Advertisement

Taurine 2 pp 455-462 | Cite as

Taurine-Induced Single-Channel Currents in Cultured Rat Cerebellar Granule Cells

  • M.-L. Linne
  • T. O. Jalonen
  • P. Saransaari
  • S. S. Oja
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 403)

Abstract

Taurine increases Cl- conductance across neuronal membranes, leading to changes in neuronal excitability12, 25. However, the exact mechanisms of these taurine effects are not yet known. For instance, taurine may act via metabotropic receptors coupled to a second-messenger system or via ionotropic receptors gating ion channels. Indeed, taurine has been shown to interfere with the binding of GABA to both ionotropic GABAA 22 and metabotropic GABAB 19 receptors and to displace strychnine from ionotropic glycine receptors17. Moreover, the existence of a specific taurine receptor is not excluded18, 20, 27.

Keywords

Cerebellar Granule Cell Glycine Receptor Spinal Cord Neuron Primary Afferent Terminal Nonselective Cation Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banderali, U., and Roy, G., 1992, Anion channels for amino acids in MDCK cells, Am. J. Physiol., 263: C1200–C1207.Google Scholar
  2. 2.
    Cull-Candy, S.G., and Ogden, D.C., 1985, Ion channels activated by L-glutamate and GABA in cultured cerebellar neurons of the rat, Proc. R. Soc. Lond. B, 224: 367–373.CrossRefGoogle Scholar
  3. 3.
    Dubin, A.E., and Dionne, V.E., 1993, Modulation of Cl-, K+, and nonselective cation conductances by taurine in olfactory receptor neurons of the mudpuppy Necturus maculosus, J. Gen. Physiol, 101: 469–485.CrossRefGoogle Scholar
  4. 4.
    Frederickson, R.C.A., Neuss, M., Morzorati, S.L., and McBride, W.J., 1978, A comparison of the inhibitory effects of taurine and GABA on identified Purkinje cells and other neurons in the cerebellar cortex of the rat, Brain Res., 145: 117–126.CrossRefGoogle Scholar
  5. 5.
    Galarreta, M., Bustamante, J., Martin del Rio, R., and Solis, J.M., 1994, Taurine induces a long lasting increase of synaptic transmission in rat hippocampal slices, Soc. Neurosci. Abstr., 20: 1342.Google Scholar
  6. 6.
    Galdzicki, Z., Lin, F., Moran, O., Novelli, A., Puia, G., and Sciancalepore, M., 1991, Development of voltage-dependent ionic currents in rat cerebellar granule cells grown in primary culture, Int. J. Neurosci., 56: 193–200.CrossRefGoogle Scholar
  7. 7.
    Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch., 391: 85–100.CrossRefGoogle Scholar
  8. 8.
    Häusser, M. A., Yung, W.H., and Lacey, M.G., 1992, Taurine and glycine activate the same Cl- conductance in substantia nigra dopamine neurones, Brain Res., 571: 103–108.CrossRefGoogle Scholar
  9. 9.
    Holopainen, I., Malminen, O., and Kontro, P., 1987, Sodium-dependent high-affinity uptake of taurine in cultured cerebellar granule cells and astrocytes, J. Neurosci. Res., 18: 479–483.CrossRefGoogle Scholar
  10. 10.
    Horikoshi, T., Asanuma, A., Yanagisawa, K., Anzai, K., and Goto, S., 1988, Taurine and β-alanine act on both GABA and glycine receptors in Xenopus oocyte injected with mouse brain messenger RNA, Mol. Brain Res., 4:97–105.CrossRefGoogle Scholar
  11. 11.
    Huck, S., and Lux, H.D., 1987, Patch-clamp study of ion channels activated by GABA and glycine in cultured cerebellar neurons of the mouse, Neurosci. Lett., 79: 103–107.CrossRefGoogle Scholar
  12. 12.
    Huxtable, R.J., 1989, Taurine in the central nervous system and the mammalian actions of taurine, Prog. Neurobiol., 32:471–533.CrossRefGoogle Scholar
  13. 13.
    Inomata, H., Nabekura, J., and Akaike, N., 1993, Suppression of taurine response in acutely dissociated substantia nigra neurons by intracellular cyclic AMP, Brain Res., 615: 347–350.CrossRefGoogle Scholar
  14. 14.
    Jalonen, T., Johansson, S., Holopainen, I., Oja S.S., and Århem P., 1990, Single-channel and whole-cell currents in rat cerebellar granule cells, Brain Res., 535: 33–38.CrossRefGoogle Scholar
  15. 15.
    Jalonen, T., Kivelä, A., Johansson, S., Holopainen, I., Oja, S.S., and Ärhem, P., 1990, Electrophysiological properties of cerebellar granule cells in culture, Abstracts of the 5th Finnish Neurochemistry Meeting, Espoo, p. 20.Google Scholar
  16. 16.
    Kilic, G., Moran, O., and Cherubini, E., 1993, Currents activated by GABA and their modulation by Zn2+ in cerebellar granule cells in culture, Eur. J. Neurosci., 5: 65–72.CrossRefGoogle Scholar
  17. 17.
    Kontro, P., and Oja, S.S., 1987, Glycinergic systems in the brain stem of developing and adult mice: effects of taurine, Int. J. Dev. Neurosci., 5: 461–470.CrossRefGoogle Scholar
  18. 18.
    Kontro, P., and Oja, S.S., 1987, Co-operativity in sodium-independent taurine binding to brain membranes in the mouse, Neuroscience, 23: 567–570.CrossRefGoogle Scholar
  19. 19.
    Kontro, P., and Oja, S.S., 1990, Interactions of taurine with GABAB binding sites in mouse brain, Neuropharmacology, 29: 243–247.CrossRefGoogle Scholar
  20. 20.
    Kudo, Y., Akiyoshi, E., and Akagi, H., 1988, Identification of two taurine receptor subtypes on the primary afferent terminal of frog spinal cord, Br. J. Pharmacol, 94: 1051–1056.CrossRefGoogle Scholar
  21. 21.
    Linne, M.-L., Oja, S.S., and Jalonen, T.O., 1995, The effects of taurine on single ion channel activity in rat cerebellar granule cells, Biophys. J., 68: A379.Google Scholar
  22. 22.
    Malminen, O., and Kontro, P., 1987, Actions of taurine on the GABA-benzodiazepine receptor complex solubilized from rat brain, Neurochem. Int., 11: 113–117.CrossRefGoogle Scholar
  23. 23.
    Mathers, D.A., 1993, Effects of benzothiadiazine TAG on channel activation at mammalian glycine receptors, Neurosci. Lett., 149: 23–26.CrossRefGoogle Scholar
  24. 24.
    Mathers, D.A., Grewal, A., and Wang, Y., 1989, Membrane channels activated by taurine in cultured mouse spinal cord neurons, Neurosci. Lett, 98: 229–233.CrossRefGoogle Scholar
  25. 25.
    Oja, S.S., Korpi, E.R., and Saransaari, P., 1990, Modification of chloride flux across brain membranes by inhibitory amino acids in developing and adult mice, Neurochem. Res., 15: 797–804.CrossRefGoogle Scholar
  26. 26.
    Wahl, P., Elster, L., and Schousboe, A., 1994, Identification and function of glycine receptors in cultured cerebellar granule cells, J. Neurochem., 62: 2457–2463.CrossRefGoogle Scholar
  27. 27.
    Wu, J.-Y., Tang, X.W., and Tsai, W.H., 1992, Taurine receptor: kinetic analysis and pharmacological studies, Adv. Exp. Med. Biol., 315: 263–268.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • M.-L. Linne
    • 1
  • T. O. Jalonen
    • 2
  • P. Saransaari
    • 1
  • S. S. Oja
    • 1
    • 3
  1. 1.Tampere Brain Research Center, Medical SchoolUniversity of TampereTampereFinland
  2. 2.Division of NeurosurgeryAlbany Medical CollegeAlbanyUSA
  3. 3.Department of Clinical PhysiologyTampere University HospitalTampereFinland

Personalised recommendations