Advertisement

Influence of Chewing Gum with Sodium Fluoride on the Oral Hygiene, Gingival Status, Susceptibility of an Enamel, Salivary Level of Streptococcus mutans and Lactobacillus in 13-Year-Old Children Affected by Caries

  • J. Radlinska
  • T. Ogonski

Abstract

Dental caries are multi bacterial diseases depending on the interaction between enamel, saliva, dental plaque and consumed carbohydrates. In the process of enamel demineralisation, Streptococcus mutans and Lactobacillus bacteria were shown to play a mayor role (1). This process can take place only when the destruction of the structure of minerals occurred (2, 3).

Keywords

Oral Cavity Dental Caries Dental Plaque Streptococcus Mutans Sodium Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Suhonen, Schweiz. Monatsschr. Zahnmed. 102, 286–291 (1992).Google Scholar
  2. 2.
    J. M. ten Cate and P. P. E. Duijsters, Caries Res. 17, 193–199 (1983).CrossRefGoogle Scholar
  3. 3.
    J. M. ten Cate and P. P. E. Duijsters, Caries Res. 17, 513–519 (1983).CrossRefGoogle Scholar
  4. 4.
    J. R. Hamilton, Caries Res. 11 (Suppl.l)., 262–278 (1977).CrossRefGoogle Scholar
  5. 5.
    A. M. Horowitz, J. D. Suomi, J. K. Peterson and B. A. Lyman, J. Public. Health Dent. 37, 180–188 (1977).CrossRefGoogle Scholar
  6. 6.
    E. Söderling, L. Alaräisänen, A. Scheinin and K. K. Mäkinen, Caries Res. 21, 109–116 (1987).CrossRefGoogle Scholar
  7. 7.
    M. T. Smits and J. Arends, Caries Res. 22, 160–165 (1988)CrossRefGoogle Scholar
  8. 8.
    R. M. Duckworth and S. N. Morgan, Caries Res. 25, 123–129 (1991).CrossRefGoogle Scholar
  9. 9.
    R. M. Duckworth, S. N. Morgan, G. S. Ingram and D. J. Page, in Clinical and Biological Aspects of Dentifrices, G. Embery and G. Rolla, ed., Oxford University Press, Oxford, pp. 91–104 (1992).Google Scholar
  10. 10.
    D. A. M. Gedds and S. G. McNee, Arch. Oral Biol. 27, 765–769 (1982)CrossRefGoogle Scholar
  11. 11.
    S. Poulsen, N. Agrebeak, B. Melson, L. Glavind and G. Rolla, Community Dent. Oral Epidemiol. 4, 159–199 (1976)CrossRefGoogle Scholar
  12. 12.
    F. E. Frans and L. J. Baume, SSO, 93, 1183–1188 (1983).Google Scholar
  13. 13.
    K. Kristofferson, H. G. Gröndhl and D. Brathall, J. Dent. Res. 64, 58–61 (1985)CrossRefGoogle Scholar
  14. 14.
    W. J. Loesche, Microbiol. Rev. 4, 353–380 (1986).Google Scholar
  15. 15.
    G. H. W. Bowden, J. Dent. Res. 69, 653–659 (1990).Google Scholar
  16. 16.
    W. M. Edgar, in The Environment of the Teeth. Frontiers of oral physiology, vol 3, D. B. Ferguson, ed., Basel, Karger pp. 19–37 (1981)Google Scholar
  17. 17.
    D. G. A. Nelson, J. D. B. Featherstone, J. F. Duncan and T. N. Cutress, Caries Res. 17, 200–211 (1983).CrossRefGoogle Scholar
  18. 18.
    L. Wong, T. W. Cutress and J. F. Duncan, J. Dent. Res. 66, 1735–1741 (1987).CrossRefGoogle Scholar
  19. 19.
    D. J. Crommelin, W. J. Higuchi, J. L. Fox, P. J. Spoonerand A. V. Katdare, Caries Res. 17, 289–296 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J. Radlinska
    • 1
  • T. Ogonski
    • 2
  1. 1.General Dentistry DepartmentPomeranian Medical AcademySzczecinPoland
  2. 2.Biochemistry and Chemistry DepartmentPomeranian Medical AcademySzczecinPoland

Personalised recommendations