The Role of Peroxisomes in Ether Lipid Synthesis

Back to the Roots of PAF
  • H. van den Bosch
  • E. C. J. M. de Vet
  • A. W. M. Zomer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 416)


Peroxisomes belong to a family of subcellular organelles called microbodies that play indispensable roles in cellular metabolism in protozoa, fungi, plant and mammalian cells’. These organelles show a greater variety in enzyme content than other subcellular organelles. Well over 50 enzymes have been reported to be located in microbodies of some kind, but no microbody contains all of them. This is illustrated in table I for a few major microbody processes. Whereas fatty acid [3-oxidation is present in all microbody types, various oxidases producing H202 and catalase are not present in glycosomes, the microbody originally discovered in Trypanosomatidae 2.The glyoxylate cycle is only found in the microbodies of plant seeds and those of yeast and Tetrahymena. Photorespiration and glycolysis are restricted to only one type of microbody, i.e. plant leaf peroxisomes and glycosomes, respectively. Ether lipid synthesis is confined to mammalian peroxisomes3 and, as we recently demonstrated, to trypanosomal glycosomes4, but is not found in plant and yeast microbodies.


Lipid Synthesis Ether Linkage Ether Lipid Glyoxylate Cycle Subcellular Organelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van den Bosch, H., Schutgens, R.B.H., Wanders, R.J.A. and Tager, J.M., Ann. Rev. Biochem. 61 (1992) 157–197.PubMedCrossRefGoogle Scholar
  2. 2.
    Opperdoes, F.R., Trends Biochem. Sci. 13 (1988) 255–260.PubMedCrossRefGoogle Scholar
  3. 3.
    Hajra, A.K. and Bishop, J.E., Ann. NY Acad. Sci. 386 (1982) 170–182.PubMedCrossRefGoogle Scholar
  4. 4.
    Zomer, A.W.M., Opperdoes, F.R., and van den Bosch, H., Biochim. Biophys. Acta 1257 (1995) 167–173.CrossRefGoogle Scholar
  5. 5.
    Hardeman, D., Versantvoort, C., van den Brink, J.M. and van den Bosch, H., Biochim. Biophys. Acta 1027 (1990) 149–154.CrossRefGoogle Scholar
  6. 6.
    Van Veldhoven, P.P., Just, W.W. and Mannaerts, G.P., J. Biol. Chem. 262 (1987) 4310–4318.PubMedGoogle Scholar
  7. 7.
    Paltauf, F., Chem. Phys. Lipids 74 (1994) 101–139.PubMedCrossRefGoogle Scholar
  8. 8.
    Han, X and Gross, R.W., Biochemistry 29 (1990) 4992–4996.PubMedCrossRefGoogle Scholar
  9. 9.
    Morand, O.H., Zoeller. R.A. and Raetz, C.R.H., J. Biol. Chem. 263, 11597–11606.Google Scholar
  10. 10.
    Lohner, K., Hermetter, A. and Paltauf, F., Chem. Phys. Lipids 34 (1984) 163–170.CrossRefGoogle Scholar
  11. 11.
    Lee, T-C. and Fitzgerald, V., Biochim. Biophys. Acta 598 (1980) 189–192.CrossRefGoogle Scholar
  12. 12.
    Smaby, J.M., Hermetter, A., Schmid, P.C., Paltauf, F. and Brockman, H.L., Biochemistry 22 (1983) 5808–5813.CrossRefGoogle Scholar
  13. 13.
    Ferguson, M.A.J., Curr. Opinion Struct. Biol. I (1991) 522–529.Google Scholar
  14. 14.
    Schulman, G., Bodine, P.V. and Litwack, G., Biochemistry 31 (1992) 1734.-1741.Google Scholar
  15. 15.
    Hanahan, D.J., Ann. Rev. Biochem. 55 (1986) 483–509.PubMedCrossRefGoogle Scholar
  16. 16.
    Blank, M.L., Fitzgerald, V., Lee, T-C and Snyder, F., Biochim. Biophys. Acta 1166 (1993) 309–312.CrossRefGoogle Scholar
  17. 17.
    Goldfischer, S., Moore, C.L., Johnson, A.B., Spiro, A.J., Valsamis, M.P., Wisniewski, H.K., Ritch, R.H., Norton, W.T., Rapin, I. and Gartner, L.M., Science 182 (1973) 62–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Heymans, H.S.A., Schutgens, R.B.H., Tan, R., van den Bosch, H. and Borst, P., Nature 306 (1983) 69–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Schrakamp, G., Schalkwijk, C.G., Schutgens, R.B.H., Wanders, R.J.A., Tager, J.M. and van den Bosch, H., J. Lipid Res. 29 (1988) 325–334.PubMedGoogle Scholar
  20. 20.
    Wanders, R.J.A., Schutgens, R.B.H., Barth, P.G., Tager, J.M. and van den Bosch, H., Biochimie 75 (1993) 269–279.PubMedCrossRefGoogle Scholar
  21. 21.
    Van den Bosch, H., Schrakamp, G., Hardeman, D., Zomer, A.W.M., Wanders, R.J.A. and Schutgens, R.B.H., Biochimie 75 (1993) 183–189.PubMedCrossRefGoogle Scholar
  22. 22.
    Hajra, A.K., Ghosh, M.K., Webber, K.O. and Datta, N.S., In: Enzymes of Lipid Metabolism II ( Freysz, L., Dreyfuss, H., Massarelli, R. and Gatt, S., eds.) 1986, pp. 199–207, Plenum Publ. Corp., New York.CrossRefGoogle Scholar
  23. 23.
    Hardeman, D. and van den Bosch, H., Biochim. Biophys. Acta 963 (1988) 1–9.CrossRefGoogle Scholar
  24. 24.
    Fujiki, Y., Fowler, S., Shio, H., Hubbard, L. and Lazarow, P.B., J. Cell Biol. 93 (1982) 103–110.PubMedCrossRefGoogle Scholar
  25. 25.
    Bordier, C., J. Biol. Chem. 256 (1981) 1604–1607.PubMedGoogle Scholar
  26. 26.
    Zomer, A.W.M., de Weerd, W.F.C., Langeveld, J. and van den Bosch, H., Biochim. Biophys. Acta 1170 (1993) 189–196.CrossRefGoogle Scholar
  27. 27.
    Kyte, J. and Doolittle, R.F., J. Mol. Biol. 157 (1982) 105–132.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • H. van den Bosch
    • 1
  • E. C. J. M. de Vet
    • 1
  • A. W. M. Zomer
    • 1
  1. 1.Department Biochemistry of Lipids Centre for Biomembranes and Lipid Enzymology Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations