Advertisement

Biosynthesis of Platelet-Activating Factor and Enzyme Inhibitors

  • Fred Snyder
  • Veronica Fitzgerald
  • Merle L. Blank
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 416)

Abstract

Platelet-activating factor (PAF) is known to be synthesized by either a remodeling or de novo pathway. The enzymes responsible have been extensively studied by a number of laboratories. All evidence indicates the remodeling route is activated during inflammation and other hypersensitivity responses, whereas the de novo pathway is thought to be the source of PAF required for physiological functions. This article provides an update of what is currently known adout the enzymatic systems that generate PAF as well as some preliminary findings we have obtained using potential inhibitors of the specific enzymes involved. Recent progress from our laboratory toward understanding the role of the CoA-independent and Co-A dependent transacylases in the formation of lyso-PAF and PAF is summarized.

Keywords

Acyl Moiety Acyl Acceptor Remodel Pathway Choline Phosphotransferase Phosphatidate Phosphohydrolase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Snyder, F. (1995) Biochim. Biophys. Acta 1254, 231–249.PubMedCrossRefGoogle Scholar
  2. 2.
    Snyder, F. (1995) Biochem. J. 305, 689–705.PubMedGoogle Scholar
  3. 3.
    Wykle, R.L., Malone, B., and Snyder, F. (1980) J. Biol. Chem. 255, 10256–10260.PubMedGoogle Scholar
  4. 4.
    Uemura, Y., Lee, T-c., and Snyder, F. (1991) J. Biol. Chem. 266, 8268–8272.PubMedGoogle Scholar
  5. 5.
    Blank, M.L., Smith, Z.L., Fitzgerald, V., and Snyder, F. (1995) Biochim. Biophys. Acta 1254, 295–301.Google Scholar
  6. 6.
    Blank, M.L., Fitzgerald, V., Smith, Z.L., and Snyder, F. (1995) Biochem. Biophys. Res. Commun. 210, 1052–1058.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee, T-c., Malone, B., and Snyder, F. (1986) J. Biol. Chem. 261, 5373–5377.Google Scholar
  8. 8.
    Lee, T-c., Malone, B., and Snyder, F. (1988) J. Biol. Chem. 263, 1755–1760, 1988.Google Scholar
  9. 9.
    Woodard, D.S., Lee, T-c., and Snyder, F. (1987) J. Biol. Chem. 262, 2520–2527.PubMedGoogle Scholar
  10. 10.
    Nieto, M.L., Venable, M.E., Bauldry, S.A., Greene, D.G., Kennedy, M., Bass, D.A., and Wykle, R.L. (1991) J. Biol. Chem. 266, 18699–18706.Google Scholar
  11. 11.
    Sugiura, T., Fukuda, T. Masuzawa, Y., and Waku, K. (1990) Biochim. Biophys. Acta 1047, 223–232.Google Scholar
  12. 12.
    Venable, M.E., Nieto, M.L., Schmitt, J.D., and Wykle, R.L. (1991) J. Biol. Chem. 266, 18691–18698.PubMedGoogle Scholar
  13. 13.
    Winkler, J.D., Sung, C.-M., Hubbard, W.C., and Chilton, F.H. (1992) Biochem. Pharmacol. 44, 2055–2066.CrossRefGoogle Scholar
  14. 14.
    Colard, O., Bidault, J., Berton, M., and Ninio, E. (1993) Eur. J. Biochem. 216, 835–840.PubMedCrossRefGoogle Scholar
  15. 15.
    MacDonald, J.I.S. and Sprecher, H. (1991) Biochim. Biophys. Acta 1084, 105–121.Google Scholar
  16. 16.
    Snyder, F., Lee, T-c., and Blank, M.L. (1992) Prog. Lipid Res. 31, 65–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Irvine, R.F. and Dawson, R.M.C. (1979) Biochem. Biophys. Res. Commun. 91, 1399–1405.CrossRefGoogle Scholar
  18. 18.
    Sugiura, T., Kudo, N., Ojima, T., Mabuchi-Itoh, K., Yamashita, A., and Waku, K. (1995) Biochim. Biophys. Acta 1255, 167–176.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Fred Snyder
    • 1
  • Veronica Fitzgerald
    • 1
  • Merle L. Blank
    • 1
  1. 1.Medical Sciences DivisionOak Ridge Associated UniversitiesOak RidgeUSA

Personalised recommendations