Cetacean Origins

Evolutionary Turmoil during the Invasion of the Oceans
  • J. G. M. Thewissen
Part of the Advances in Vertebrate Paleobiology book series (AIVP, volume 1)


It has been more than half a century since Remington Kellogg published a detailed treatment of the earliest whales (1936). In it, and in an earlier more popular article (Kellogg, 1928), he established Protocetus atavus as the best available model for the cetacean archetype. This was an appropriate model for most decades to follow, and it was highly influential in shaping our understanding of the ancestry of cetaceans. Protocetus is known from many elements: a skull with teeth, vertebrae, and ribs (Fraas, 1904; Stromer, 1908). Compared with later cetaceans, Protocetus is remarkably primitive, it has heterodont teeth, a complete dental formula, and the caudal edge of its nasal opening is over P1. Nonetheless, it was unambiguously a cetacean and separated by a large morphological gap from its four-footed terrestrial ancestors. Based on the derived nature of Protocetus, many authors in the first half of this century believed that cetaceans had a very ancient origin and that whales had no close relatives among the other modern orders. It was also commonly thought that mysticetes and odontocetes were derived independently from land mammals (e.g., Slijper, 1962).


Sister Group Middle Eocene Late Eocene Dental Wear Mandibular Foramen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlberg, P. E., and Milner, A. R. 1994. The origin and early diversification of tetrapods. Nature 368:507–514.CrossRefGoogle Scholar
  2. Archibald, J. D. 1996. Testing extinction theories at the Cretaceous-Tertiary boundary using the vertebrate fossil record, in: N. MacLeod and G. Keller (eds.), Cretaceous-Tertiary Mass Extinctions: Biotic and Environmental Changes, pp. 373–397. Norton, New York.Google Scholar
  3. Asian, A., and Thewissen, J. G. M. 1997. Preliminary evaluation of paleosols and implications for interpreting vertebrate fossil assemblages, Kuldana Formation, northern Pakistan. Paleovertebrata 25:261–277.Google Scholar
  4. Barnes, L. G., and Mitchell, E. 1978. Cetacea, in: V. J. Maglio and H. B. S. Cooke (eds.), Evolution of East African Mammals, pp. 582–602. Harvard University Press, Cambridge, MA.Google Scholar
  5. Boyden, A., and Gemeroy, D. 1950. The relative position of Cetacea among the orders of Mammalia as indicated by precipitin tests. Zoologica 35:145–151.Google Scholar
  6. Buffetaut, E. 1978. Crocodilian remains from the Eocene of Pakistan. N. Jb. Geol. Palaeontol. 156:262–283.Google Scholar
  7. Dehm, R., and Oettingen-Spielberg, T. zu. 1958. Palaeontologische und geologische Untersuchungen im Tertiär von Pakistan. 2. Die mitteleocänen Saügetiere von Ganda Kas bei Basal in Nordwest Pakistan. Abh. Bayer. Akad. Wiss. Math. Naturwiss. Kl. N. F. 91:1–54.Google Scholar
  8. Fleischer, G. 1978. Evolutionary Principles of Mammalian Middle Ear. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  9. Fordyce, R. E., and Barnes, L. G. 1994. The evolutionary history of whales and dolphins. Annu. Rev. Earth Planet. Sci. 22:419–455.CrossRefGoogle Scholar
  10. Fraas, E. 1904. Neue Zeuglodonten aus dem unteren Mitteleocän vom Mokattam bei Cairo. Geol. Palaeontol. Abh. N. F. 6:199–220.Google Scholar
  11. Gatesy, J., Hayashi, C., Cronin, M., and Arctander, P. 1996. Evidence from milk casein genes that cetaceans are close relatives are of hippopotamid artiodactyls. Mol. Biol. Evol. 13:954–963.PubMedCrossRefGoogle Scholar
  12. Gatesy, J. 1997. More DNA support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gamma-fibrinogen. Mol. Biol. Evol. 14:537–543.PubMedCrossRefGoogle Scholar
  13. Gingerich, P. D. 1992. Marine mammals (Cetacea and Sirenia) from the Middle Eocene of of Kpogamé-Hahotoé in Togo. J. Vert. Paleont., Suppl. 12:29A–30A.CrossRefGoogle Scholar
  14. Gingerich, P. D., and Russell, D. E. 1981. Pakicetus inachus, a new archaeocete (Mammalia, Cetacea) from the early-middle Eocene Kuldana Formation of Kohat (Pakistan). Contr. Mus. Paleont., Univ. Michigan 25:235–246.Google Scholar
  15. Gingerich, P. D., and Russell, D. E. 1990. Dentition of the Early Eocene Pakicetus (Mammalia, Cetacea). Contr. Mus. Paleont., Univ. Michigan 28:1–20.Google Scholar
  16. Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. 1983. Origin of whales in epicontinental remnant seas: New evidence from the Early Eocene of Pakistan. Science 220:403–406.PubMedCrossRefGoogle Scholar
  17. Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1993. Partial skeletons of Indocetus ramani (Mammalia, Cetacea) from the Lower Middle Eocene Domanda shale in the Sulaiman range of Punjab (Pakistan). Contr. Mus. Paleont., Univ. Michigan 28:393–416.Google Scholar
  18. Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844–847.CrossRefGoogle Scholar
  19. Gingerich, P. D., Arif, M., and Clyde, W. C. 1995. New archaeocetes (Mammalia, Cetacea) from the middle Eocene Domanda Formation of the Sulaiman Range, Punjab (Pakistan). Contribu. Mus. Paleontol. Univ. Michigan 29(11):291–330.Google Scholar
  20. Gould, S. J. 1994. Hooking Leviathan by its past. Not. Hist. 103:8–15.Google Scholar
  21. Hulbert, R. C., Petkewich, R. M., Bishop, G. A., Bukry, D., and Aleshire, D. P. 1998. A new protocetid (Mammalia: Cetacea: Archaeoceti) and associated biota from the Middle Eocene of Georgia. J. Paleontol. 72:905–925.Google Scholar
  22. Kellogg, R. 1928. The history of whales—their adaptation to life in the water. Q. Rev. Biol. 3:29–76.CrossRefGoogle Scholar
  23. Kellogg, R. 1936. A review of the Archaeoceti. Carnegie Inst. Washington Publ. 482:1–366.Google Scholar
  24. Kinkel, M. D., Thewissen, J. G. M., and Oelschläger, H. A. 1997. Repositioning of the incus and malleus during dolphin ontogeny. J. Morphol. 232:275.Google Scholar
  25. Lancaster, W. C. 1990. The middle ear of the Archaeoceti. J. Vertebr. Paleontol. 10:117–127.CrossRefGoogle Scholar
  26. McKenna, M. C. 1975. Toward a phylogenetic classification of the Mammalia, in: W. P. Luckett and F. S. Szalay (eds.), Phylogeny of the Primates, pp. 21–46. Plenum Press, New York.CrossRefGoogle Scholar
  27. Milinkovitch, M. C., and Thewissen, J. G. M. 1997. Even-toed fingerprints on whale ancestry. Nature 388:622–624.CrossRefGoogle Scholar
  28. Milinkovitch, M. C., Ortf, G., and Meyer, A. 1993. Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nature 361:346–348.PubMedCrossRefGoogle Scholar
  29. Miller, G. S. 1923. The telescoping of the cetacean skull. Smithson. Misc. Collect. 76:1–71.Google Scholar
  30. Pilgrim, G. E. 1940. Middle Eocene mammals from north-west India. Proc. Zool. Soc. B 110:127–152.Google Scholar
  31. Prothero, D. R., Manning, E. M., and Fisher, M. 1988. The phylogeny of ungulates, in: M. J. Benton (ed.), The Phylogeny and Classification of the Tetrapods, Volume 2, pp. 201–234. Clarendon Press, Oxford.Google Scholar
  32. Rango Rao, A. 1972. New mammalian genera and species from the Kalakot zone of Himalayan foot hills near Kalakot, Jammu and Kashmir State, India. Directorate of Geology Oil and Natural Gas Commission, Dehra Dun, India Special Paper No. 1:1-22.Google Scholar
  33. Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Munechika, I., and Okada, N. 1997. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–670.PubMedCrossRefGoogle Scholar
  34. Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1–339.Google Scholar
  35. Slijper, E. J. 1962. Whales. Basic Books, New York.Google Scholar
  36. Stromer, E. 1908. Die Archaeoceti des Ägyptischen Eozäns. Beitr. Paläontol. Geol. Österreich-Ungarns Orients 21:106–177.Google Scholar
  37. Taylor, M. A. 1987. How tetrapods feed in water: a functional analysis by paradigm. Zool. J. Linn. Soc. 91:171–195.CrossRefGoogle Scholar
  38. Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. J. Mamm. Evol. 2:157–184.CrossRefGoogle Scholar
  39. Thewissen, J. G. M., and Fish, F. E. 1997. Locomotor evolution in the earliest cetaceans: functional model, modern analogues, and paleontological evidence. Paleobiology. 23:482–490.Google Scholar
  40. Thewissen, J. G. M., and Hussain, S. T. 1993. Origin of underwater hearing in whales. Nature 361:444–445.PubMedCrossRefGoogle Scholar
  41. Thewissen, J. G. M., and Hussain, S. T. In press. Attockicetus praecursor, a new remingtonocetid cetacean from marine Eocene sediments of Pakistan. Nat. Hist. Mus. Los Angeles Cty. Sci. Ser.Google Scholar
  42. Thewissen, J. G. M., and Hussain, S. T. 1988. Systematic review of the Pakicetidae, early and middle Eocene Cetacea (Mammalia) from Pakistan and India. Bull. Carnegie Mus. Natl. Hist. 34:220–238.Google Scholar
  43. Thewissen, J. G. M., Hussain, S. T., and Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210–212.PubMedCrossRefGoogle Scholar
  44. Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. 1996a. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-Inst. Senckenberg 191:1–86.Google Scholar
  45. Thewissen, J. G. M., Roe, L. J., O’Neil, J. R., Hussain, S. T., Sahni, A., and Bajpai, S. 1996b. Evolution of cetacean osmoregulation. Nature 381:379–380.CrossRefGoogle Scholar
  46. Van Valen, L. 1966. Deltatheridia, a new order or mammals. Bull. Am. Mus. Nat. Hist. 132:1–126.Google Scholar
  47. Van Valen, L. 1967. New Paleocene insectivores and insectivore classification. Bull. Am. Mus. Nat. Hist. 135:217–284.Google Scholar
  48. Webster, D. B., and Webster, M. 1976. Auditory systems of Heteromyidae: functional morphology and evolution of the middle ear. J. Morphol. 146:343–376.CrossRefGoogle Scholar
  49. West, R. M. 1980. Middle Eocene large mammal assemblage with Tethyan affinities, Ganda Kas region, Pakistan. J. Paleontol. 54:508–533.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • J. G. M. Thewissen
    • 1
  1. 1.Department of AnatomyNortheastern Ohio Universities College of MedicineRootstownUSA

Personalised recommendations