Advertisement

Functional and Structural Features of Plasma Platelet-Activating Factor Acetylhydrolase

  • Larry W. Tjoelker
  • Chris Eberhardt
  • Cheryl Wilder
  • Greg Dietsch
  • Hai Le Trong
  • Lawrence S. Cousens
  • Guy A. Zimmerman
  • Thomas M. McIntyre
  • Diana M. Stafforini
  • Stephen M. Prescott
  • Patrick W. Gray
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 416)

Abstract

Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid that exerts its effects by binding to a receptor on target cells such as monocytes, polymorphonuclear leukocytes, platelets, and smooth muscle cells1. Other phospholipids that have undergone oxidative fragmentation are structurally similar to PAF, bind to its receptor, and mimic its biological properties. Although PAF synthesis is tightly regulated, the fragmented phospholipids arise via unregulated chemical oxidation.

Keywords

Catalytic Triad Active Site Serine Serine Esterase Short Acyl Chain Oxidative Fragmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Venable, M.E., Zimmerman, G.A., McIntyre, T.M. and Prescott, S.M. (1993) J. Lipid Res. 34, 691–702PubMedGoogle Scholar
  2. 2.
    Stremler, K.E., Stafforini, D.M., Prescott, S.M. and McIntyre, T.M. (1991) J. Biol. Chem. 266, 11095–11103PubMedGoogle Scholar
  3. 3.
    Stafforini, D.M., Prescott, S.M., Zimmerman, G.A. and McIntyre, T.M. (1991) Lipids 26, 979–985PubMedCrossRefGoogle Scholar
  4. 4.
    Hattori, M., Adachi, H., Tsujimoto, M., Arai, H. and Inoue, K. (1994) J. Biol. Chem. 269, 23150–23155PubMedGoogle Scholar
  5. 5.
    Stafforini, D.M., Prescott, S.M. and McIntyre, T.M. (1987) J. Biol. Chem. 262, 4223–4230PubMedGoogle Scholar
  6. 6.
    Tjoelker, L.W., Wilder, C., Eberhardt, C., Stafforini, D.M., Dietsch, G., Schimpf, B., Hooper, S., Trong, H.L., Cousens, L.S., Zimmerman, G.A., Yamada, Y., McIntyre, T.M., Prescott, S.M. and Gray, P.W. (1995) Nature 374, 549–553PubMedCrossRefGoogle Scholar
  7. 7.
    Derewenda, Z.S. (1994) Adv. Protein Chem. 45, 1–52PubMedCrossRefGoogle Scholar
  8. 8.
    Scott, D.L. and Sigler, P.B. (1994) Adv. Protein Chem. 45, 53–88PubMedCrossRefGoogle Scholar
  9. Dennis, E.A. (1994) J. Biol. Chem. 269, 1 3 057–1 3060Google Scholar
  10. 10.
    is, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., Sil-man, I., Schrag, J., Sussman, J.L., Verschueren, K.H.G. and Goldman, A. (1992) Protein Eng. 5, 197–211PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Larry W. Tjoelker
    • 1
  • Chris Eberhardt
    • 1
  • Cheryl Wilder
    • 1
  • Greg Dietsch
    • 1
  • Hai Le Trong
    • 1
  • Lawrence S. Cousens
    • 1
  • Guy A. Zimmerman
    • 2
  • Thomas M. McIntyre
    • 2
  • Diana M. Stafforini
    • 2
  • Stephen M. Prescott
    • 2
  • Patrick W. Gray
    • 1
  1. 1.ICOS CorporationBothellUSA
  2. 2.Program in Human Molecular Biology and GeneticsUniversity of UtahSalt Lake CityUSA

Personalised recommendations