Advertisement

Taurine 2 pp 539-549 | Cite as

Cardioprotective Effect of Taurine on Calcium Paradox in Streptozotocin-Induced Diabetic Rat Hearts

  • Tetsuya Tatsumi
  • Satoaki Matoba
  • Akira Kawahara
  • Miyuki Kobara
  • Kouki Tsuruyama
  • Tetsuya Tanaka
  • Chiaki Nakagawa
  • Bon Ohta
  • Jun Asayama
  • Masao Nakagawa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 403)

Abstract

Through the modification of Ca2+ metabolism, taurine is known to have several beneficial physiological actions, including antiarrhythmic18, positive inotropic2–4, and membrane stabilizing effects7. In addition, it has been reported that taurine protects the heart against Ca2+ paradox-induced myocardial injury9. However, it is unclear whether taurine has a similar cardioprotective effect in diabetic hearts, which exhibit a number of alterations in metabolism. Diabetes mellitus is a disorder of carbohydrate, lipid, and protein metabolism affecting many organs. In addition to contractile abnormalities, previous studies revealed disturbances in function of subcellular organelles in diabetic hearts, including impaired glucose utilization, mitochondrial dysfunction, and depressed Na+-Ca2+ Na+-H+ exchange activities12, 17, 22.

Keywords

Cardioprotective Effect Creatine Kinase Activity Diabetic Heart Left Ventricular Develop Pressure High Energy Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asayama, J., Yamahara, Y., Ohta, B., Miyazaki, H., Tatsumi, T., Matsumoto, T., Inoue, D., and Nakagawa, M. 1992, Release kinetics cardiac troponin T in coronary effluent from isolated rat hearts during hypoxia and reoxygenation, Basic.Res.Cardiol. 87:428–436.Google Scholar
  2. 2.
    Chovan, J.P., Kulakowski, E.C., Benson, B.W., and Schaffer, S.W. 1979, Taurine enhancement of calcium binding to rat heart sarcolemma, Biochim.Biophys.Acta, 551:129–136.CrossRefGoogle Scholar
  3. 3.
    Chovan, J.P., Kulakowski, E.C., Sheakowski, S., and Schaffer, S.W. 1980, Calcium regulation by the low affinity taurine binding sites of cardiac sarcolemma, Mol.Pharmacol. 17:295–301.Google Scholar
  4. 4.
    Dolara, P., Agresti, A., Giotti, A., and Pasquini, G. 1973, Effect of taurine on calcium kinetics of guinea pig heart, Eur.J.Pharmacol. 24:352–358.CrossRefGoogle Scholar
  5. 5.
    Heyliger, C.E., Prakash, A., and McNeill, J.H. 1987, Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus, Am.J.Physiol. 252:540–544.Google Scholar
  6. 6.
    Huxtable, R.J. 1976, Metabolism and function of taurine in the heart, in: “Taurine”, Huxtable, R.J. and Barbeau, A. eds., Raven Press, New York, pp. 99–119.Google Scholar
  7. 7.
    Huxtable, R.J. and Bressler, R. 1973, Effect of taurine on a muscle intracellular membrane, Biochim.Biophys.Acta, 323:573–583.CrossRefGoogle Scholar
  8. 8.
    Huxtable, R.J. and Bressler, R. 1974, Elevation of taurine in human congestive heart failure, Life Sci. 14:1353–1359.CrossRefGoogle Scholar
  9. 9.
    Kramer, J.H., Chovan, J.P., and Schaffer, S.W. 1981, Effect of taurine on calcium paradox and ischemic heart failure, Am.J.Physiol. 240:H238–H246.Google Scholar
  10. 10.
    Kulakowski, E.C., Maturo, J., and Schaffer, S.W. 1978, The identification of taurine receptors from rat heart sarcolemma, Biochem.Biophys.Res.Commun., 80:936–941.CrossRefGoogle Scholar
  11. 11.
    Kusama, Y., Hearse, D.J., and Avkiran, M. 1992, Diabetes and susceptibility to reperfusion-induced ventricular arrhythmias, J.Mol Cell. Cardiol. 24:411–421.CrossRefGoogle Scholar
  12. 12.
    Makino, N., Dhalla, K.S., Elimban, V., and Dhalla, N.S. 1987, Sacrolemmal Ca2+ transport in streptozo-tocin-induced diabetic cardiomyopathy in rats, Am.J.Physiol. 253:202–207.Google Scholar
  13. 13.
    Milei, J., Ferreira, R., Llesuy, S., Forcada, P., Covarrubias, J., and Boveris, A. 1992, Reduction of reperfusion injury with preoperative rapid intravenous infusion of taurine during myocardial revascularization, Am.Heart J. 123:339–345.CrossRefGoogle Scholar
  14. 14.
    Newman, W.H., Frangakis, C.J., Grosso, D.S., and Bressler, R. 1977, A relation between myocardial taurine content and pulmonary wedge pressure in dogs with heart failure, PhysiolChem. Phys. 9:259–263.Google Scholar
  15. 15.
    Penpargkul, S., Fein, F., Sonnenblick, E.H., and Scheuer, J. 1981, Depressed cardiac sarcoplasmic reticular function from diabetic rats, J. Mol.Cell.Cardiol. 13:303–309.CrossRefGoogle Scholar
  16. 16.
    Peterson, M.B., Mead, R.J., and Welty, J.D. 1973, Free amino acids in congestive heart failure, J. MolCell. Cardiol. 5:139–147.CrossRefGoogle Scholar
  17. 17.
    Pierce, G.N., Ramjiawan, B., Dhalla, N.S., and Ferrari, R. 1990, Na+-H+ exchange in cardiac sarcolemmal vesicles isolated from diabetic rats, Am.J.Physiol. 258:255–261.Google Scholar
  18. 18.
    Read, W.O. and Welty, J.D. 1963, Effect of taurine on epinephrine and digoxin induced irregularities of dog heart, J.Pharmacol.Exptl. Ther. 139:283–289.Google Scholar
  19. 19.
    Ruigrok, T. J.C., Boink, A.B.T.J., Spies, F., Blok, F.J., Maas, A.H.J., and Zimmerman, A.N.E. 1978, Energy dependence of the Ca2+ paradox, J. MolCell. Cardiol 10:991–1002.CrossRefGoogle Scholar
  20. 20.
    Sordahl, L.A. and Stewart, M. 1980, Mechanism(s) of altered mitochondrial calcium transport in acutely ischemie canine hearts, Circ.Res. 47:814–820.CrossRefGoogle Scholar
  21. 21.
    Stevens, M.J., Lattimer, S.A., Kamijo, M., Van Huysen, C., Sima, A.A.F., and Greene, D.A. 1993, Osmotically-induced nerve taurine depletion and the compatible osmolyte hypothesis in experimental diabetic neuropathy in the rat, Diabetologia, 36:608–614.CrossRefGoogle Scholar
  22. 22.
    Tanaka, Y., Konno, N., and Kako, K.J. 1992, Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes, Cardiovas.Res. 26:409–414.CrossRefGoogle Scholar
  23. 23.
    Tani, M. and Neely, J.R. 1988, Hearts from diabetic rats are more resistant to in vitro ischemia: possible role of altered Ca2+ metabolism, Circ.Res. 62:931–940.CrossRefGoogle Scholar
  24. 24.
    Tatsumi, T. and Kako, K.J. 1993, Effects of hydrogen peroxide on mitochondrial enzyme function studied in situ in rat heart myocytes, Basic Res.Cardiol. 88:199–211.Google Scholar
  25. 25.
    Vary, T.C., Angelakos, E.T., and Schaffer, S.W. 1979, Relationship between adenine nucleotide metabolism and irreversible ischemie tissue damage in isolated perfused rat heart, Circ.Res., 45:218–225.CrossRefGoogle Scholar
  26. 26.
    Yamahara, Y., Asayama, J., Kobara, M., Ohta, B., Matsumoto, T., Miyazaki, H., Tatsumi, T., Ishibashi, K., Inoue, M., Inoue, D., and Nakagawa, M. 1993, Effects of ischemie preconditioning on the release of cardiac troponin T in isolated rat hearts, Basic.Res.Cardiol. 89:241–249.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Tetsuya Tatsumi
    • 1
  • Satoaki Matoba
    • 1
  • Akira Kawahara
    • 1
  • Miyuki Kobara
    • 1
  • Kouki Tsuruyama
    • 1
  • Tetsuya Tanaka
    • 1
  • Chiaki Nakagawa
    • 1
  • Bon Ohta
    • 1
  • Jun Asayama
    • 1
  • Masao Nakagawa
    • 1
  1. 1.Second Department of MedicineKyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, KyotoJapan

Personalised recommendations