Phylogenetic and Morphometric Reassessment of the Dental Evidence for a Mesonychian and Cetacean Clade

  • Maureen A. O’Leary
Part of the Advances in Vertebrate Paleobiology book series (AIVP, volume 1)


Van Valen (1966, 1968, 1969, 1978) first hypothesized that mesonychians, an aberrant group of carnivorous mammals nested within the ungulates, are closely related to cetaceans. Discoveries of new cetacean and mesonychian fossils have prompted detailed descriptions of taxa in both groups (Szalay, 1969a,b; Ting and Li, 1987; Gingerich and Russell, 1990; O’Leary and Rose, 1995a,b; Zhou et al., 1995; Thewissen et al., 1996), classificatory changes (McKenna, 1975; McKenna and Bell, 1997), and cladistic analyses (Prothero et al., 1988; Thewissen, 1994; Zhou et al., 1995) (Fig. 1).


Middle Eocene Sister Taxon Shape Space Lower Molar Outline Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chow, M. 1959. A new arctocyonid from the upper Eocene of Lushih, Honan. Vertebr. PalAsiat. 3:133–138.Google Scholar
  2. Chow, M. 1965. Mesonychids from the Eocene of Honan. Vertebr. PalAsiat. 9:286–291.Google Scholar
  3. Chow, M. M., Li, C.-K., and Chang, Y.-P. 1973. Late Eocene mammalian faunas of Honan and Shansi with notes on some vertebrate fossils collected therefrom. Vertebr. PalAsiat. 14:12–34.Google Scholar
  4. Dehm, R., and Oettingen-Spielberg, T. zu. 1958. Paläontologische und geologische Untersuchungen im Tertiär von Pakistan. 2. Die mitteleocänen Säugetiere von Ganda Kas bei Basal in Nordwest-Pakistan. Abh. Bayer. Akad. Wss. Math. Naturwiss. Kl. N. F. 91:1–54.Google Scholar
  5. Ding, S.-Y., Zheng, J.-J., Zhang, Y.-P., and Tong, Y.-S. 1977. The age and characteristics of the vertebrate fauna from Liuniu and Dongjun Formations of the Bose Basin, Zhuang autonomous region. Vertebr. PalAsiat. 15:35–44.Google Scholar
  6. Fitch, W. M., and Beintema, J. J. (1990). Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Mol. Biol. Evol. 7:438–443.PubMedGoogle Scholar
  7. Gatesy, J., Hayashi, C., Cronin, M. A., and Arctander, P. 1996. Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol. Biol. Evol. 13:954–963.PubMedCrossRefGoogle Scholar
  8. Gingerich, P. D. 1981. Radiation of early Cenozoic Didymoconidae (Condylarthra, Mesonychia) in Asia, with a new genus from the early Eocene of western North America. J. Mammal. 62:526–538.CrossRefGoogle Scholar
  9. Gingerich, P. D., and Russell, D. E. 1990. Dentition of early Eocene Pakicetus (Mammalia, Cetacea). Contrib. Mus. Paleontol. Univ. Michigan 28:1–20.Google Scholar
  10. Gingerich, P. D., Smith, H. B., and Simons, E. L. 1990. Hind limbs of Eocene Basilosaurus: evidence of feet in whales. Science 249:154–157.PubMedCrossRefGoogle Scholar
  11. Graur, D., and Higgins, D. G. 1994. Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol. Biol. Evol. 11:357–364.PubMedGoogle Scholar
  12. Gunnell, G. F., and Gingerich, P. D. 1996. New hapalodectid Hapalorestes lovei (Mammalia, Mesonychia) from the early middle Eocene of northwestern Wyoming. Contrib. Mus. Paleontol. Univ. Michigan 29:413–418.Google Scholar
  13. Guthrie, D. A. 1967. The mammalian fauna of the Lysite Member, Wind River Formation, (early Eocene) of Wyoming. Mem. South. Calif. Acad. Sci. 5:1–53.Google Scholar
  14. Jöreskog, K. G., Klovan, J. E., and Reyment, R. A. 1976. Geological Factor Analysis. Elsevier, Amsterdam.Google Scholar
  15. Lohmann, G. P. 1983. Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. Math. Geol. 15:659–672.CrossRefGoogle Scholar
  16. Lohmann, G. P., and Schweitzer, P. N. 1990. On eigenshape analysis, in: F. J. Rohlf and F. L. Bookstein (eds.), Proceedings of the Michigan Morphometrics Workshop, Special Publication 2: Ann Arbor, Michigan, The University of Michigan Museum of Zoology, pp. 147–166.Google Scholar
  17. MacLeod, N., and Rose, K. D. 1993. Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. Am. J. Sci. 293-A:300–355.CrossRefGoogle Scholar
  18. Maddison, W. P., and Maddison, D. R. 1992. MacClade Program (Version 3.01). Sinauer Associates, Sunderland, MA.Google Scholar
  19. Matthew, W. D. 1897. A revision of the Puerco Fauna. Bull. Am. Mus. Nat. Hist. 9:59–110.Google Scholar
  20. Matthew, W. D. 1937. Paleocene faunas of the San Juan Basin, New Mexico. Trans. Am. Philos. Soc. 30:1–510.CrossRefGoogle Scholar
  21. McKenna, M. C. 1975. Toward a phylogenetic classification of the Mammalia, in: W. P. Luckett and F. S. Szalay (eds.), Phytogeny of the Primates, pp. 21–46. Plenum Press, New York.CrossRefGoogle Scholar
  22. McKenna, M. C., and Bell, S. K. 1997. Classification of Mammals above the Species Level. Columbia University Press, New York.Google Scholar
  23. Meng, J., Suyin, T., and Schiebout, J. A. 1994. The cranial morphology of an early Eocene didymoconid (Mammalia, Insectivora). J. Vertebr. Paleontol. 14:534–551.CrossRefGoogle Scholar
  24. Novacek, M. J. 1989. Higher mammal phylogeny: the morphological-molecular synthesis, in: B. Fernholm, K. Bremer, and H. Jörnvall (eds.), The Hierarchy of Life, pp. 421–435. Elsevier, Amsterdam.Google Scholar
  25. Novacek, M. J. 1992. Mammalian phylogeny: shaking the tree. Nature 356:121–125.PubMedCrossRefGoogle Scholar
  26. Novacek, M. J., and Wyss, A. R. 1986. Higher-level relationships of the recent eutherian orders: morphological evidence. Cladistics 2:257–287.CrossRefGoogle Scholar
  27. O’Leary, M. A., and Rose, K. D. 1995a. New mesonychian dentitions from the Paleocene and Eocene of the Bighorn Basin, Wyoming. Ann. Carnegie Mus. 64:147–172.Google Scholar
  28. O’Leary, M. A., and Rose, K. D. 1995b. Postcranial skeleton of the early Eocene mesonychid Pachyaena (Mammalia: Mesonychia). J. Vertebr. Paleontol. 15:401–430.CrossRefGoogle Scholar
  29. Osborn, H. F. 1924. Andrewsarchus, giant mesonychid of Mongolia. Am. Mus. Novit. 146:1–5.Google Scholar
  30. Peterson, O. A. 1931. New mesonychids from the Uinta. Ann. Carnegie Mus. 20:333–339.Google Scholar
  31. Prothero, D. R., Manning, E. M., and Fischer, M. 1988. The phylogeny of the ungulates, in: M. J. Benton (ed.), The Phylogeny and Classification of the Tetrapods, Volume 2, pp. 201–234. Clarendon Press, Oxford.Google Scholar
  32. Qi, T. 1980. Irdin Manha upper Eocene and its mammalian fauna at Huhebolhe Cliff in central Inner Mongolia. Vertebr. PalAsiat. 18:28–32.Google Scholar
  33. Ranga Rao, A. 1973. Notices of two new mammals from the upper Eocene Kalakot Beds, India. Directorate Geol. Oil Nat. Gas Comm. Dehra Dun India Spec. Pap. 2:1–6.Google Scholar
  34. Rohlf, F. J. 1986. Relationships among eigenshape analysis, Fourier analysis and analysis of coordinates. Math. Geol. 18:845–857.CrossRefGoogle Scholar
  35. Rose, K. D. 1982. Skeleton of Diacodexis, oldest known artiodactyl. Science 216:621–623.PubMedCrossRefGoogle Scholar
  36. Rose, K. D. 1996. On the origin of the order Artiodactyla. Proc. Natl. Acad. Sci. USA 93:1705–1709.PubMedCrossRefGoogle Scholar
  37. Russell, D. E. 1964. Les Mammifères Paléocènes d’Europe. Mem. Mus. Natl. Hist. Nat. Paris Ser. C 13:1–324.Google Scholar
  38. Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1–350.Google Scholar
  39. Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Illinois Natural History Survey, Champaign.Google Scholar
  40. Szalay, F. S. 1969a. The Hapalodectinae and a phylogeny of the Mesonychidae (Mammalia, Condylarthra). Am. Mus. Novit. 2361:1–26.Google Scholar
  41. Szalay, F S. 1969b. Origin and evolution of function of the mesonychid condylarth feeding mechanism. Evolution 23:703–720.CrossRefGoogle Scholar
  42. Szalay, F. S., and Gould, S. J. 1966. Asiatic Mesonychidae (Mammalia, Condylarthra). Bull. Am. Mus. Nat. Hist. 132:129–173.Google Scholar
  43. Taylor, L. H. 1981. The Kutz Canyon local fauna, Torrejonian (Middle Paleocene) of the San Juan Basin, New Mexico, in: S. G. Lucas, J. K. Rigby, Jr., and B. S. Kues (eds.), Advances in San Juan Basin Paleontology, pp. 242–263. University of New Mexico Press, Albuquerque.Google Scholar
  44. Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. J. Mamm. Evol. 2:157–184.CrossRefGoogle Scholar
  45. Thewissen, J. G. M., and Hussain, S. T. 1993. Origin of underwater hearing in whales. Nature 361:444–445.PubMedCrossRefGoogle Scholar
  46. Thewissen, J. G. M., and Hussain, S. T. In press. Attockicetus praecursor, a new remingtonocetid from marine Eocene sediments of Pakistan, in: L. G. Barnes (ed.), The Origin and Early Evolution of Cetacea. Natural History Museum of Los Angeles County Science Series.Google Scholar
  47. Thewissen, J. G. M, and Hussain, S. T. 1998. Systematic review of the Pakicetidae, early and middle Eocene Cetacea (Mammalia) from Pakistan and India. Bull. Carnegie Mus. Nat. Hist. 34:220–238.Google Scholar
  48. Thewissen, J. G. M., Russell, D. E., Gingerich, P. D., and Hussain, S. T. 1983. A new artiodactyl (Mammalia) from the Eocene of north-west Pakistan. Dentition and classification. Proc. K. Ned. Akad. Wet. Ser. B 86:153–180.Google Scholar
  49. Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. 1996. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-Inst. Senckenberg 191:1–86.Google Scholar
  50. Ting, S., and Li, C. 1987. The skull of Hapalodectes (?Acreodi, Mammalia), with notes on some Chinese Paleocene mesonychids. Vertebr. PalAsiat. 25:161–186.Google Scholar
  51. Van Valen, L. 1966. Deltatheridia, a new order of mammals. Bull. Am. Mus. Nat. Hist. 132:1–126.Google Scholar
  52. Van Valen, L. 1968. Monophyly or diphyly in the origin of whales. Evolution 22:37–41.CrossRefGoogle Scholar
  53. Van Valen, L. 1969. The multiple origins of the placental carnivores. Evolution 23:118–130.CrossRefGoogle Scholar
  54. Van Valen, L. 1978. The beginning of the age of mammals. Evol. Theory 4:45–80.Google Scholar
  55. West, R. M., and Lukacs, J. R. 1979. Geology and vertebrate-fossil localities, Tertiary continental rocks, Kala Chitta Hills, Attock District, Pakistan. Contrib. Biol. Geol. Milwaukee Public Mus. 26:1–20.Google Scholar
  56. Wiley, E. O., Siegel-Causey, D., Brooks, D. R., and Funk, V. A. 1991. The compleat cladist: a primer of phylogenetic techniques. Univ. Kans. Mus. Nat. Hist. Spec. Publ. No. 19..Google Scholar
  57. Xu, X., Janke, A., and Arnason, U. 1996. The complete mitochondrial DNA sequence of the greater Indian rhinoceros, Rhinoceros unicornis, and the phylogenetic relationship among Carnivora, Perissodactyla, and Artiodactyla(+ Cetacea). Mol. Biol. Evol. 13:1167–1173.PubMedCrossRefGoogle Scholar
  58. Zahn, C. T., and Roskies, R. Z. 1972. Fourier descriptors for closed plane curves. IEEE Trans. Comput. C-21:269–281.CrossRefGoogle Scholar
  59. Zhou, X., and Gingerich, P. D. 1991. New species of Hapalodectes (Mammalia, Mesonychia) from the early Wasatchian, early Eocene, of northwestern Wyoming. Contrib. Mus. Paleontol. Univ. Michigan 28:215–220.Google Scholar
  60. Zhou, X., Zhai, R., Gingerich, P. D., and Chen, L. 1995. Skull of a new mesonychid (Mammalia, Mesonychia) from the late Paleocene of China. J. Vertebr. Paleontol. 15:387–400.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Maureen A. O’Leary
    • 1
  1. 1.Department of Cell BiologyNew York University School of MedicineNew YorkUSA

Personalised recommendations