Platelet-Activating Factor is an Effector of Rapid Reactions and an Inductor of Late Responses in Immune-Mediated Injury

  • M. Sanchez Crespo
  • A. Alonso
  • Y. Bayon
  • M. C. Garcia Rodriguez
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 416)


The reversed passive Arthus reaction (RPA) was applied to the peritoneal cavity of rats to perform the present study. In this model, antibody is locally injected, and the cognate antigen is intravenously administered. The analysis of the sequence of events that occur in the RPA reaction includes formation of immune complexes in the microvessel wall, activation of the complement cascade, migration and adherence of polymorphonuclear leukocytes (PMN) to the endothelial cells, and release of PAF from PMN which acts on endothelial cells to cause leakage1–3. Recent studies have emphasized the involvement of nitric oxide (NO) in the production of tissue injury in a model of alveolitis and dermal vasculitis analogous to RPA4–5, but the actual role of NO in immune-mediated injury has not been ascertained as yet. The purpose of this study has been to assess the effect of blocking PAF receptors on events of the RPA that occur at different times after antigen challenge.


Nitric Oxide Evans Blue Peritoneal Cell Isosorbide Dinitrate Nitrite Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hellewell, P.G. & Williams, T.J. 1986. J. Immunol. 137, 302–307PubMedGoogle Scholar
  2. 2.
    Warren, J.S., Mandel, D.M., Johnson, K.J. & Ward P.A. 1989. J. Clin. Invest. 83, 669–679PubMedCrossRefGoogle Scholar
  3. 3.
    Tavares de Lima, W., Sirois, P. & Jancar, S. 1992. Eur. J. Pharmacol. 213, 63–7CrossRefGoogle Scholar
  4. 4.
    Mulligan, M.S., Bevel, J.M. Marietta, M.A. & Ward, P.A. 1991. Proc. Natl. Acad. Sci. USA. 88, 6338–6342PubMedCrossRefGoogle Scholar
  5. 5.
    Mulligan, M.S., Moncada, S. & Ward, P.A. 1992. Br. J. Pharmacol. 197, 1159–1162CrossRefGoogle Scholar
  6. 6.
    Squinto, S.P., Block, A.L., Braquet, P. & Bazan, N.G. 1989. J. Neurosci. Res. 24, 558–566PubMedCrossRefGoogle Scholar
  7. 7.
    Pan, Z., Kravchenko„ V.V., & Ye, R.D. 1995. J. Biol. Chem. 270, 7787–7790PubMedCrossRefGoogle Scholar
  8. 8.
    Kunz, D., Mühl, H., Walker, G., & Pfeilschifter J. 1994. Proc. Natl. Acad. Sci. USA. 91, 5387–5391PubMedCrossRefGoogle Scholar
  9. 9.
    Szabo, C., Wu, C.C., Mitchell, J.A., Gross, S.S., Thiemermann, C. & Vane, J.R. 1993. Cir. Res. 73, 991–999CrossRefGoogle Scholar
  10. 10.
    Steil, A.A., Garcia Rodriguez, M.C., Alonso, A., Sanchez Crespo, M., & Bosca, L. 1995. Br. J. Pharmacol. 114, 895–901PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • M. Sanchez Crespo
    • 1
  • A. Alonso
    • 1
  • Y. Bayon
    • 1
  • M. C. Garcia Rodriguez
    • 1
  1. 1.Instituto de Biología y Genética MolecularFacultad de MedicinaValladolidSpain

Personalised recommendations