:1204–1210.PubMedGoogle Scholar
  229. Shapiro, S. D., Campbell, E. J., Kobayashi, D. K., and Welgus, H. G., 1991, Dexamethasone selectively modulates basal and lipopolysaccharide-induced metalloproteinase and tissue inhibitor of metalloproteinase production by human alveolar macrophages, J. Immunol. 146:2724–2729.PubMedGoogle Scholar
  230. Shapiro, S. D., Griffin, G. L., Gilber, D. J., Jenkins, N. A., Copeland, N. G., Welgus, H. G., Senior, R. M., and Ley, T. J., 1992, Molecular cloning, chromosomal localization and bacterial expression of a novel murine macrophage metalloelastase, J. Biol. Chem. 267:4664–4671.PubMedGoogle Scholar
  231. Shapiro, S.D., Kobayashi, D., Pentland, A. P., and Welgus, H. G., 1993a, Induction of macrophage metal-loproteinases by extracellular matrix substrates: Evidence for enzyme-and substrate-specific responses involving prostaglandin-dependent mechanisms, J. Biol. Chem. 268:8170–8175.PubMedGoogle Scholar
  232. Shapiro, S. D., Kobayashi, D. K., and Ley, T. J., 1993b, Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages, J. Biol. Chem. 268:23824–23829.PubMedGoogle Scholar
  233. Shattil, S. J., and Brugge, J. S., 1991, Protein tyrosine phosphorylation and the adhesive functions of platelets, Curr. Opin. Cell Biol. 3:869–879.PubMedGoogle Scholar
  234. Simon, D. I., Ezratty, A. M., Francis, S. A., Rennke, H., and Loscalzo, J., 1993, Fibrin(ogen) is internalized and degraded by activated human monocytoid cells via Mac-1 (CD11b/CD18): A nonplasmin fibrinoly-tic pathway, Blood 82:2414–2422.PubMedGoogle Scholar
  235. Sires, U. I., Griffin, G. L., Broekelmann, T. J., Mecham, R. P., Murphy, G., Chung, A. E., Welgus, H. G., and Senior, R. M., 1993, Degradation of entactin by matrix metalloproteinases. Susceptibility to matrilysin and identification of cleavage sites, J. Biol. Chem. 268:2069–2074.PubMedGoogle Scholar
  236. Sirum, K. L., and Brinckerhoff, C. E., 1989, Cloning of the genes for human stromelysin and stromelysin 2: Differential expression in rheumatoid synovial fibroblasts, Biochemistry 28:8691–8698.PubMedGoogle Scholar
  237. Skriver, L., Nielsen, L. S., Stephens, R., and Dano, K., 1982, Plasminogen activator released as inactive proenzyme from murine cells transformed by sarcoma virus, Eur. J. Biochem. 124:409–414.PubMedGoogle Scholar
  238. Staatz, W. D., Rajpara, S. M., Wayner, E. A., Carter, W. G., and Santoro, S. A., 1989, The membrane glycoprotein Ia-IIa (VLA-2) complex mediates the Mg+2-dependent adhesion of platelets to collagen, J. Cell Biol. 108:1917–1924.PubMedGoogle Scholar
  239. Stack, M. S., and Pizzo, S. V., 1993, Modulation of tissue plasminogen activator-catalyzed plasminogen activation by synthetic peptides derived from the amino-terminal heparin binding domain of fibronectin, J. Biol. Chem. 268:18924–18928.PubMedGoogle Scholar
  240. Ståhle-Bäckdahl, M., and Parks, W. C., 1993, 92 kDa gelatinase is actively expressed by eosinophils and secreted by neutrophils in invasive squamous cell carcinoma, Am. J. Pathol. 142:995–1000.PubMedGoogle Scholar
  241. Ståhle-Bäckdahl, M., Inoue, M., Giudice, G. J., and Parks, W. C., 1994, 92 kDa gelatinase is produced by eosinophils at the site of blister formation in bullous pemphigoid and cleaves the extracellular domain of the 180 kDa bullous pemphigoid autoantigen (type XVII collagen), J. Clin. Invest. 93:2202–2230.Google Scholar
  242. Stecher, V. J., and Sorchin, E., 1972, The chemotactic activity of fibrin lysis products, Int. Arch. Allergy Appl. Immunol. 43:879–886.PubMedGoogle Scholar
  243. Stenn, K. S., and Malhotra, R., 1992, Epithelialization, in: Wound Healing: Biochemical and Clinical Aspects (I. K. Cohen, R. F. Diegelmann, and W. J. Linblad, eds.), pp. 115–127, Saunders, Philadelphia.Google Scholar
  244. Stoppelli, M. P., Corti, A., Soffientini, A., Cassani, G., Blasi, F., and Assoian, R. K., 1985, Differentiation-enhanced binding of the amino-terminal fragment of human plasminogen activator to a specific receptor on U937 monocytes, Proc. Natl. Acad. Sci. USA 82:4939–4943.PubMedGoogle Scholar
  245. Stoppelli, M. P., Tacchetti, C., Cubellis, M. V., Corti, A., Hearing, V. J., Cassani, G., Appella, E., and Blasi, F., 1986, Autocrine saturation of pro-urokinase receptors on human A431 cells, Cell 45:675–684.PubMedGoogle Scholar
  246. Stricklin, G. P., Bauer, E. A., Jeffrey, J. J., and Eisen, A. Z., 1977, Human skin collagenase: Isolation of precursor and active forms from both fibroblast and organ cultures, Biochemistry 16:1607–1615.PubMedGoogle Scholar
  247. Stricklin, G. P., Li, L., Jancic, V., Wenczak, B. A., and Nanney, L. B., 1993, Localization of mRNAs representing collagenase and TIMP in sections of healing human burn wounds, Am. J. Pathol. 143:1657–1666.PubMedGoogle Scholar
  248. Sudbeck, B. D., Welgus, H. G., Parks, W. C., and Pentland, A. P., 1994, Collagen-mediated induction of collagenase by basal keratinocytes involves distinct intracellular pathways, J. Biol. Chem. 269:30022–30029.PubMedGoogle Scholar
  249. Summaria, L., Wohl, R. C., Boreisha, I. G., and Robbins, K. C., 1982, A virgin enzyme derived from human plasminogen. Specific cleavage of the arginyl-560-valyl peptide bond in the diisopropoxyphosphinyl virgin enzyme by plasminogen activators, Biochemistry 21:2056–2059.PubMedGoogle Scholar
  250. Symington, B. E., Takada, Y., and Carter, W. G., 1993, Interaction of integrins a3bl and a2bl: Potential role in keratinocyte intercellular adhesion, J. Cell Biol. 120:523–535.PubMedGoogle Scholar
  251. Tashiro, K., Hagiya, M., Nishizawa, T., Seki, T., Shimonishi, M., Shimizu, S., and Nakamura, T., 1990, Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues, Proc. Natl. Acad. Sci. USA 87:3200–3204.PubMedGoogle Scholar
  252. Tremble, P., Chiquet-Ehrismann, R., and Werb, Z., 1994, The extracellular matrix ligands fibronectin and tenascin collaborate in regulating collagenase gene expression in fibroblasts, Mol. Biol. Cell 5:439–453.PubMedGoogle Scholar
  253. Tsuboi, R., and Rifkin, D. B., 1990, Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice, J. Exp. Med. 172:245–251.PubMedGoogle Scholar
  254. Tsuboi, R., Sato, Y., and Rifkin, D. B., 1990, Correlation of cell migration, cell invasion, receptor number, proteinase production, and basic fibroblast growth factor levels in endothelial cells, J. Cell Biol. 110:511–517.PubMedGoogle Scholar
  255. Tsuboi, R., Sato, C., Kurita, Y., Ron, D., Rubin, J. S., and Ogawa, H., 1993, Keratinocyte growth factor (FGF-7) stimulates migration and plasminogen activator activity of normal human keratinocytes, J. Invest. Dermatol. 101:49–53.PubMedGoogle Scholar
  256. Turksen, K., Choi, Y., and Fuchs, E., 1991, Transforming growth factor alpha induces collagen degradation and cell migration in differentiating human epidermal raft cultures, Cell Regul. 2:613–625.PubMedGoogle Scholar
  257. Unemori, E. N., Bair, M. J., Bauer, E. A., and Amento, E. P., 1991a, Stromelysin expression regulates collagenase activation in human fibroblasts, J. Biol. Chem. 266:23477–23482.PubMedGoogle Scholar
  258. Unemori, E. N., Hibbs, M. S., and Amento, E. P., 1991b, Constitutive expression of 92-kDa gelatinase (type IV collagenase) by rheumatoid synovial fibroblasts and its induction in normal human fibroblasts by inflammatory cytokines, J. Clin. Invest. 88:1656–1662.PubMedGoogle Scholar
  259. Unkeless, J. C., Gordon, S., and Reich, E., 1974, Secretion of plasminogen activator by stimulated macrophages, J. Exp. Med. 139:834–850.PubMedGoogle Scholar
  260. Van Wart, H. E., and Birkedal-Hansen, H., 1990, The cysteine switch: A principle of regulation of metal-loproteinase activity with potential applicability to the entire matrix metalloproteinase gene family, Proc, Natl. Acad. Sci. USA 87:5578–5582.Google Scholar
  261. Vassalli, J. D., Dayer, J. M., Wohlwend, A., and Belin, D., 1984, Concomitant secretion of prourokinase and of plasminogen activator-specific inhibitor by cultured human monocytes-macrophages, J. Exp. Med. 159:1653–1668.PubMedGoogle Scholar
  262. Verde, P., Stoppelli, M. P., Galeffi, P., Di Nocera, P., and Blasi, F., 1984, Identification and primary sequence of an unspliced human urokinase poly (A) + RNA, Proc. Natl. Acad. Sci. USA 81:4727–4731.PubMedGoogle Scholar
  263. Vincenti, M. P., Coon, C. I., and Brinckerhoff, C. E., 1994, Regulation of collagenase gene expression by IL-lbeta requires transcriptional and post-transcriptional mechanisms, Nucleic Acid Res. 22:4818–4827.PubMedGoogle Scholar
  264. Vine, N., and Powell, J. T., 1991, Metalloproteinases in degenerative aotic disease, Clin. Sci. 81:233–239.PubMedGoogle Scholar
  265. Vlodavsky, I., Fuks, Z., Bar-Ner, M., Ariav, Y., and Schirrmacher, V., 1983, Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: Relationship to tumor cell metastasis, Cancer Res. 43:2704–2711.PubMedGoogle Scholar
  266. Welgus, H. G., Jeffrey, J. J., and Eisen, A. Z., 1981, The collagen substrate specificity of human skin fibroblast collagenase, J. Biol. Chem. 256:9511–9515.PubMedGoogle Scholar
  267. Welgus, H. G., Campbell, E. J., Cury, J. D., Eisen, A. Z., Senior, R. M., Wilhelm, S. M., and Goldberg, G. I., 1990, Neutral metalloproteinases produced by human mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development, J. Clin. Invest. 86:1496–1502.PubMedGoogle Scholar
  268. Welgus, H. G., and Stricklin, G. P., 1983, Human skin fibroblast collagenase inhibitor: Comparative studies in human connective tissues, serum and amniotic fluid, J. Biol. Chem. 258:12259–12264.PubMedGoogle Scholar
  269. Werb, Z., Mainardi, C., Vater, C. A., and Harris, E. D., 1977, Endogenous activation of latent collagenase by rheumatoid synovial cells. Evidence for a role of plasminogen activator, N. Engl. J. Med. 296:1017–1023.PubMedGoogle Scholar
  270. Werb, Z., Banda, M. J., and Jones, P. A., 1980, Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins and collagen by proteinases isolated from macrophages, J. Exp. Med. 152:1340–1357.PubMedGoogle Scholar
  271. Werb, Z., Tremble, P. M., Behrendtsen, O., Crowley, E., and Damsky, C. H., 1989, Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression, J. Cell. Biol. 109:877–889.PubMedGoogle Scholar
  272. Windsor, L. J., Grenett, H., Birkedal-Hansen, B., Bodden, M. K., Engler, J. A., and Birkedal-Hansen, H., 1993, Cell type-specific regulation of SL-1 and SL-2 genes. Induction of the SL-2 gene but not the SL-1 gene by human keratinocytes in response to cytokines and phorbol esters, J. Biol. Chem. 268:17341–17347.PubMedGoogle Scholar
  273. Wittwer, A. J., and Sanzo, M. A., 1990, Effect of peptides on the inactivation of tissue plasminogen activator by plasminogen activator inhibitor-1 and on the binding of tissue plasminogen activator to endothelial cells, Thromb. Haemost. 64:270–275.PubMedGoogle Scholar
  274. Woessner, J. F., 1991, Matrix metalloproteinases and their inhibitors in connective tissue remodeling, FASEB J. 5:2145–2154.PubMedGoogle Scholar
  275. Woodley, D. T., Kalebec, T., Baines, A. J., Link, W., Prunieras, M., and Liotta, L., 1986, Adult human keratinocytes migrating over nonviable dermal collagen produce collagenolytic enzymes that degrade type I and type IV collagen, J. Invest. Dermatol. 4:418–423.Google Scholar
  276. Woodley, D. T., Bachmann, P. M., and O’Keefe, E. J., 1988, Laminin inhibits human keratinocyte migration, J. Cell. Physiol. 136:140–146.PubMedGoogle Scholar
  277. Yang, E. Y., and Moses, H. L., 1990, Transforming growth factor β1-induced changes in cell migration, proliferation, and angiogenesis in the chick chorioallantoic membrane, J. Cell Biol. 111:731–741.PubMedGoogle Scholar
  278. Zachary, I., and Rozengurt, E., 1992, Focal adhesion kinase (p 125 FAC): A point of convergence in the action of neuropeptides, integrins, and oncogenes, Cell 71:891–894.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Paolo Mignatti
    • 1
  • Daniel B. Rifkin
    • 2
  • Howard G. Welgus
    • 3
  • William C. Parks
    • 3
  1. 1.Department of Genetics and MicrobiologyUniversity of PaviaPaviaItaly
  2. 2.Department of Cell Biology and Kaplan Cancer CenterNew York University Medical CenterNew YorkUSA
  3. 3.Division of Dermatology, Department of MedicineWashington University School of Medicine at the Jewish HospitalSt. LouisUSA

Personalised recommendations