Advertisement

Manganese(II) Complexes with Orotic Acid Derivatives as Scavengers of Superoxide Radicals

ESR and Voltammetric Studies
  • J. P. Souchard
  • P. L. Fabre
  • J. P. Patau
  • M. Massol
  • P. Castan
  • F. Nepveu

Abstract

The Superoxide anion radical, O2 , plays a key role in the initiation stage of oxidative damage in biological systems (1). The main line of defense in mammalian organisms for controlling intracellular, and to a lesser extent extracellular, O2 radicals are the Cu/Zn and Mn-containing Superoxide dismutase (SOD) enzymes and, recently, the application of SOD as a drug has attracted much attention (2). Since various problems are associated with using an enzyme as a drug (cost, bioavailability, stability, immunogenicity), non-toxic and low-mass metal complexes that catalyze the dismutation of O2 might be able to substitute for SOD in such applications.

Keywords

Electron Spin Resonance Scavenge Activity Electron Spin Resonance Spectrum Xanthine Oxidase Electron Spin Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Halliwell, J.M.C. Gutteridge, Free radicals in Biology and Medicine, 2nd ed., Clarendon Press, Oxford (1989).Google Scholar
  2. 2.
    W.H. Bannister, Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, Elsevier North Holland, New York (1980).Google Scholar
  3. G. Jadot, Les Superoxydes Dismutases, Masson, Paris (1988).Google Scholar
  4. 3.
    F.S. Archibald, I. Fridovich, Arch. Biochem. Biophys., 214, 452–463 (1982).CrossRefGoogle Scholar
  5. 4.
    S. Rivomanana, M. Massol, P. Derache, F. Nepveu, in Electron Spin Resonance (ESR), Applications in Organic and Bioorganic Materials, B. Catoire, ed., Springer-Verlag, Berlin, pp. 105–111 (1992).CrossRefGoogle Scholar
  6. 5.
    J.P. Souchard, M. Massol, F. Nepveu, J. Chim. Phys., 93, 214–219 (1996).Google Scholar
  7. 6.
    C. Declume, J. Ethnopharm., 27, 91–98 (1989).CrossRefGoogle Scholar
  8. 7.
    C. Declume, F. Nepveu, Fund. Clin. Pharmacol, 5(9),832 (1991).Google Scholar
  9. 8.
    F. Nepveu, N. Gaultier, N. Korber, J. Jaud, P. Castan, J. Chem. Soc. Dalton Trans., 4005-4013 (1995).Google Scholar
  10. 9.
    P. Coffre, D.T. Sawyer, Anal Chem., 58, 1057–1061 (1986).CrossRefGoogle Scholar
  11. C.P. Andrieux, P. Hapiot, J.M. Saveant, J. Am. Chem. Soc, 109, 3768–3772 (1987).CrossRefGoogle Scholar
  12. 10.
    J.P. Souchard, M. Massol, F. Nepveu, submitted.Google Scholar
  13. 11.
    E.R. Tucci, B.R. Doody, N.C. Li, J. Phys. Chem., 5, 1570-1576; E.R. Tucci, C.H. Ke, N.C. Li, J. Inorg. Nucl. Chem., 29, 1657–1664 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J. P. Souchard
    • 1
  • P. L. Fabre
    • 2
  • J. P. Patau
    • 1
  • M. Massol
    • 1
  • P. Castan
    • 2
  • F. Nepveu
    • 1
  1. 1.Laboratoire de Synthèse, Physico-Chimie, et RadiobiologieUniversité Paul SabatierToulouse CedexFrance
  2. 2.Laboratoire de Chimie InorganiqueUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations