PAF-Synthesizing Enzymes in Neural Cells during Differentiation and in Gerbil Brain during Ischemia

  • Ermelinda Francescangeli
  • Louis Freysz
  • Gianfrancesco Goracci
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 416)


Platelet-Activating Factor (PAF) is present in mammalian brain1 and its cerebral origin has been demonstrated2. Furthermore, the capability of nervous tissue to produce PAF is supported by the observations that neural cells in culture synthesize this lipid mediator3,4.


Neural Cell Electroconvulsive Shock Carotid Artery Occlusion Bilateral Common Carotid Artery Occlusion Chick Retina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tokumura A., Kamiyasu K., Takanchi K., and Tsukatani H. (1987). Evidence for the existence of various homologues and analogues of platelet activating factor in a lipid extract from bovine brain. Biochem. Biophys. Res. Commun. 145, 415–425.PubMedCrossRefGoogle Scholar
  2. 2.
    Kumar R., Harvey S.A.K., Kester M., Hanahan D.J. and Olson MS. (1988). Production and effects of Platelet-activating factor in the rat brain. Biochim. Biophys. Acta 963, 375–383.PubMedCrossRefGoogle Scholar
  3. 3.
    Sogos V., Bussolino F., Pilia E., Torelli S. and Gremo F. (1990). Acetylcholine-induced production of Platelet-activating factor by human fetal brain cells in culture. J. Neurosc. Res. 27, 706–711.CrossRefGoogle Scholar
  4. 4.
    Yue T.L., Lysko P.G. and Feuerstein G. (1990). Production of platelet activating factor from rat cerebellar granule cells in culture. J. Neurochem. 54, 1809–1811.PubMedCrossRefGoogle Scholar
  5. 5.
    Bussolino F., Gremo F., Tetta C., Pescarmona G.P. and Camussi G. (1986) Production of platelet-activating factor by chick retina. J. Biol. Chem. 261, 16502–16508.PubMedGoogle Scholar
  6. 6.
    Bussolino F., Pescarmona G., Camussi G. and Gremo F. (1988a). Acetylcholine and dopamine promote the production of platelet activating factor in immature cells of chick embryonic retina. J. Neurochem. 51, 1755–1759.PubMedCrossRefGoogle Scholar
  7. 7.
    Bussolino F., Tessari F., Turrini F., Braquet P., Camussi G., Prosdocimi M. and Bosia A. (1988b). Platelet-activating factor induces dopamine release in PC-12 cell line. Am. J. Physiol. 255, (Cell physiol) 24, 1755–1759.Google Scholar
  8. 8.
    Clark G.D., Happel L.T., Zorumski C.F. and Bazan (1992). Enhancement of hippocampal excitatory synaptic transmission by platelet activating factor. Neuron 9, 1211–1216PubMedCrossRefGoogle Scholar
  9. 9.
    Marcheselli V.L., Rossowska M.J., Domingo M.T., Braquet P. and Bazan N.J. (1990). Distinct Platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J. Biol. Chem. 265, 9140–9145.PubMedGoogle Scholar
  10. 10.
    Marcheselli V.L. and Bazan N.G. (1994). Platelet-activating factor is a messenger in the electroconvulsive shock.induced transcriptional activation of c-fos and zif-268 in hipocampus. J. Neurosci. Res. 37, 54–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Kato K., Clark G.D., Bazan N.G. and Zorumski C.F. (1994). Platelet-activating factor as a potential retrograde messenger in CA I hippocampal long-term potentiation. Nature 367, 173–179.CrossRefGoogle Scholar
  12. 12.
    Wierasko A., Li G., Kornecki E., Hogan M.V. and Ehrlich Y.H. (1993) Long term potentiation in the hippo-campus induced by platelet-activating factor. Neuron 10, 553–557.CrossRefGoogle Scholar
  13. 13.
    Izquerdo I., Fin C., Schmitz P.K., Da Silva R.C., Jerusalinsky D., Quillfeldt J.A., Ferreira M.B.G., Medina J.H. and Bazan N.G. (1995). Memory enhancement by intrahippocampal, intraamygdala, or intraentorhinal infusion of platelet-activating factor measured in an inhibitory avoidance task. Proc. Natl. Acad. Sci. USA 92, 5047–5051.CrossRefGoogle Scholar
  14. 14.
    Braquet P., Paubert-Braquet M., Koltei M., Bourgain R., Bussolino F. and Hosford D. (1989). Is there a case for PAF antagonist in the treatment of ischemic states? TIPS 10, 23–30.PubMedGoogle Scholar
  15. 15.
    Lindsberg P.J., Yue T-L., Frerichs K.U, Hallenbeck and Feuerstein G. (1990). Evidence for Platelet-activating factor as a novel mediator in experimental stroke in rabbits. Stroke 21, 1452–1457.Google Scholar
  16. 16.
    Goracci G. (1990). PAF in the nervous system: biochemistry and pathophysiology. In: Krieglstein J. and Oberpichler H., Eds., Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellshaft, Stuttgart, pp. 377–390.Google Scholar
  17. 17.
    Lee T-c., Malone B. and Snyder F. (1986). A new de novo pathway for the formation of 1-alkyl-2-acetylsn-glycerols, precursors of Platelet Activating Factor. J.Biol. Chem., 261, 5373–5377.PubMedGoogle Scholar
  18. 18.
    Baker, R.R. and Chang H-y. (1993). The potential for Platelet-activating factor synthesis in brain: properties of cholinetransferase and 1-alkyl-sn-glycero-3-phosphate acetyltransferase in microsomal fractions of immature rabbit cerebral cortex. Biochim. Biophys. Acta 1170, 157–164.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee T-c., Malone B. and Snyder F. (1988). Formation of 1-alkyl-2-acetyl-sn-glycerols via de novo biosynthetic pathway for Platelet Activating Factor. J.Biol.Chem., 263, 1755–1760.PubMedGoogle Scholar
  20. 20.
    Francescangeli E. and Goracci G. (1989) The de novo biosynthesis of platelet-activating factor in the rat brain. Biochem. Biophys. Res. Commun. 161, 107–112.PubMedCrossRefGoogle Scholar
  21. 21.
    Woelk H., Goracci G. and Porcellati G. (1974). The action of brain phospholipase A, on purified specifically labeled 1,2-diacyl, 2-acyl 1-alk-l’anyl and 2-acyl-1-alkyl-sn glycero-3 phosphorylcholine. HoppeSeyler’s Z. Physiol. Chem. 355, 75–81.CrossRefGoogle Scholar
  22. 22.
    Blank M.L., Smith Z.L., Fitzgerald V. and Snyder F. (1995). The CoA.independent transacylase in PAF biosynthesis: tissue distribution and molecular species selectivity. Biochim. Biophys. Acta 1254, 295–301.Google Scholar
  23. 23.
    Goracci G. and Francescangeli E. (1991) Properties of PAF-synthesizing phosphocholinetransferase and evidence for lysoPAF acetyltransferase activity in rat brain. Lipids 26, 986–991PubMedCrossRefGoogle Scholar
  24. 24.
    Hattori M., Arai H. and Inoue K. (1993). Purification and characterization of bovine brain Platelet-activating factor acetylhydrolase. J. Biol. Chem. 268, 18748–18753.PubMedGoogle Scholar
  25. 25.
    Kornecki E. and Ehrlich Y.H. (1988) Neuroregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. Science 240, 1792–1794.PubMedCrossRefGoogle Scholar
  26. 26.
    Francescangeli E., Freysz L., Dreyfus H., Boila A. and Goracci G. (1993). Biosynthesis of I-alkyl-2-acetysn-glycero-3-phosphocholine (Platelet activating factor) in cultured neuronal and glial cells. In: Massarelli R., Horrocks L.A., Kanfer J. N., Loffelholz K., eds., Phospholipis and Signal Transmission. Springer-Verlag, Berlin Heidelberg, NATO Asi, vol. 70, pp 373–385.CrossRefGoogle Scholar
  27. 27.
    Francescangeli E., Lang D., Dreyfus H., Boila A., Freysz L. and Goracci G (1996). Activities of enzymes involved in the metabolism of platelet-activating factor in neural cell cultures during proliferation and differentiation. SubmittedGoogle Scholar
  28. 28.
    Ninio E., Mencia-Huerta J.M. and Benveniste J. (1983). Biosynthesis of platelet-activating factor (PAFacether). V. Enhancement of acetyltransferase activity in murine peritoneal cells by calcium ionophore A23187. Biochim. Biophys. Acta 751, 298–304.PubMedCrossRefGoogle Scholar
  29. 29.
    Gomez-Cambronero J., Inarrea P., Alonso F. and Sanchez-Crespo H. (1984). The role of calcium ions in the process of acetyltransferase activation during the formation of platelet-activating factor ( PAF-acether ). Biochemistry 219, 419–424Google Scholar
  30. 30.
    Francescangeli E., Goracci G., Dreyfus H., Boila A. and Freysz L. (1993). Synthesis of Platelet-activating factor (PAF) during differentiation of the human neuroblastoma cell LA-N-1. J.Neurochem. 61, 239.CrossRefGoogle Scholar
  31. 31.
    Stephenson D.T., Manetta J.V., White D.L., Chiou X.G., Cox L., Gitter B., May P.C., Sharp J.D., Kramer R.M. and Clemens J.A. (1994). Calcium-sensitive cytosolic phospholipase A2 (cPLA,) is expressed in human brain astrocytes. Brain Res. 637, 97–105.PubMedCrossRefGoogle Scholar
  32. 32.
    Tiberghien C., Laurent L., Junier M.P. and Dray F. (1991). A competitive receptor binding assay for Platelet-activating factor (PAF). Quantification of PAF in rat brain. J. Lipid Med. 3, 249–266.Google Scholar
  33. 33.
    Domingo M.T., Spinnewyn P., Chabrier E. and Braquet P. (1994). Changes in [3H]PAF binding and PAF concentrations in gerbil brain after bilateral common carotid artery occlusion: a quantitative autoradiographic study. Brain Res. 640, 268–276.PubMedCrossRefGoogle Scholar
  34. 34.
    Francescangeli E., Domanska-Janik K. and Goracci G. (1996). Relative contribution of the de novo and the remodelling pathways to the synthesis of Platelet activating factor in brain areas and during ischemia. J.Lipid Med. in press.Google Scholar
  35. 35.
    Francescangeli E., Freysz L. and Goracci G. (1994). Regulation of Platelet-activating factor (PAF) metabolism in nervous tissue and in cultured neural cells. J. Neurochem 63, suppl. 1, 22.Google Scholar
  36. 36.
    Snyder F. (1995). Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem. J. 305, 689–705.PubMedGoogle Scholar
  37. 37.
    Onodera H., Araki T. and Kogure K. (1989). Protein kinase C activity in the rat hippocampus after forebrain ischemic autoradiographic analysis by [3H]phorbol-12,13-dibutyrate. Brain Res. 48, 1–7.CrossRefGoogle Scholar
  38. 38.
    Domanka-Janik K and Zalewaka T. (1992). Effect of brain ischemia on protein kinase C. J. Neurochem. 58, 1432–1439.CrossRefGoogle Scholar
  39. 39.
    Siesjö B.K. and Bengtsson F. (1989). Calcium fluxes, calcium antagonist and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression. A unifying hypothesis. J. Cereb. Blood Flow Metab. 9, 127–140.PubMedCrossRefGoogle Scholar
  40. 40.
    Ljunggren B., Schultz H. and Siesjo B.K. (1974) Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res. 73, 277–289.PubMedCrossRefGoogle Scholar
  41. 41.
    Goracci G., Francescangeli E., Mozzi R., Porcellati S. and Porcellati G. (1985). Regulation of phospholipid metabolism by nucleotides in brain and transport of CDP-choline into brain. In: Zappia V., Kennedy E.P., Nilsson B.J. and Galletti P. eds., Novel Biochemical, Pharmacologiocal and clinical aspects of cytidinediphosphocholine. Elsevier, New York, pp 105–116Google Scholar
  42. 42.
    Bazan N.G. (1970). Effect of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta, 218, 1–10PubMedCrossRefGoogle Scholar
  43. 43.
    Farooqui A.A., Hirashima Y., Forooqui T. and Horrocks L.A. (1992). Involvement of calcium, lipolytic enzymes and free fatty acids in ischemic brain trauma. In: Bazan NG, Braquet P and Ginsberg MD eds., Neurochemical correlates of cerebral ischemia. Plenum Press, New York, pp 117–138.CrossRefGoogle Scholar
  44. 44.
    Goracci G., Francescangeli E., Horrocks L.A. and Porcellati G. (1983). The effect of CMP on the release of free fatty acids of rat brain in vitro.. Neurochem. Res. 8, 971–981.PubMedCrossRefGoogle Scholar
  45. 45.
    Rordorf G., Uemura Y. and Bonventre J.V. (1991). Characterization of Phospholipase A, (PLA,) activity in gerbil brain: enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J. Neurosc. 11, 1829–1836.Google Scholar
  46. 46.
    Bonventre J.V. and Koroshetz W.J. (1993). Phospholipase A, (PLA,) activity in gerbil brain: characterization of cytosolic and membrane-associated forms and effects of ischemia and reperfusion on enzymatic activity. J. Lipid Med. 6, 457–471.Google Scholar
  47. 47.
    Yang H-C., Farooqui A.A. and Horrocks L.A.(1995). Purification and characterization of a calcium-independent phospholipase A, from bovine brain. (1995) J. Neurochem. 65, 177.Google Scholar
  48. 48.
    Kirino T., and Saito, K. (1984). Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol. 62, 201–208.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ermelinda Francescangeli
    • 1
  • Louis Freysz
    • 2
  • Gianfrancesco Goracci
    • 1
  1. 1.Institute of Medical BiochemistryUniversity of PerugiaPerugiaItaly
  2. 2.Centre de NeurochimieStrasbourg, CedexFrance

Personalised recommendations