Pharmacokinetics of Platinum in a Patient Undergoing Hemodialysis after Acute Renal Failure Due to Treatment with Carboplatin

  • H. Jaumain
  • M. Bret
  • M. Accominotti
  • C. Ardiet
  • E. Chatelut
  • J. Moskovtchenko


Platinum-based therapy is currently used in anticancer regimens. Carboplatin [diamine (1,1-cyclobutanedicarboxylato) platinum], one of the second generation platinum compounds (1), has been introduced in clinical use as a less nephrotoxic alternative to cisplatin. The binding of platinum to plasma proteins is less pronounced than for cisplatin, resulting in a higher proportion and a longer half-time of active free platinum in blood. In addition, renal excretion by glomerular filtration is rapid and, unlike cisplatin, occurs without tubular secretion (2). At the conventional dose of 400 mg/m2, carboplatin dose-limiting toxicity is essentially hematologic (neutropenia and thrombocytopenia). This toxicity can be prevented by administration of cytokines such as GM-CSF, G-CSF or IL-3 allowing a dose escalation over 1000 mg/m2. However, at these doses, other signs of toxicity such as nephrotoxicity appear. In this paper, we described the case of a patient with acute renal failure after carboplatin administration.


Acute Renal Failure Autologous Bone Marrow Transplantation Hemodialysis Session Total Platinum Free Platinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.J.F. van der Vijgh, Clin. Pharmacokinet. 21, (4), 242–261 (1991).CrossRefGoogle Scholar
  2. 2.
    M. Chazard, L. Lenaz, Bulletin de la Société de Cancérologie Privée 7, 77–82 (1988).Google Scholar
  3. 3.
    A.H. Calvert, S.J. Harland, D.R. Newell, Cancer. Chemother. Pharmacol. 9, 140–147 (1982).CrossRefGoogle Scholar
  4. 4.
    R. Canetta, K. Bragman, L. Smaldone, M. Rozencweig, Cancer Treat. Rev. 15, (S B), 17-32 (1988).Google Scholar
  5. 5.
    M.J. Egorin, D.A. Van Echo, E.A. Olman et coll., Cancer Res. 44, 5432–5438 (1984).Google Scholar
  6. 6.
    A. Calvert, D.R. Newell, L.A. Gumbrell et coll., J. Clin. Oncol. 7, 1748–1756 (1989).Google Scholar
  7. 7.
    T. Petitclerc, I. Sitavanc, A. Hamani, C. Jacobs, XVI Journées d’uro-néphrologie de la Pitié Salpétrière, 145-153(1990).Google Scholar
  8. 8.
    K. Man, C. Cianconi, B. Perrone, P. Chauveau, C. Jehenne, Trans. Am. Soc. Artif. Intern. Organs 35, 8–13 (1989).Google Scholar
  9. 9.
    A. Albertazzi, P.F. Palmieri, E. Mastrangelo, Kidney Int. 43, (S. 41) S 188–S 194 (1993).Google Scholar
  10. 10.
    C. Meloni, M. Morosetti, L. Meschini, M. Taccone-Gallucci, C.U. Casciani, Artif. Organs 17, 188–190 (1993).CrossRefGoogle Scholar
  11. 11.
    K. Erkman, M.J. Egorin, L.M. Reyno, R. Morgan, J.H. Doroshow. Cancer Chemother. Pharmacol. 35, 254–256(1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • H. Jaumain
    • 1
  • M. Bret
    • 1
  • M. Accominotti
    • 2
  • C. Ardiet
    • 3
  • E. Chatelut
    • 4
  • J. Moskovtchenko
    • 1
  1. 1.Service de Réanimation, Pavillon PHôpital Edouard HerriotLyon Cedex 03France
  2. 2.Laboratoire de Biochimie et Analyse des TracesHôpital Edouard HerriotLyon Cedex 03France
  3. 3.Laboratoire de PharmacocinétiqueCentre Léon Bérard LyonFrance
  4. 4.Centre Claudius RegaudToulouseFrance

Personalised recommendations