Relationships of Cetacea to Terrestrial Ungulates and the Evolution of Cranial Vasculature in Cete

  • Jonathan H. Geisler
  • Zhexi Luo
Part of the Advances in Vertebrate Paleobiology book series (AIVP, volume 1)

Abstract

Concomitant with the evolution of numerous aquatic adaptations, extant cetaceans have developed a cranial vascular system that is very different from those of terrestrial mammals. Terrestrial mammals rely on the internal carotid, external carotid, and vertebral arteries for blood supply to the brain. In extant cetaceans, however, these cranial vessels are either lost or extremely reduced early in ontogeny (such as the internal carotid and its branch the stapedial artery), or ramify along part of their course into anastomotic networks of small arteries (such as the vertebral artery and branches of the external carotid). These networks of arteries, and their morphologically similar complexes of veins, are termed retia mirabile, “wonderful nets.” In contrast to the typical ungulate cranial circulation in which a few large arteries make up the main supply channels to the brain, the cetacean cranial circulation is characterized by a series of the retia mirabile. The cranial vascular patterns of cetaceans (Boenninghaus, 1904; Slijper, 1936; Walmsley, 1938; Vogl and Fisher, 1981a) are so different from those of terrestrial eutherian mammals (Sisson, 1921; Miller et al., 1964; Bugge, 1974; Gray, 1974; Hunt, 1974; Presley, 1979; MacPhee, 1981; Wible, 1987) that they have attracted the attention of morphologists since the first half of the nineteenth century (Breschet, 1836; Stannius, 1841).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajpai, S., Thewissen, J. G. M., and Sahni, A. 1996. Indocetus (Cetacea, Mammalia) endocasts from Kachchh (India). J. Vertebr. Paleontol. 16:582–584.CrossRefGoogle Scholar
  2. Barnes, L. G. 1984. Whales, dolphins and porpoises: origin and evolution of the Cetacea, in: T. W. Broadhead (ed.), Mammals. Notes for a Short Course Organized by P. D. Gingerich and C. E., pp. 139-154. University of Tennessee Department of Geological Sciences, Studies in Geology 8 (1–4).Google Scholar
  3. Barnes, L. G., and Mitchell, E. 1978. Cetacea, in: V. J. Maglio and H. B. S. Cooke (eds.), Evolution of African Mammals, pp. 582–602. Harvard University Press, Cambridge, MA.Google Scholar
  4. Barnes, L. G., Domning, D. P., and Ray, C. E. 1985. Status of studies on fossil marine mammals. Mar. Mamm. Sci. 1(l):15–53.CrossRefGoogle Scholar
  5. Boenninghaus, G. 1904. Das Ohr des Zahnwhales, zugleich ein Beitrag zur Theorie der Schalleitung. Zool. Jahrb. Abt. Anat. Ontog. Tiere 19:189–360.Google Scholar
  6. Boyden, A., and Gemeroy, D. 1950. The relative position of Cetacea among the orders of Mammalia as indicated by precipitin tests. Zoologica 35:145–151.Google Scholar
  7. Breathnach, A. S. 1955. Observations on endocranial casts of recent and fossil cetaceans. J. Anat. 89:532–546.PubMedGoogle Scholar
  8. Bremer, J. L. 1904. On the lung of the opossum. Am. J. Anat 3:67–73.CrossRefGoogle Scholar
  9. Breschet, M. G. 1836. Histoire anatomique et physiologique d’un organe de nature vasculaire découvert dans les cetacés. Bechet Jeune, Paris. Reprinted in supplement to Invest. Cetacea 20:1–82.Google Scholar
  10. Bryant, H. N., and Russell, A. P. 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philos. Trans. R. Soc. London Sen B 337:405–418.CrossRefGoogle Scholar
  11. Bugge, J. 1974. The cephalic arterial system in insectivores, primates, rodents, and lagomorphs, with special reference to the systematic classification. Supplement 62 to Acta Anat. 87:160.Google Scholar
  12. Butler, H. 1967. The development of mammalian durai venous-sinuses with especial reference to the postglenoid vein. J. Anat. 102:33–56.PubMedGoogle Scholar
  13. Cifelli, R. L. 1982. The petrosal structure of Hyopsodus with respect to that of some other ungulates, and its phylogenetic implications. /. Paleontol. 56(3):795–805.Google Scholar
  14. Coombs, M. C., and Coombs, W. P., Jr. 1982. Anatomy of the ear region of four Eocene artiodactyls: Gobiohyus, Helohyus, Diacodexis, and Homacodon. J. Vertebr. Paleontol. 2(2):219–236.CrossRefGoogle Scholar
  15. Cope, E. D. 1880. On the foramina perforating the posterior part of the squamosal bone of the Mammalia. Proc. Am. Philos. Soc. 18(105):452–461.Google Scholar
  16. Czelusniak, J., Goodman, M., Koop, B. F., Tagle, D. O., Shoshani, J., Braunitzer, G., Kleinschmidt, T. K., de Jong, W. W., and Matsuda, G. 1990. Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria, in: H. H. Genoways (ed.), Current Mammalogy, Volume 2, pp. 545–572. Plenum Press, New York.Google Scholar
  17. Daniel, P. M., Dawes, J. D. K., and Prichard, M. M. L. 1954. Studies of the carotid rete and its associated arteries. Philos. Trans. R. Soc. London Ser. B 237:173–208.CrossRefGoogle Scholar
  18. Dart, R. A. 1923. The brain of the Zeuglodontidae (Cetacea). Proc. Zool. Soc. London 42:615–648.Google Scholar
  19. Daudt, W. 1898. Beiträge zur Kenntnis des Urogenitalapparates der Cetaceen. Jena. Z. Naturwiss. 32:231–312.Google Scholar
  20. De Burlet, H. M. 1915a. Zur Entwicklungsgeschichte des Walschädels 3, Das Primordialcranium eines Embryo von Balaenoptera rostrata (105 mm). Morphol. Jahrb. 49:120–178.Google Scholar
  21. De Burlet, H. M. 1915b. Zur Entwicklungsgeschichte des Walschädels 4, Das Primordialcranium eines Embryo von Lagenorhynchus albirostris. Morphol. Jahrb. 49:393–406.Google Scholar
  22. De Jong, W. W. 1985. Superordinal affinities of Rodentia studied by sequence analyses of eye lens proteins, in: W. P. Luckett and J.-L. Harttenberger (eds.), Evolutionary Relationships among Rodents: A Multidisciplinary Analysis, pp. 211–226. Plenum Press, New York.CrossRefGoogle Scholar
  23. De Jong, W. W, Leunissen, J. A. M., and Wistow, G. J. 1993. Eye crystallins and the phytogeny of the placental orders: evidence for a macroscelid-paenungulate clade, in: F. S. Szalay, M. J. Novacek, and M. C. McKen-na (eds.), Mammal Phytogeny, Placentals, pp. 5–12. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  24. De Queiroz, K., and Gauthier, J. 1990. Phytogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst. Zool. 39(4):307–322.CrossRefGoogle Scholar
  25. Dennstedt, A. 1904. Die Sinus durae matris der Haussäugetiere. Anat. Hefte 25:1–96.CrossRefGoogle Scholar
  26. Diamond, M. K. 1992. Homology and evolution of the orbitotemporal venous sinuses of humans. Am. J. Phys. Anthropol. 88:211–244.PubMedCrossRefGoogle Scholar
  27. Dormer, K. J., Denn, M., and Stone, H. L. 1977. Cerebral blood flow in the sea lion (Zalophus californianus) during voluntary dives. Comp. Biochem. Physiol. 58(A):11–18.CrossRefGoogle Scholar
  28. Du Boulay, G. H., and Verity, P. M. 1973. The Cranial Arteries of Mammals. Heineman Medical Books, London.Google Scholar
  29. Edinger, T. 1948. Evolution of the horse brain. Mem. Geol. Soc. Am. 25:47–54.Google Scholar
  30. Edinger, T. 1949. Paleoneurology versus comparative brain anatomy. Confin. Neurol. 9:5–24.PubMedCrossRefGoogle Scholar
  31. Edinger, T. 1955. Hearing and smell in cetacean history. Monatsschr. Psychiatr. Neurol. 129:37–58.PubMedCrossRefGoogle Scholar
  32. Edinger, T. 1964. Midbrain exposure and overlap in mammals. Am. Zool. 4:5–19.PubMedGoogle Scholar
  33. Fitch, W. M, and Beintema, J. J. 1990. Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Mol. Biol. Evol. 7(5):438–443.PubMedGoogle Scholar
  34. Fordyce, R. E. 1994. Wapatia maerewhenua, new genus and new species (Waipatiidae, new family), an archaic Late Oligocene dolphin (Cetacea: Odontoceti: Platanistoidea) from New Zealand, in: A. Berta and T. A. Deméré (eds.), Contributions in Marine Mammal Paleontology Honoring Frank Whitmore, Jr., pp. 147-176. Proceedings of the San Diego Society of Natural History 29.Google Scholar
  35. Fraas, E. 1904. Neue Zeuglodonten aus dem unteren Mitteleocän vom Mokattam bei Cairo. Geol. Paläontol. Abh. N. F. 6:199–220.Google Scholar
  36. Fraser, F. C., and Purves, P. E. 1960. Hearing in cetaceans, evolution of the accessory air sacs and the structure and function of the outer and middle ear in recent cetaceans. Bull. Br. Mus. Nat. Hist. Zool. 7(1):1–140.Google Scholar
  37. Galliano, R. E., Morgane, P. J., McFarland, W. L. Nagel, E. L., and Catherman, R. L. 1966. The anatomy of the cervicothoracic arterial system in the bottlenose dolphin (Tursiops truncatus) with a surgical approach suitable for guided angiography. Anat. Rec. 155:325–338.PubMedCrossRefGoogle Scholar
  38. Gaskin, D. E. 1985. The Ecology of Whales and Dolphins. Heinemann, London.Google Scholar
  39. Gatesy, J. 1997. More DNA support for a Cetacea/Hippopotamidae clade: the blood-cloning protein gamma-fibrinogen. Mol. Biol. Evol. 14(5):537–543.PubMedCrossRefGoogle Scholar
  40. Gatesy, J., Hayashi, C., Cronin, A., and Arctander, P. 1996. Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol. Biol. Evol. 13(7):954–963.PubMedCrossRefGoogle Scholar
  41. Gauthier, J., Kluge, A. G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4:105–209.CrossRefGoogle Scholar
  42. Gazin, C. L. 1965. A study of the early Tertiary condylarthran mammal Meniscotherium. Smithson. Misc. Collect. 149(2):1–98.Google Scholar
  43. Gazin, C. L. 1968. A study of the Eocene condylarthran mammal Hyopsodus. Smithson. Misc. Collect. 153(4):1–90.Google Scholar
  44. Geisler, J. H., and Luo, Z. 1996. The petrosal and inner ear of Herpetocetus sp. (Mammalia: Cetacea) and their implications for the phylogeny and hearing of archaic mysticetes. J. Paleontol. 70(6):1045–1066.Google Scholar
  45. Geisler, J. H., Sanders, A. E., and Luo, Z. 1996. A new protocetid cetacean from the Eocene of South Carolina, U.S.A.; phylogenetic and biogeographic implications, in: J. E. Repetski (ed.), Sixth North American Paleontological Convention Abstracts of Papers. Paleontol. Soc. Spec. Pap. 8:139.Google Scholar
  46. Gelderen, C. van. 1924. Die Morphologie der Sinus durae matris. Zweiter Teil. Die vergleichende Ontogenie der neurokraniellen Venen der Vögel und Säugetiere. Z. Anat. Entwicklungsgesch. 74:434–508.Google Scholar
  47. Gentry, A. W., and Hooker, J. J. 1988. The phylogeny of the Artiodactyla, in: M. J. Benton (ed.), The Phylogeny and Classification of the Tetrapods, Volume 2, pp. 235–272. Clarendon Press, Oxford.Google Scholar
  48. Getty, R. (ed.). 1975. Sisson and Grossman’s The Anatomy of Domesticated Animals. Saunders, Philadelphia.Google Scholar
  49. Ghoshal, N. G. 1975a. Ruminant heart and arteries, in: R. Getty (ed.), Sisson and Grossman’s The Anatomy of Domesticated Animals, pp. 960–1023. Saunders, Philadelphia.Google Scholar
  50. Ghoshal, N. G. 1975b. Porcine heart and arteries (blood supply to brain by B. S. Nanda), in: R. Getty (ed.), Sisson and Grossman’s The Anatomy of Domesticated Animals, pp. 1216–1252. Saunders, Philadelphia.Google Scholar
  51. Gingerich, P. D., and Russell, D. E. 1981. Pakicetus inachus, a new archaeocete (Mammalia, Cetacea) from the early-middle Eocene Kuldana Formation of Kohat (Pakistan). Contrib. Mus. Paleontol. Univ. Michigan 25:235–246.Google Scholar
  52. Gingerich, P. D., and Russell, D. E. 1990. Dentition of early Eocene Pakicetus (Mammalia, Cetacea). Contrib. Mus. Paleontol. Univ. Michigan 28(1):1–20.Google Scholar
  53. Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. 1983. Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406.PubMedCrossRefGoogle Scholar
  54. Gingerich, P. D., Smith, B. H., and Simmons, E. L. 1990. Hind limbs of Eocene Basilosaurus isis: evidence of feet in whales. Science 249:154–157.PubMedCrossRefGoogle Scholar
  55. Gingerich, P. D., Arif, M., and Clyde, W. C. 1995. New archaeocetes (Mammalia, Cetacea) from the middle Eocene Domanda Formation of the Sulaiman Range, Punjab (Pakistan). Contrib. Mus. Paleontol. Univ. Michigan 29(11):291–330.Google Scholar
  56. Gould, G. C. 1995. Hedgehog phylogeny (Mammalia, Erinaceidae)—the reciprocal illumination of the quick and the dead. Am. Mus. Novit. 3131:1–45.Google Scholar
  57. Graur, D., and Higgins, D. G. 1994. Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol. Biol. Evol. 11:357–364.PubMedGoogle Scholar
  58. Gray, H. 1974. Anatomy, Descriptive and Surgical, 1901 ed. Running Press, Philadelphia.Google Scholar
  59. Hammond, W. S. 1937. The developmental transformations of the aortic arches in the calf (Bos taurus), with especial reference to the formation of the arch of the aorta. Am. J. Anat. 62:149–177.CrossRefGoogle Scholar
  60. Hartman, C. G. 1916. Studies in the development of the opossum Didelphis virginiana L. J. Morphol. 27(1):1–62.CrossRefGoogle Scholar
  61. Hervé, P., and Douzery, E. 1994. The pitfalls of molecular phylogeny based on four species, as illustrated by the Cetacea/Artiodactyla relationships. J. Mamm. Evol. 2(2):133–152.CrossRefGoogle Scholar
  62. Hofmann, L. 1914. Die entwicklung der kopfarterien bei Sus scrofa domesticus. Morphol. Jahrb. 48:645–670.Google Scholar
  63. Honeycutt, R. L., Nedbal, M. A., Adkins, R. M., and Janecek, L. L. 1995. Mammalian mitochondrial DNA evolution: a comparison of the cytochrome b and cytochrome c oxidase II genes. J. Mol. Evol. 40:260–272.PubMedCrossRefGoogle Scholar
  64. Hunt, R. M., Jr. 1974. The auditory bulla in Carnivora: an anatomical basis for reappraisal of carnivore evolution. J. Morphol. 141(1):21–76.CrossRefGoogle Scholar
  65. Irwin, D. M., and Arnason, U. 1994. Cytochrome b gene of marine mammals: phylogeny and evolution. J. Mamm. Evol. 2(1):37–55.CrossRefGoogle Scholar
  66. Irwin, D. M., Kocher, T. D., and Wilson, A. C. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32:128–144.PubMedCrossRefGoogle Scholar
  67. Janke, A., Feldmaier-Fuchs, G., Kelley Thomas, W., von Haesseler, A., and Pääbo, S. 1994. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 137:243–256.PubMedGoogle Scholar
  68. Kalandadze, N. N., and Rautian, A. S. 1992. The system of mammals and historical zoogeography, in: O. L. Rossolimo (ed.), Filogenetika Mlekopitayushchikh. Sb. Tr. Zool. Muz. 29:44-152.Google Scholar
  69. Kampen, P. N. van. 1905. Die Tympanalgegend des Säugetierschädels. Morphol. Jahrb. 34:321–720.Google Scholar
  70. Kellogg, A. R. 1936. A review of the Archaeoceti. Carnegie Inst. Washington Publ. 482:1–366.Google Scholar
  71. Kielan-Jaworowska, Z. 1977. Evolution of the therian mammals in the Late Cretaceous of Asia. Part III. Postcranial skeleton in Kennalestes and Asioryctes. Palaeontol. Pol. 37:65–83.Google Scholar
  72. Kielan-Jaworowska, Z. 1981. Evolution of the therian mammals in the Late Cretaceous of Asia. Part. IV. Skull structure in Kennalestes and Asioryctes. Palaeontol. Pol. 42:25–78.Google Scholar
  73. Kielan-Jaworowska, Z., Presley, R. and Poplin, C. 1986. The cranial vascular system in taeniolabidoid multituberculate mammals. Philos. Trans. R. Soc. London Ser. B 313:525–602.CrossRefGoogle Scholar
  74. Kumar, K., and Sahni, A. 1986. Remingtonocetus harudiensis, new combination, a middle Eocene archaeocete (Mammalia, Cetacea) from western Kutch, India. J. Vertebr. Paleontol. 6(4):326–349.CrossRefGoogle Scholar
  75. Lancaster, W. C. 1990. The middle ear of the Archaeoceti. J. Vertebr. Paleontol. 10(1):117–127.CrossRefGoogle Scholar
  76. Luo, Z., and Eastman, E. R. 1995. Petrosal and inner ear of a squalodontoid whale: implications for the evolution of hearing in odontocetes. J. Vertebr. Paleontol. 15(2):431–442.CrossRefGoogle Scholar
  77. Luo, Z., and Gingerich, P. D. In press. Transition from terrestrial ungulates to aquatic whales: transformation of the basicranium and evolution of hearing. Bull. Mus. Paleontol. Univ. Michigan.Google Scholar
  78. Luo, Z., and Marsh, K. 1996. Petrosal (periotic) and inner ear of a Pliocene kogiine whale (Kogiinae, Odontoceti): implications on relationships and hearing evolution of toothed whales. J. Vertebr. Paleontol. 16(2):328–348.CrossRefGoogle Scholar
  79. MacPhee, R. D. E. 1981. Auditory regions of primates and eutherian insectivores: morphology, ontogeny, and character analysis. Contrib. Primatol. 18:1–282.Google Scholar
  80. MacPhee, R. D. E. 1994. Morphology, adaptations, and relationships of Plesiorycteropus, and a diagnosis of a new order of eutherian mammals. Bull. Am. Mus. Nat. Hist. 220:1–214.Google Scholar
  81. Maddison, W. P., and Maddison, D. R. 1992. MacClade Program (3.0). Sinauer Associates, Sunderland, MA.Google Scholar
  82. Maddison, W. P., Donoghue, M. J., and Maddison, D. R. 1984. Outgroup analysis and parsimony. Syst. Zool. 33(1):83–103.CrossRefGoogle Scholar
  83. McCrady, E., Jr. 1940. The development and fate of the urinogenital sinus in the opossum, Didelphis virginiana. J. Morphol. 66:131–154.CrossRefGoogle Scholar
  84. McFarland, W. L., Jacobs, M. S., and Morgane, P. J. 1979. Blood supply to the brain of the dolphin, Tursiops truncatus, with comparative observations on special aspects of the cerebrovascular supply of other vertebrates. Neurosci. Biobehav. Rev. Suppl. 1 3:1–93.CrossRefGoogle Scholar
  85. McKenna, M. C. 1975. Toward a phylogenetic classification of the Mammalia, in: W. P. Luckett and F. S. Szalay (eds.), Phytogeny of the Primates, pp. 21–46. Plenum Press, New York.CrossRefGoogle Scholar
  86. McKenna, M. C. 1992. The alpha crystallin A chain of the eye lens and mammalian phylogeny. Ann. Zool. Fenn. 28:349–360.Google Scholar
  87. McKenna, M. C., and Bell, S. K. 1997. Classification of Mammals Above the Species Level. Columbia University Press, New York.Google Scholar
  88. Melnikov, V. V. 1997. The arterial system of the sperm whale (Physeter macwcephalus). J. Morphol. 234:37–50.PubMedCrossRefGoogle Scholar
  89. Meng, J., Ting, S., and Schiebout, J. A. 1994. The cranial morphology of an early Eocene didymoconid (Mammalia, Insectivora). J. Vertebr. Paleontol. 14(4):534–551.CrossRefGoogle Scholar
  90. Miller, M. E., Christensen, G. C., and Evans, H. E. 1964. Anatomy of the Dog. Saunders, Philadelphia.Google Scholar
  91. Montgelard, C., Catzeflis, F. M., and Douzery, E. 1997. Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S RNA mitochondrial sequences. Mol. Biol. Evol. 14(5):550–559.PubMedCrossRefGoogle Scholar
  92. Mossman, H. W. 1987. Vertebrate Fetal Membranes. Rutgers University Press, New Brunswick, NJ.Google Scholar
  93. Müller, O. 1898. Untersuchungen über die Veränderungen, welche die Respirationsorgane der Säugetiere durch die anpassung an das Leben im Wasser erlitten haben. Jen. Z. Naturwiss. 32:95–230.Google Scholar
  94. Nagel, E. L., Morgane, P. J., McFarland, W. L., and Galliano, R. E. 1968. Rete mirabile of dolphin: its pressure-dampening effect on cerebral circulation. Science 161:898–900.PubMedCrossRefGoogle Scholar
  95. Nixon, K. C., and Carpenter, J. M. 1993. On outgroups. Cladistics 9:413–426.CrossRefGoogle Scholar
  96. Novacek, M. J. 1977. Aspects of the problem of variation, origin and evolution of the eutherian bulla. Mammal Rev. 7:131–149.CrossRefGoogle Scholar
  97. Novacek, M. J. 1980. Cranioskeletal features in tupaiids and selected Eutheria as phylogenetic evidence, in: W. P. Luckett (ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews, pp. 35–93. Plenum Press, New York.CrossRefGoogle Scholar
  98. Novacek, M. J. 1986. The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183(1): I–112.Google Scholar
  99. Novacek, M. J. 1992. Fossils, topologies, missing data, and the higher level phylogeny of eutherian mammals. Syst. Biol. 41(1):58–73.Google Scholar
  100. Novacek, M. J., and Wyss, A. R. 1986a. Higher-level relationships of the eutherian orders: morphological evidence. Cladistics 2(3):257–287.CrossRefGoogle Scholar
  101. Novacek, M. J., and Wyss, A. R. 1986b. Origin and transformation of the mammalian stapes. Contrib. Geol. Univ. Wyoming Spec. Pap. 3:35–53.Google Scholar
  102. Novacek, M. J., Wyss, A. R., and McKenna, M. C. 1988. The major groups of mammals, in: M. J. Benton (ed.), The Phylogeny and Classification of the Tetrapods, Mammals, Volume 2, pp. 31–71. Clarendon Press, Oxford.Google Scholar
  103. Oelschläger, H. A. 1986. Comparative morphology and evolution of the otic region in toothed whales (Cetacea, Mammalia). Am. J. Anat. 177:353–368.PubMedCrossRefGoogle Scholar
  104. ’Leary, M. A., and Rose, K. D. 1995a. New mesonychian dentitions from the Paleocene of the Bighorn Basin, Wyoming. Ann. Carnegie Mus. 64(2):147–172.Google Scholar
  105. ’Leary, M. A., and Rose, K. D. 1995b. Postcranial skeleton of the early Eocene mesonychid Pachyaena (Mammalia: Mesonychia). J. Vertebr. Paleontol. 15(2):401–430.CrossRefGoogle Scholar
  106. Padget, D. H. 1948. The development of the cranial arteries in the human embryo. Contrib. Embryol. 32:205–261.Google Scholar
  107. Padget, D. H. 1957. The development of the cranial venous system in man, from the viewpoint of comparative anatomy. Contrib. Embryol. 36:81–151.Google Scholar
  108. Patterson, C. 1982. Morphological characters and homology, in: K. A. Joysey and A. E. Friday (eds.), Problems of Phylogenetic Reconstruction, pp. 21–74. Academic Press, New York.Google Scholar
  109. Pilleri, G. 1991. Betrachtungen über das Gehirn der Archaeoceti (Mammalia, Cetacea) aus dem Fayüm Ägyptens. Invest. Cetacea 23:193–211.Google Scholar
  110. Presley, R. 1979. The primitive course of the internal carotid artery in mammals. Acta Anat. 103:238–244.PubMedCrossRefGoogle Scholar
  111. Prothero, D. R., Manning, E. M., and Fischer, M. 1988. The phylogeny of the ungulates, in: M. J. Benton (ed.), The Phylogeny and Classification of the Tetrapods, Volume 2, pp. 201–234. Clarendon Press, Oxford.Google Scholar
  112. Queralt, R., Adroer, R., Oliva, R., Winkfein, R. J., Retief, J. D., and Dixon, G. H. 1995. Evolution of protamine P1 genes in mammals. J. Mol. Evol. 40:601–607.PubMedCrossRefGoogle Scholar
  113. Radinsky, L. B. 1965. Evolution of the tapiroid skeleton from Heptodon to Tapirus. Bull. Mus. Comp. Zool. 34(3):1–106.Google Scholar
  114. Radinsky, L. B. 1976a. Oldest horse brains: more advanced than previously realized. Science 194:626–627.PubMedCrossRefGoogle Scholar
  115. Radinsky, L. B. 1976b. The brain of Mesonyx, a middle Eocene condylarth. Fieldiana Geol. 33(18):323–337.Google Scholar
  116. Rose, K. D. 1985. Comparative osteology of North American dichobunid artiodactyls. J. Paleontol 59(5):1203–1226.Google Scholar
  117. Rose, K. D. 1996. On the origin of the order Artiodactyla. Proc. Natl Acad. Sci. USA 93:1705–1709.PubMedCrossRefGoogle Scholar
  118. Rose, K. D., and O’Leary, M. A. 1995. The manus of Pachyaena gigantea (Mammalia: Mesonychia). J. Vertebr. Paleontol. 15(4):855–859.CrossRefGoogle Scholar
  119. Rougier, G. W., Wible, J. R., and Hopson, J. A. 1992. Reconstruction of the cranial vessels in the early Cretaceous Vincelestes neuquenianus: implications for the evolution of the mammalian cranial vascular system. J. Vertebr. Paleontol 12(2):188–216.CrossRefGoogle Scholar
  120. Russell, D. E. 1964. Les mammiféres Paleocenes d’Europe. Mem. Mus. Natl. Hist. Nat. Ser. C 13:1–324.Google Scholar
  121. Russell, D. E., and Sigogneau, D. 1965. Etude de moulages endocraniens de mammiferes Paleocenes. Mem. Mus. Natl. Hist. Nat. Sen C 16:1–34.Google Scholar
  122. Russell, D. E., Thewissen, J. G. M., and Sigogneau-Russell, D. 1983. A new dichobunid artiodactyl (Mammalia) from the Eocene of north-west Pakistan. Part II: Cranial osteology. Proc. K. Ned. Akad. Wet. Ser. B 86(3):285–299.Google Scholar
  123. Schaeffer, J. P. (ed.). 1953. Morris’ Human Anatomy, 11th ed. McGraw-Hill, New York.Google Scholar
  124. Schreiber, K. 1916. Zur Entwicklungsgeschichte des Walschädels. Das Primordialcranium eines Embryos von Globiocephalus melas (13.3 cm). Zool. Jahrb. Abt. Ontog. Tiere 39:201–236.Google Scholar
  125. Scott, W. B. 1888. On some new and little known creodonts. J. Acad. Nat. Sci. Philadelphia 9:155–185.Google Scholar
  126. Shimamura, M., Yasue, H., Oshima, K., Abe, H., Kato, H., Kishiro, T., Goto, M., Munechika, I., and Okada, N. 1997. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:66–67.Google Scholar
  127. Shoshani, J. 1986. Mammalian phylogeny: comparison of morphological and molecular results. Mol. Biol. Evol. 3(3):222–242.PubMedGoogle Scholar
  128. Shoshani, J. 1993. Hyracoidea-Tethytheria affinity based on myological data, in: F. S. Szalay, M. J. Novacek, and M. C. McKenna (eds.), Mammal Phylogeny, Placentals, pp. 235–256. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  129. Simpson, G. G. 1933. Braincasts of Phenacodus, Notostylops, and Rhyphodon. Am. Mus. Novit. 622:1–19.Google Scholar
  130. Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1–339.Google Scholar
  131. Sinclair, J. G. 1967. Cerebral vascular system and ocular nerves of dolphin (Stenella) embryos. Tex. Rep. Biol. Med. 25(4):551–571.Google Scholar
  132. Sisson, S. 1921. The Anatomy of the Domesticated Animals. Saunders, Philadelphia.Google Scholar
  133. Slijper, E. J. 1936. Die Cetaceen. Vergleichend-Anatomische und Systematisch. Capita Zool. 7(2):1–590.Google Scholar
  134. Smith, M. R., Shivji, M. S., and Waddell, V. G. 1996. Phylogenetic evidence from the IRBP gene for the paraphyly of toothed whales, with mixed support for Cetacea as a suborder of Artiodactyla. Mol. Biol. Evol. 13(3):918–922.PubMedCrossRefGoogle Scholar
  135. Smut, M. M. S., and Bezuidenhout, A. J. 1987. Anatomy of the Dromedary. Clarendon Press, Oxford.Google Scholar
  136. Stanhope, M. J., Smith, M. A., Waddell, V. G., Porter, C. A., Shivji, M. S. and Goodman, M. 1996. Mammalian evolution and the interphotoreceptor retinoid binding protein (IRPB) gene: convincing evidence for several superordinal clades. J. Mol. Evol. 43:83–92.PubMedCrossRefGoogle Scholar
  137. Stannius, H. 1841. Über den Verlauf der Arterien bei Delphinus phocaena. Arch. Anat. Physiol. 8:379–402.Google Scholar
  138. Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony (Version 3.1.1). Privately distributed by Illinois Natural History Survey, Champaign.Google Scholar
  139. Szalay, F. S. 1969a. Origin and evolution of function of the mesonychid condylarth feeding mechanism. Evolution 23:703–720.CrossRefGoogle Scholar
  140. Szalay, F. S. 1969b. The Hapalodectinae and a phylogeny of the Mesonychidae (Mammalia, Condylarthra). Am. Mus. Novit. 2361:1–26.Google Scholar
  141. Szalay, F. S. 1975. Phylogeny of Primate higher taxa, in: W. P. Luckett and F. S. Szalay (eds.), Phylogeny of the Primates—A Multidisciplinary Approach, pp. 91–125. Plenum Press, New York.CrossRefGoogle Scholar
  142. Szalay, F. S., and Gould, S. J. 1966. Asiatic Mesonychidae (Mammalia, Condylarthra). Bull. Am. Mus. Nat. Hist. 132(2):128–173.Google Scholar
  143. Thewissen, J. G. M. 1985. Cephalic evidence for the affinities of Tubulidentata. Mammalia 49(2):257–284.CrossRefGoogle Scholar
  144. Thewissen, J. G. M. 1990. Evolution of Paleocene and Eocene Phenacodontidae (Mammalia Condylarthra). Univ. Michigan Pap. Paleontol. 29:1–107.Google Scholar
  145. Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. J. Mamm. Evol. 2(3):157–184.CrossRefGoogle Scholar
  146. Thewissen, J. G. M., and Domning, D. P. 1992. The role of phenacodontids in the origin of the modern orders of ungulate mammals. J. Vertebr. Paleontol. 12(4):494–504.CrossRefGoogle Scholar
  147. Thewissen, J. G. M., and Hussain, S. T. 1990. Postcranial osteology of the most primitive artiodactyl Diacodexis pakistanensis (Dichobunidae). Anat. Histol. Embryol. 19:37–48.PubMedCrossRefGoogle Scholar
  148. Thewissen, J. G. M., and Hussain, S. T. 1993. Origin of underwater hearing in whales. Nature 361:444–445.PubMedCrossRefGoogle Scholar
  149. Thewissen, J. G. M. Russell, D. E., Gingerich, P. D., and Hussain, S. T. 1983. A new dichobunid artiodactyl (Mammalia) from the Eocene of north-west Pakistan: dentition and classification. Proc. K. Ned. Akad. Wet. Ser. B 86(2):153–180.Google Scholar
  150. Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. 1996. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-Inst. Senckenberg 191:1–86.Google Scholar
  151. Ting, S., and Li, C. 1987. The skull of Hapalodectes (?Acreodi, Mammalia), with notes on some Chinese Paleocene mesonychids. Vertebr. PalAsiat. 25(3):161–186.Google Scholar
  152. Uhen, M. D. 1996. Dorudon atrox (Mammalia, Cetacea): form, function, and phylogenetic relationships of an ar-chaeocete from the later middle Eocene of Egypt. Ph.D. dissertation, University of Michigan, Ann Arbor, 608 pp.Google Scholar
  153. Van Valen, L. 1966. Deltatheridia, a new order of mammals. Bull. Am. Mus. Nat. Hist. 132:1–126.Google Scholar
  154. Vogl, A. W., and Fisher, H. D. 1981a. Arterial circulation of the spinal cord and brain in the Monodontidae (order Cetacea). J. Morphol. 170:171–180.PubMedCrossRefGoogle Scholar
  155. Vogl, A. W., and Fisher, H. D. 1981b. The internal carotid artery does not directly supply the brain in the Monodontidae (order Cetacea). J. Morphol. 170:207–214.PubMedCrossRefGoogle Scholar
  156. Walmsley, R. 1938. Some observations on the vascular system of a female finback. Contrib. Embryol. 27:107–178.Google Scholar
  157. Whitmore, F. C. 1953. Cranial morphology of some Oligocene Artiodactyla. U.S. Geol. Surv. Prof. Pap. 243H:117–160.Google Scholar
  158. Wible, J. R. 1984. The ontogeny and phylogeny of the mammalian cranial arterial pattern. Ph.D. dissertation, Duke University, Durham, 705 pp.Google Scholar
  159. Wible, J. R. 1986. Transformations in the extracranial course of the internal carotid artery in mammalian phylogeny. J. Vertebr. Paleontol. 6(4):313–325.CrossRefGoogle Scholar
  160. Wible, J. R. 1987. The cutherian stapedial artery: character analysis and implications for superordinal relationships. Zool. J. Linn. Soc. 91:107–135.CrossRefGoogle Scholar
  161. Wible, J. R. 1990. Petrosals of late Cretaceous marsupials from North America, and a cladistic analysis of the petrosal in therian mammals. J. Vertebr. Paleontol. 10(2):183–205.CrossRefGoogle Scholar
  162. Wible, J. R., and Hopson, J. A. 1995. Homologies of the prootic canal in mammals and nonmammalian cynodonts. J. Vertebr. Paleontol. 15(2):331–356.CrossRefGoogle Scholar
  163. Wible, J. R., and Novacek, M. J. 1988. Cranial evidence for the monophyletic origin of bats. Am. Mus. Novit. 2911:1–19.Google Scholar
  164. Wible, J. R., and Zeller, U. 1994. Cranial circulation of the pen-tailed shrew Ptilocercus lowii and relationships of Scandentia. J. Mamm. Evol. 2(4):209–230.CrossRefGoogle Scholar
  165. Williamson, T. E., and Lucas, S. G. 1992. Meniscotherium (Mammalia, “Condylarthra”) from the Paleocene-Eocene of western North America. N. M. Mus. Nat. Hist. Bull. 1:1–75.Google Scholar
  166. Witmer, L. M. 1992. Ontogeny, phylogeny, and air sacs: the importance of soft-tissue inferences in the interpretation of facial evolution in Archosauria. Ph.D. dissertation, Johns Hopkins University School of Medicine, Baltimore, 461 pp.Google Scholar
  167. Witmer, L. M. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils, in: J. Thomason (ed.), Functional Morphology in Vertebrate Paleontology, pp. 19–33. Cambridge University Press, London.Google Scholar
  168. Wortman, J. L. 1901. Studies of the Eocene Mammalia in the Marsh collection, Peabody Museum. Am. J. Sci. 11:1–90.Google Scholar
  169. Xu, X., Janke, A., and Arnason, U. 1996. The complete mitochondrial sequence of the greater Indian rhinoceros, Rhinoceros unicornis, and the phylogenetic relationship among Camivora, Perissodactyla, and Artiodactyla (+Cetacea). Mol. Biol. Evol. 13(9):1167–1173.PubMedCrossRefGoogle Scholar
  170. Zhou, X., Zhai, R., Gingerich, P. D., and Chen, L. 1995. Skull of a new mesonychid (Mammalia, Mesonychia) from the late Paleocene of China. J. Vertebr. Paleontol. 15(2):387–400.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jonathan H. Geisler
    • 1
  • Zhexi Luo
    • 2
  1. 1.Department of Vertebrate PaleontologyAmerican Museum of Natural HistoryNew YorkUSA
  2. 2.Section of Vertebrate PaleontologyCarnegie Museum of Natural HistoryPittsburghUSA

Personalised recommendations